File size: 17,455 Bytes
b793755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
# -*- coding: utf-8 -*-
"""

Stage 3: Context Engineering → Quantum Contextuality



Classical context windows collapse ambiguity. Quantum contextuality 

preserves multiple interpretations through superposition and adaptive

context collapse based on feedback.

"""

import numpy as np
from typing import Dict, List, Tuple, Optional, Any, Union
import torch
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.quantum_info import Statevector, partial_trace
from qiskit_aer import AerSimulator
import pennylane as qml
from pennylane import numpy as pnp
import logging
from collections import defaultdict

logger = logging.getLogger(__name__)

class QuantumContextEngine:
    """

    Quantum-enhanced context engineering for multilingual AI.

    

    Encodes context as quantum superpositions preserving cultural nuance

    and polysemy, with adaptive context collapse based on feedback.

    """
    
    def __init__(self, max_context_qubits: int = 20, cultural_dimensions: int = 8):
        """Initialize quantum context engine."""
        self.max_context_qubits = max_context_qubits
        self.cultural_dimensions = cultural_dimensions
        self.simulator = AerSimulator()
        
        # Context state management
        self.context_superpositions = {}
        self.cultural_embeddings = {}
        self.polysemy_maps = {}
        self.feedback_history = []
        
        # PennyLane device for variational circuits
        self.dev = qml.device('default.qubit', wires=max_context_qubits)
        
        logger.info(f"Initialized QuantumContextEngine with {max_context_qubits} qubits, {cultural_dimensions} cultural dimensions")
    
    def encode_context_superposition(self, context_text: str, language: str, 

                                   cultural_context: Dict[str, float] = None) -> QuantumCircuit:
        """

        Encode context as quantum superposition preserving multiple interpretations.

        

        Args:

            context_text: Input text context

            language: Language of the context

            cultural_context: Cultural dimension weights

            

        Returns:

            Quantum circuit encoding context superposition

        """
        # Tokenize and encode context
        tokens = context_text.lower().split()[:self.max_context_qubits]
        num_qubits = min(len(tokens), self.max_context_qubits)
        
        qreg = QuantumRegister(num_qubits, 'context')
        circuit = QuantumCircuit(qreg)
        
        # Create superposition for each token
        for i, token in enumerate(tokens[:num_qubits]):
            circuit.h(qreg[i])
            
            # Encode token-specific phase
            token_phase = (hash(token) % 1000) / 1000 * 2 * np.pi
            circuit.rz(token_phase, qreg[i])
        
        # Language-specific encoding
        language_phases = {
            'indonesian': np.pi/6,
            'arabic': np.pi/4,
            'spanish': np.pi/3,
            'english': np.pi/2
        }
        lang_phase = language_phases.get(language, np.pi/4)
        
        for i in range(num_qubits):
            circuit.ry(lang_phase, qreg[i])
        
        # Cultural context encoding
        if cultural_context:
            for i, (dimension, weight) in enumerate(cultural_context.items()):
                if i < num_qubits:
                    circuit.rz(weight * np.pi, qreg[i])
        
        # Create entanglement for contextual relationships
        for i in range(num_qubits - 1):
            circuit.cx(qreg[i], qreg[i + 1])
        
        self.context_superpositions[f"{language}_{hash(context_text)}"] = circuit
        logger.info(f"Encoded context superposition for {language}: {num_qubits} qubits")
        
        return circuit
    
    def encode_polysemy(self, word: str, meanings: List[str], language: str) -> QuantumCircuit:
        """

        Encode polysemous words as quantum superposition of meanings.

        

        Args:

            word: Polysemous word

            meanings: List of possible meanings

            language: Language context

            

        Returns:

            Quantum circuit encoding polysemy

        """
        num_meanings = min(len(meanings), self.max_context_qubits)
        qreg = QuantumRegister(num_meanings, 'meanings')
        circuit = QuantumCircuit(qreg)
        
        # Create uniform superposition of meanings
        for i in range(num_meanings):
            circuit.h(qreg[i])
        
        # Encode meaning-specific phases
        for i, meaning in enumerate(meanings[:num_meanings]):
            meaning_phase = (hash(meaning) % 1000) / 1000 * 2 * np.pi
            circuit.rz(meaning_phase, qreg[i])
        
        # Language-specific modulation
        lang_weight = hash(language) % 100 / 100
        for i in range(num_meanings):
            circuit.ry(lang_weight * np.pi, qreg[i])
        
        polysemy_key = f"{word}_{language}"
        self.polysemy_maps[polysemy_key] = {
            'circuit': circuit,
            'meanings': meanings[:num_meanings],
            'word': word,
            'language': language
        }
        
        logger.info(f"Encoded polysemy for '{word}' in {language}: {num_meanings} meanings")
        return circuit
    
    def cultural_nuance_embedding(self, text: str, source_culture: str, 

                                target_culture: str) -> Dict[str, Any]:
        """

        Create quantum embedding preserving cultural nuances across cultures.

        

        Args:

            text: Input text

            source_culture: Source cultural context

            target_culture: Target cultural context

            

        Returns:

            Quantum cultural embedding

        """
        # Cultural dimension mappings with comprehensive coverage
        cultural_dimensions = {
            'indonesian': {
                'collectivism': 0.8, 'hierarchy': 0.7, 'context': 0.9, 'harmony': 0.8,
                'relationship_focus': 0.9, 'indirect_communication': 0.8, 'respect': 0.9
            },
            'arabic': {
                'collectivism': 0.7, 'hierarchy': 0.8, 'context': 0.8, 'honor': 0.9,
                'family_centrality': 0.9, 'tradition': 0.8, 'hospitality': 0.9
            },
            'spanish': {
                'collectivism': 0.6, 'hierarchy': 0.6, 'context': 0.7, 'family': 0.8,
                'warmth': 0.8, 'expressiveness': 0.7, 'personal_relationships': 0.8
            },
            'english': {
                'individualism': 0.8, 'directness': 0.7, 'efficiency': 0.8, 'innovation': 0.7,
                'pragmatism': 0.8, 'competition': 0.7, 'time_orientation': 0.8
            },
            'chinese': {
                'collectivism': 0.9, 'hierarchy': 0.9, 'context': 0.9, 'harmony': 0.9,
                'face_saving': 0.9, 'long_term_orientation': 0.9, 'guanxi': 0.8, 'filial_piety': 0.9
            }
        }
        
        source_dims = cultural_dimensions.get(source_culture, {})
        target_dims = cultural_dimensions.get(target_culture, {})
        
        # Create quantum circuit for cultural embedding
        num_qubits = min(self.cultural_dimensions, self.max_context_qubits)
        qreg = QuantumRegister(num_qubits, 'culture')
        circuit = QuantumCircuit(qreg)
        
        # Initialize superposition
        for i in range(num_qubits):
            circuit.h(qreg[i])
        
        # Encode source culture
        for i, (dim, value) in enumerate(list(source_dims.items())[:num_qubits]):
            circuit.ry(value * np.pi, qreg[i])
        
        # Create cultural entanglement
        for i in range(num_qubits - 1):
            circuit.cx(qreg[i], qreg[i + 1])
        
        # Target culture transformation
        for i, (dim, value) in enumerate(list(target_dims.items())[:num_qubits]):
            if i < num_qubits:
                circuit.rz(value * np.pi, qreg[i])
        
        # Measure cultural embedding
        circuit.measure_all()
        
        job = self.simulator.run(circuit, shots=1024)
        result = job.result()
        counts = result.get_counts()
        
        # Extract cultural features
        total_shots = sum(counts.values())
        cultural_distribution = {state: count/total_shots for state, count in counts.items()}
        
        embedding = {
            'source_culture': source_culture,
            'target_culture': target_culture,
            'cultural_distribution': cultural_distribution,
            'dominant_pattern': max(cultural_distribution.keys(), key=cultural_distribution.get),
            'cultural_entropy': -sum(p * np.log2(p + 1e-10) for p in cultural_distribution.values()),
            'cross_cultural_similarity': self._calculate_cultural_similarity(source_dims, target_dims)
        }
        
        embedding_key = f"{source_culture}_{target_culture}_{hash(text)}"
        self.cultural_embeddings[embedding_key] = embedding
        
        logger.info(f"Created cultural embedding: {source_culture}{target_culture}")
        return embedding
    
    def adaptive_context_collapse(self, context_key: str, feedback: Dict[str, float],

                                user_preference: str = None) -> Dict[str, Any]:
        """

        Adaptively collapse context superposition based on feedback.

        

        Args:

            context_key: Key identifying the context superposition

            feedback: User feedback scores for different interpretations

            user_preference: Preferred interpretation direction

            

        Returns:

            Collapsed context with selected interpretation

        """
        if context_key not in self.context_superpositions:
            logger.warning(f"Context key {context_key} not found")
            return {}
        
        circuit = self.context_superpositions[context_key].copy()
        
        # Add measurement based on feedback
        num_qubits = circuit.num_qubits
        creg = ClassicalRegister(num_qubits, 'collapsed')
        circuit.add_register(creg)
        
        # Apply feedback-weighted rotations before measurement
        for i, (interpretation, score) in enumerate(feedback.items()):
            if i < num_qubits:
                # Higher score = more likely to measure |1⟩
                rotation_angle = score * np.pi / 2
                circuit.ry(rotation_angle, circuit.qregs[0][i])
        
        # Measure all qubits
        circuit.measure(circuit.qregs[0], creg)
        
        # Execute measurement
        job = self.simulator.run(circuit, shots=1024)
        result = job.result()
        counts = result.get_counts()
        
        # Select most probable interpretation
        most_probable = max(counts.keys(), key=counts.get)
        probability = counts[most_probable] / sum(counts.values())
        
        collapsed_context = {
            'original_key': context_key,
            'collapsed_state': most_probable,
            'collapse_probability': probability,
            'measurement_counts': counts,
            'feedback_applied': feedback,
            'collapse_entropy': -sum((c/sum(counts.values())) * np.log2(c/sum(counts.values()) + 1e-10) 
                                   for c in counts.values())
        }
        
        # Store feedback for learning
        self.feedback_history.append({
            'context_key': context_key,
            'feedback': feedback,
            'result': collapsed_context,
            'timestamp': len(self.feedback_history)
        })
        
        logger.info(f"Collapsed context {context_key} with probability {probability:.3f}")
        return collapsed_context
    
    @qml.qnode(device=None)
    def quantum_context_circuit(self, params: pnp.ndarray, context_encoding: List[float]) -> float:
        """

        Variational quantum circuit for context processing.

        

        Args:

            params: Circuit parameters

            context_encoding: Encoded context features

            

        Returns:

            Context relevance score

        """
        # Encode context
        qml.AmplitudeEmbedding(features=context_encoding, wires=range(len(context_encoding)))
        
        # Variational layers
        for layer in range(3):
            for qubit in range(len(context_encoding)):
                qml.RY(params[layer * len(context_encoding) + qubit], wires=qubit)
            
            # Entangling gates
            for qubit in range(len(context_encoding) - 1):
                qml.CNOT(wires=[qubit, qubit + 1])
        
        return qml.expval(qml.PauliZ(0))
    
    def quantum_context_adaptation(self, contexts: List[str], languages: List[str],

                                 adaptation_target: str) -> Dict[str, Any]:
        """

        Adapt contexts across languages using quantum processing.

        

        Args:

            contexts: List of context strings

            languages: Corresponding languages

            adaptation_target: Target adaptation goal

            

        Returns:

            Adapted context results

        """
        # Set device for quantum node
        self.quantum_context_circuit.device = self.dev
        
        adapted_results = {}
        
        for context, language in zip(contexts, languages):
            # Encode context as quantum features
            tokens = context.lower().split()[:8]  # Limit for quantum processing
            context_encoding = np.zeros(8)
            
            for i, token in enumerate(tokens):
                if i < 8:
                    context_encoding[i] = (hash(token) % 1000) / 1000
            
            # Normalize encoding
            context_encoding = context_encoding / (np.linalg.norm(context_encoding) + 1e-10)
            
            # Initialize parameters
            num_params = 3 * len(context_encoding)
            params = pnp.random.random(num_params, requires_grad=True)
            
            # Optimize for adaptation target
            optimizer = qml.AdamOptimizer(stepsize=0.1)
            
            for step in range(50):
                params, cost = optimizer.step_and_cost(
                    lambda p: -self.quantum_context_circuit(p, context_encoding), params
                )
            
            # Get final adapted score
            adapted_score = self.quantum_context_circuit(params, context_encoding)
            
            adapted_results[f"{language}_{hash(context)}"] = {
                'original_context': context,
                'language': language,
                'adapted_score': float(adapted_score),
                'quantum_params': params.tolist(),
                'adaptation_target': adaptation_target
            }
        
        logger.info(f"Quantum context adaptation completed for {len(contexts)} contexts")
        return adapted_results
    
    def _calculate_cultural_similarity(self, culture1: Dict[str, float], 

                                     culture2: Dict[str, float]) -> float:
        """Calculate similarity between cultural dimension vectors."""
        common_dims = set(culture1.keys()) & set(culture2.keys())
        if not common_dims:
            return 0.0
        
        vec1 = np.array([culture1[dim] for dim in common_dims])
        vec2 = np.array([culture2[dim] for dim in common_dims])
        
        # Cosine similarity
        similarity = np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2) + 1e-10)
        return float(similarity)
    
    def get_quantum_context_metrics(self) -> Dict[str, Any]:
        """Get comprehensive metrics for quantum context processing."""
        metrics = {
            'max_context_qubits': self.max_context_qubits,
            'cultural_dimensions': self.cultural_dimensions,
            'context_superpositions_created': len(self.context_superpositions),
            'polysemy_maps_created': len(self.polysemy_maps),
            'cultural_embeddings_created': len(self.cultural_embeddings),
            'feedback_interactions': len(self.feedback_history),
            'quantum_context_advantage': 2 ** self.max_context_qubits  # Exponential state space
        }
        
        # Analyze feedback patterns
        if self.feedback_history:
            feedback_scores = []
            for feedback in self.feedback_history:
                scores = list(feedback['feedback'].values())
                if scores:
                    feedback_scores.extend(scores)
            
            if feedback_scores:
                metrics['average_feedback_score'] = np.mean(feedback_scores)
                metrics['feedback_variance'] = np.var(feedback_scores)
        
        # Cultural embedding analysis
        if self.cultural_embeddings:
            similarities = [emb['cross_cultural_similarity'] for emb in self.cultural_embeddings.values()]
            metrics['average_cultural_similarity'] = np.mean(similarities)
            metrics['cultural_diversity'] = np.var(similarities)
        
        return metrics