Add SFT checkpoint
Browse files- .gitattributes +1 -0
- added_tokens.json +28 -0
- config.json +30 -0
- generation_config.json +13 -0
- global_step410/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- global_step410/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- global_step410/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- global_step410/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- global_step410/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- global_step410/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- global_step410/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- global_step410/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- latest +1 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +406 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +240 -0
- trainer_state.json +2904 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +674 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</think>": 151668,
|
| 3 |
+
"</tool_call>": 151658,
|
| 4 |
+
"</tool_response>": 151666,
|
| 5 |
+
"<think>": 151667,
|
| 6 |
+
"<tool_call>": 151657,
|
| 7 |
+
"<tool_response>": 151665,
|
| 8 |
+
"<|box_end|>": 151649,
|
| 9 |
+
"<|box_start|>": 151648,
|
| 10 |
+
"<|endoftext|>": 151643,
|
| 11 |
+
"<|file_sep|>": 151664,
|
| 12 |
+
"<|fim_middle|>": 151660,
|
| 13 |
+
"<|fim_pad|>": 151662,
|
| 14 |
+
"<|fim_prefix|>": 151659,
|
| 15 |
+
"<|fim_suffix|>": 151661,
|
| 16 |
+
"<|im_end|>": 151645,
|
| 17 |
+
"<|im_start|>": 151644,
|
| 18 |
+
"<|image_pad|>": 151655,
|
| 19 |
+
"<|object_ref_end|>": 151647,
|
| 20 |
+
"<|object_ref_start|>": 151646,
|
| 21 |
+
"<|quad_end|>": 151651,
|
| 22 |
+
"<|quad_start|>": 151650,
|
| 23 |
+
"<|repo_name|>": 151663,
|
| 24 |
+
"<|video_pad|>": 151656,
|
| 25 |
+
"<|vision_end|>": 151653,
|
| 26 |
+
"<|vision_pad|>": 151654,
|
| 27 |
+
"<|vision_start|>": 151652
|
| 28 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Qwen3ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 151643,
|
| 8 |
+
"eos_token_id": 151645,
|
| 9 |
+
"head_dim": 128,
|
| 10 |
+
"hidden_act": "silu",
|
| 11 |
+
"hidden_size": 4096,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 12288,
|
| 14 |
+
"max_position_embeddings": 40960,
|
| 15 |
+
"max_window_layers": 36,
|
| 16 |
+
"model_type": "qwen3",
|
| 17 |
+
"num_attention_heads": 32,
|
| 18 |
+
"num_hidden_layers": 36,
|
| 19 |
+
"num_key_value_heads": 8,
|
| 20 |
+
"rms_norm_eps": 1e-06,
|
| 21 |
+
"rope_scaling": null,
|
| 22 |
+
"rope_theta": 1000000,
|
| 23 |
+
"sliding_window": null,
|
| 24 |
+
"tie_word_embeddings": false,
|
| 25 |
+
"torch_dtype": "bfloat16",
|
| 26 |
+
"transformers_version": "4.51.1",
|
| 27 |
+
"use_cache": true,
|
| 28 |
+
"use_sliding_window": false,
|
| 29 |
+
"vocab_size": 151936
|
| 30 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
151645,
|
| 6 |
+
151643
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 151643,
|
| 9 |
+
"temperature": 0.6,
|
| 10 |
+
"top_k": 20,
|
| 11 |
+
"top_p": 0.95,
|
| 12 |
+
"transformers_version": "4.51.1"
|
| 13 |
+
}
|
global_step410/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:66321a74f2a1d666b92262e2339ff7c4abbd57053b94c725bf79cbe0f7b4db80
|
| 3 |
+
size 24572211929
|
global_step410/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4d7a0cec80e800a5b15be4a7042844a70a05c3efec8050b02fd7787c239b572b
|
| 3 |
+
size 24572211929
|
global_step410/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cc44fa2c042b38396bbde285eb90a660e66f6ca9d83ff76c72c9ca4adfdf2f99
|
| 3 |
+
size 24572211929
|
global_step410/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:df61a6ccc4ba4671644282bd42eba72b9fb535d26ed98dffdbe4dff497cdfb26
|
| 3 |
+
size 24572211929
|
global_step410/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e669c7904cb3cabe3f6b37d83b6caf271c9d4c6ba720261ef9161dce59690430
|
| 3 |
+
size 202476
|
global_step410/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1e3ef95d0419f8bc8d46c69478a425fb6650fea5614c13a4d7fb8dd14cd62e74
|
| 3 |
+
size 202476
|
global_step410/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7f6168375c9452866384f49785c912601a12d244b76044cc0f04d41cf6252536
|
| 3 |
+
size 202476
|
global_step410/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:afc34b121f3b715c31543fe820525c6f40f6be8a4813677c8dac7c7cd9abf8ad
|
| 3 |
+
size 202476
|
latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step410
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:18477acf812e969b4ba9b738bc1bbab96f2f3a1d129891da00b8a0f95624d162
|
| 3 |
+
size 4902257696
|
model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6922b4f246a04611afddc8f2fe610d5bbb0744fa913dacd5ad7340818b3b2c8f
|
| 3 |
+
size 4915960368
|
model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7f692b97f713071d751f95896815d96abf9979696c4013a3b0b63e00cb3afabb
|
| 3 |
+
size 4983068496
|
model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:743a81d4f02051312f4d38166f9dc515a41a8f9a2df9f9c34cc3adbcd52d60fc
|
| 3 |
+
size 1580230264
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 16381470720
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 21 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 22 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 23 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 24 |
+
"model.layers.1.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 30 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 31 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 32 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 33 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 34 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 35 |
+
"model.layers.10.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 36 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 37 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 38 |
+
"model.layers.10.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 39 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 40 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 41 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 42 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 43 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 44 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 45 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 46 |
+
"model.layers.11.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 47 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 48 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 49 |
+
"model.layers.11.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 50 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 51 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 52 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 53 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 54 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 55 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 56 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 57 |
+
"model.layers.12.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 58 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 59 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 60 |
+
"model.layers.12.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 61 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 62 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 63 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 64 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 65 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 66 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 67 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 68 |
+
"model.layers.13.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 69 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 70 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 71 |
+
"model.layers.13.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 72 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 73 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 74 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 75 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 76 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 77 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 78 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 79 |
+
"model.layers.14.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 80 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 81 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 82 |
+
"model.layers.14.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 83 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 84 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 85 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 86 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 87 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 88 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 89 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 90 |
+
"model.layers.15.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 91 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 92 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 93 |
+
"model.layers.15.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 94 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 95 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 96 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 97 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 98 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 99 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 100 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 101 |
+
"model.layers.16.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 102 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 103 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 104 |
+
"model.layers.16.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 105 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 106 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 107 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 108 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 109 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 110 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 111 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 112 |
+
"model.layers.17.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 113 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 114 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 115 |
+
"model.layers.17.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 116 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 117 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 118 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 119 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 120 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 121 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 122 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 123 |
+
"model.layers.18.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 124 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 125 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 126 |
+
"model.layers.18.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 127 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 128 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 129 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 130 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 131 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 132 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 133 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 134 |
+
"model.layers.19.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 135 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 136 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 137 |
+
"model.layers.19.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 138 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 139 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 140 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 141 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 142 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 143 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 144 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 145 |
+
"model.layers.2.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 146 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 147 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 148 |
+
"model.layers.2.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 149 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 150 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 151 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 152 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 153 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 154 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 155 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 156 |
+
"model.layers.20.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 157 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 158 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 159 |
+
"model.layers.20.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 160 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 161 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 162 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 163 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 164 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 165 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 166 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 167 |
+
"model.layers.21.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 168 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 169 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 170 |
+
"model.layers.21.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 171 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 172 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 173 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 174 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 175 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 176 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 177 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 178 |
+
"model.layers.22.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 179 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 180 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 181 |
+
"model.layers.22.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 182 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 183 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 184 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 185 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 186 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 187 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 188 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 189 |
+
"model.layers.23.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 190 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 191 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 192 |
+
"model.layers.23.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 193 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 194 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 195 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 196 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 197 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 198 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 199 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 200 |
+
"model.layers.24.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 201 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 202 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 203 |
+
"model.layers.24.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 204 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 205 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 206 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 207 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 208 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 209 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 210 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 211 |
+
"model.layers.25.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 212 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 213 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 214 |
+
"model.layers.25.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 215 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 216 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 217 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 218 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 219 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 220 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 221 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 222 |
+
"model.layers.26.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 223 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 224 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 225 |
+
"model.layers.26.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 226 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 227 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 228 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 229 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 230 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 231 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 232 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 233 |
+
"model.layers.27.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 234 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 235 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 236 |
+
"model.layers.27.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 237 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 238 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 239 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 240 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 241 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 242 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 243 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 244 |
+
"model.layers.28.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 245 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 246 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 247 |
+
"model.layers.28.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 248 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 249 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 250 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 251 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 252 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 253 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 254 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 255 |
+
"model.layers.29.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 256 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 257 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 258 |
+
"model.layers.29.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 259 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 260 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 261 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 262 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 263 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 264 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 265 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 266 |
+
"model.layers.3.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 267 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 268 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 269 |
+
"model.layers.3.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 270 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 272 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 273 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 274 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 275 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 276 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 277 |
+
"model.layers.30.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 278 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 279 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 280 |
+
"model.layers.30.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 281 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 282 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 283 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 284 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 285 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 286 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 287 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 288 |
+
"model.layers.31.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 289 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 290 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 291 |
+
"model.layers.31.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 292 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 293 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 294 |
+
"model.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 295 |
+
"model.layers.32.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 296 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 297 |
+
"model.layers.32.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 298 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 299 |
+
"model.layers.32.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 300 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 301 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 302 |
+
"model.layers.32.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 303 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 304 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 305 |
+
"model.layers.33.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 306 |
+
"model.layers.33.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 307 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 308 |
+
"model.layers.33.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 309 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 310 |
+
"model.layers.33.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 311 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 312 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 313 |
+
"model.layers.33.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 314 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 315 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 316 |
+
"model.layers.34.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 317 |
+
"model.layers.34.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 318 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 319 |
+
"model.layers.34.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 320 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 321 |
+
"model.layers.34.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 322 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 323 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 324 |
+
"model.layers.34.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 325 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 326 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 327 |
+
"model.layers.35.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 328 |
+
"model.layers.35.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 329 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 330 |
+
"model.layers.35.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 331 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 332 |
+
"model.layers.35.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
|
| 333 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 334 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
| 335 |
+
"model.layers.35.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
|
| 336 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 337 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 338 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 339 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 340 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 341 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 342 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 343 |
+
"model.layers.4.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 344 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 345 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 346 |
+
"model.layers.4.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 347 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 348 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 349 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 350 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 351 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 352 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 353 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 354 |
+
"model.layers.5.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 355 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 356 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 357 |
+
"model.layers.5.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 358 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 359 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 360 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 361 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 362 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 363 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 364 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 365 |
+
"model.layers.6.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 366 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 367 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 368 |
+
"model.layers.6.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 369 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 370 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 371 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 372 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 373 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 374 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 375 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 376 |
+
"model.layers.7.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 377 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 378 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 379 |
+
"model.layers.7.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 380 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 381 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 382 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 383 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 384 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 385 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 386 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 387 |
+
"model.layers.8.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 388 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 389 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 390 |
+
"model.layers.8.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 391 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 392 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 393 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 394 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 395 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 396 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 397 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 398 |
+
"model.layers.9.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 399 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 400 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 401 |
+
"model.layers.9.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 402 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 403 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 404 |
+
"model.norm.weight": "model-00004-of-00004.safetensors"
|
| 405 |
+
}
|
| 406 |
+
}
|
rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:81d5f83aeb4b3f559bd28377336d47659b320e7f6ef2e5a723d284716278a151
|
| 3 |
+
size 15429
|
rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2626437dcb133ffcf003ac89603f8cce07459b93a98d760cd9419e0d6a994067
|
| 3 |
+
size 15429
|
rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ae777e24d50cb7159634e1245f0697ba0fc64d5b26d535f2c80e411371a90b1c
|
| 3 |
+
size 15429
|
rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:afc5a67564eebcfc961e8f1406a7418cc73497c2935a39af0232ef59f8153a6a
|
| 3 |
+
size 15429
|
scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:74fdd8c9c0a294c480b68c98e8717d3f84a2af1b342225b0a31bca5d9910b0f3
|
| 3 |
+
size 1465
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7bd8e5e2fda2a36b5770750293290847590e40f58931b87312c4bf1e9c69aa34
|
| 3 |
+
size 11422754
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
},
|
| 181 |
+
"151665": {
|
| 182 |
+
"content": "<tool_response>",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": false,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": false
|
| 188 |
+
},
|
| 189 |
+
"151666": {
|
| 190 |
+
"content": "</tool_response>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": false,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": false
|
| 196 |
+
},
|
| 197 |
+
"151667": {
|
| 198 |
+
"content": "<think>",
|
| 199 |
+
"lstrip": false,
|
| 200 |
+
"normalized": false,
|
| 201 |
+
"rstrip": false,
|
| 202 |
+
"single_word": false,
|
| 203 |
+
"special": false
|
| 204 |
+
},
|
| 205 |
+
"151668": {
|
| 206 |
+
"content": "</think>",
|
| 207 |
+
"lstrip": false,
|
| 208 |
+
"normalized": false,
|
| 209 |
+
"rstrip": false,
|
| 210 |
+
"single_word": false,
|
| 211 |
+
"special": false
|
| 212 |
+
}
|
| 213 |
+
},
|
| 214 |
+
"additional_special_tokens": [
|
| 215 |
+
"<|im_start|>",
|
| 216 |
+
"<|im_end|>",
|
| 217 |
+
"<|object_ref_start|>",
|
| 218 |
+
"<|object_ref_end|>",
|
| 219 |
+
"<|box_start|>",
|
| 220 |
+
"<|box_end|>",
|
| 221 |
+
"<|quad_start|>",
|
| 222 |
+
"<|quad_end|>",
|
| 223 |
+
"<|vision_start|>",
|
| 224 |
+
"<|vision_end|>",
|
| 225 |
+
"<|vision_pad|>",
|
| 226 |
+
"<|image_pad|>",
|
| 227 |
+
"<|video_pad|>"
|
| 228 |
+
],
|
| 229 |
+
"bos_token": null,
|
| 230 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if message.content is string %}\n {%- set content = message.content %}\n {%- else %}\n {%- set content = '' %}\n {%- endif %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is string %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in content %}\n {%- set reasoning_content = content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- set content = content.split('</think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
|
| 231 |
+
"clean_up_tokenization_spaces": false,
|
| 232 |
+
"eos_token": "<|im_end|>",
|
| 233 |
+
"errors": "replace",
|
| 234 |
+
"extra_special_tokens": {},
|
| 235 |
+
"model_max_length": 131072,
|
| 236 |
+
"pad_token": "<|endoftext|>",
|
| 237 |
+
"split_special_tokens": false,
|
| 238 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 239 |
+
"unk_token": null
|
| 240 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,2904 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": null,
|
| 3 |
+
"best_metric": null,
|
| 4 |
+
"best_model_checkpoint": null,
|
| 5 |
+
"epoch": 5.0,
|
| 6 |
+
"eval_steps": 500,
|
| 7 |
+
"global_step": 410,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0.012195121951219513,
|
| 14 |
+
"grad_norm": 20.605318069458008,
|
| 15 |
+
"learning_rate": 0.0,
|
| 16 |
+
"loss": 1.7928,
|
| 17 |
+
"step": 1
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"epoch": 0.024390243902439025,
|
| 21 |
+
"grad_norm": 20.76787567138672,
|
| 22 |
+
"learning_rate": 2.439024390243903e-07,
|
| 23 |
+
"loss": 1.7386,
|
| 24 |
+
"step": 2
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"epoch": 0.036585365853658534,
|
| 28 |
+
"grad_norm": 21.81036949157715,
|
| 29 |
+
"learning_rate": 4.878048780487805e-07,
|
| 30 |
+
"loss": 1.8763,
|
| 31 |
+
"step": 3
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"epoch": 0.04878048780487805,
|
| 35 |
+
"grad_norm": 20.621498107910156,
|
| 36 |
+
"learning_rate": 7.317073170731707e-07,
|
| 37 |
+
"loss": 1.8537,
|
| 38 |
+
"step": 4
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 0.06097560975609756,
|
| 42 |
+
"grad_norm": 22.98723793029785,
|
| 43 |
+
"learning_rate": 9.75609756097561e-07,
|
| 44 |
+
"loss": 1.8113,
|
| 45 |
+
"step": 5
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 0.07317073170731707,
|
| 49 |
+
"grad_norm": 19.314804077148438,
|
| 50 |
+
"learning_rate": 1.2195121951219514e-06,
|
| 51 |
+
"loss": 1.7677,
|
| 52 |
+
"step": 6
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"epoch": 0.08536585365853659,
|
| 56 |
+
"grad_norm": 21.158281326293945,
|
| 57 |
+
"learning_rate": 1.4634146341463414e-06,
|
| 58 |
+
"loss": 1.7847,
|
| 59 |
+
"step": 7
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"epoch": 0.0975609756097561,
|
| 63 |
+
"grad_norm": 16.294034957885742,
|
| 64 |
+
"learning_rate": 1.707317073170732e-06,
|
| 65 |
+
"loss": 1.6678,
|
| 66 |
+
"step": 8
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"epoch": 0.10975609756097561,
|
| 70 |
+
"grad_norm": 16.788780212402344,
|
| 71 |
+
"learning_rate": 1.951219512195122e-06,
|
| 72 |
+
"loss": 1.6558,
|
| 73 |
+
"step": 9
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"epoch": 0.12195121951219512,
|
| 77 |
+
"grad_norm": 12.225774765014648,
|
| 78 |
+
"learning_rate": 2.1951219512195125e-06,
|
| 79 |
+
"loss": 1.2956,
|
| 80 |
+
"step": 10
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"epoch": 0.13414634146341464,
|
| 84 |
+
"grad_norm": 14.551143646240234,
|
| 85 |
+
"learning_rate": 2.4390243902439027e-06,
|
| 86 |
+
"loss": 1.5254,
|
| 87 |
+
"step": 11
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"epoch": 0.14634146341463414,
|
| 91 |
+
"grad_norm": 11.28449535369873,
|
| 92 |
+
"learning_rate": 2.682926829268293e-06,
|
| 93 |
+
"loss": 1.3579,
|
| 94 |
+
"step": 12
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"epoch": 0.15853658536585366,
|
| 98 |
+
"grad_norm": 7.676495552062988,
|
| 99 |
+
"learning_rate": 2.926829268292683e-06,
|
| 100 |
+
"loss": 1.2552,
|
| 101 |
+
"step": 13
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"epoch": 0.17073170731707318,
|
| 105 |
+
"grad_norm": 6.054831027984619,
|
| 106 |
+
"learning_rate": 3.1707317073170736e-06,
|
| 107 |
+
"loss": 1.0942,
|
| 108 |
+
"step": 14
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"epoch": 0.18292682926829268,
|
| 112 |
+
"grad_norm": 6.24427604675293,
|
| 113 |
+
"learning_rate": 3.414634146341464e-06,
|
| 114 |
+
"loss": 1.1486,
|
| 115 |
+
"step": 15
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"epoch": 0.1951219512195122,
|
| 119 |
+
"grad_norm": 5.555965900421143,
|
| 120 |
+
"learning_rate": 3.6585365853658537e-06,
|
| 121 |
+
"loss": 1.0225,
|
| 122 |
+
"step": 16
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"epoch": 0.2073170731707317,
|
| 126 |
+
"grad_norm": 4.953287124633789,
|
| 127 |
+
"learning_rate": 3.902439024390244e-06,
|
| 128 |
+
"loss": 1.0188,
|
| 129 |
+
"step": 17
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 0.21951219512195122,
|
| 133 |
+
"grad_norm": 4.212824821472168,
|
| 134 |
+
"learning_rate": 4.146341463414634e-06,
|
| 135 |
+
"loss": 0.9555,
|
| 136 |
+
"step": 18
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"epoch": 0.23170731707317074,
|
| 140 |
+
"grad_norm": 4.176329135894775,
|
| 141 |
+
"learning_rate": 4.390243902439025e-06,
|
| 142 |
+
"loss": 0.9,
|
| 143 |
+
"step": 19
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"epoch": 0.24390243902439024,
|
| 147 |
+
"grad_norm": 4.0246734619140625,
|
| 148 |
+
"learning_rate": 4.634146341463416e-06,
|
| 149 |
+
"loss": 0.9001,
|
| 150 |
+
"step": 20
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"epoch": 0.25609756097560976,
|
| 154 |
+
"grad_norm": 4.022885322570801,
|
| 155 |
+
"learning_rate": 4.8780487804878055e-06,
|
| 156 |
+
"loss": 0.8557,
|
| 157 |
+
"step": 21
|
| 158 |
+
},
|
| 159 |
+
{
|
| 160 |
+
"epoch": 0.2682926829268293,
|
| 161 |
+
"grad_norm": 3.9502739906311035,
|
| 162 |
+
"learning_rate": 5.121951219512195e-06,
|
| 163 |
+
"loss": 0.9313,
|
| 164 |
+
"step": 22
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"epoch": 0.2804878048780488,
|
| 168 |
+
"grad_norm": 3.4761359691619873,
|
| 169 |
+
"learning_rate": 5.365853658536586e-06,
|
| 170 |
+
"loss": 0.8559,
|
| 171 |
+
"step": 23
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"epoch": 0.2926829268292683,
|
| 175 |
+
"grad_norm": 3.896311044692993,
|
| 176 |
+
"learning_rate": 5.609756097560977e-06,
|
| 177 |
+
"loss": 0.9048,
|
| 178 |
+
"step": 24
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"epoch": 0.3048780487804878,
|
| 182 |
+
"grad_norm": 3.714123010635376,
|
| 183 |
+
"learning_rate": 5.853658536585366e-06,
|
| 184 |
+
"loss": 0.7699,
|
| 185 |
+
"step": 25
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"epoch": 0.3170731707317073,
|
| 189 |
+
"grad_norm": 4.503406524658203,
|
| 190 |
+
"learning_rate": 6.0975609756097564e-06,
|
| 191 |
+
"loss": 0.8699,
|
| 192 |
+
"step": 26
|
| 193 |
+
},
|
| 194 |
+
{
|
| 195 |
+
"epoch": 0.32926829268292684,
|
| 196 |
+
"grad_norm": 3.643167734146118,
|
| 197 |
+
"learning_rate": 6.341463414634147e-06,
|
| 198 |
+
"loss": 0.8047,
|
| 199 |
+
"step": 27
|
| 200 |
+
},
|
| 201 |
+
{
|
| 202 |
+
"epoch": 0.34146341463414637,
|
| 203 |
+
"grad_norm": 3.93937087059021,
|
| 204 |
+
"learning_rate": 6.585365853658538e-06,
|
| 205 |
+
"loss": 0.8064,
|
| 206 |
+
"step": 28
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"epoch": 0.35365853658536583,
|
| 210 |
+
"grad_norm": 3.669752836227417,
|
| 211 |
+
"learning_rate": 6.829268292682928e-06,
|
| 212 |
+
"loss": 0.7593,
|
| 213 |
+
"step": 29
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"epoch": 0.36585365853658536,
|
| 217 |
+
"grad_norm": 3.5783209800720215,
|
| 218 |
+
"learning_rate": 7.0731707317073175e-06,
|
| 219 |
+
"loss": 0.7464,
|
| 220 |
+
"step": 30
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"epoch": 0.3780487804878049,
|
| 224 |
+
"grad_norm": 3.4129626750946045,
|
| 225 |
+
"learning_rate": 7.317073170731707e-06,
|
| 226 |
+
"loss": 0.8218,
|
| 227 |
+
"step": 31
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"epoch": 0.3902439024390244,
|
| 231 |
+
"grad_norm": 3.250596761703491,
|
| 232 |
+
"learning_rate": 7.560975609756098e-06,
|
| 233 |
+
"loss": 0.8161,
|
| 234 |
+
"step": 32
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"epoch": 0.4024390243902439,
|
| 238 |
+
"grad_norm": 3.030006170272827,
|
| 239 |
+
"learning_rate": 7.804878048780489e-06,
|
| 240 |
+
"loss": 0.6851,
|
| 241 |
+
"step": 33
|
| 242 |
+
},
|
| 243 |
+
{
|
| 244 |
+
"epoch": 0.4146341463414634,
|
| 245 |
+
"grad_norm": 3.556096076965332,
|
| 246 |
+
"learning_rate": 8.048780487804879e-06,
|
| 247 |
+
"loss": 0.8649,
|
| 248 |
+
"step": 34
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"epoch": 0.4268292682926829,
|
| 252 |
+
"grad_norm": 3.155592203140259,
|
| 253 |
+
"learning_rate": 8.292682926829268e-06,
|
| 254 |
+
"loss": 0.7146,
|
| 255 |
+
"step": 35
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"epoch": 0.43902439024390244,
|
| 259 |
+
"grad_norm": 2.923524856567383,
|
| 260 |
+
"learning_rate": 8.536585365853658e-06,
|
| 261 |
+
"loss": 0.7535,
|
| 262 |
+
"step": 36
|
| 263 |
+
},
|
| 264 |
+
{
|
| 265 |
+
"epoch": 0.45121951219512196,
|
| 266 |
+
"grad_norm": 3.1197190284729004,
|
| 267 |
+
"learning_rate": 8.78048780487805e-06,
|
| 268 |
+
"loss": 0.7267,
|
| 269 |
+
"step": 37
|
| 270 |
+
},
|
| 271 |
+
{
|
| 272 |
+
"epoch": 0.4634146341463415,
|
| 273 |
+
"grad_norm": 2.902597188949585,
|
| 274 |
+
"learning_rate": 9.02439024390244e-06,
|
| 275 |
+
"loss": 0.7113,
|
| 276 |
+
"step": 38
|
| 277 |
+
},
|
| 278 |
+
{
|
| 279 |
+
"epoch": 0.47560975609756095,
|
| 280 |
+
"grad_norm": 3.2583975791931152,
|
| 281 |
+
"learning_rate": 9.268292682926831e-06,
|
| 282 |
+
"loss": 0.8452,
|
| 283 |
+
"step": 39
|
| 284 |
+
},
|
| 285 |
+
{
|
| 286 |
+
"epoch": 0.4878048780487805,
|
| 287 |
+
"grad_norm": 3.5036613941192627,
|
| 288 |
+
"learning_rate": 9.51219512195122e-06,
|
| 289 |
+
"loss": 0.7932,
|
| 290 |
+
"step": 40
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"epoch": 0.5,
|
| 294 |
+
"grad_norm": 2.883305788040161,
|
| 295 |
+
"learning_rate": 9.756097560975611e-06,
|
| 296 |
+
"loss": 0.7578,
|
| 297 |
+
"step": 41
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"epoch": 0.5121951219512195,
|
| 301 |
+
"grad_norm": 2.8983325958251953,
|
| 302 |
+
"learning_rate": 1e-05,
|
| 303 |
+
"loss": 0.6646,
|
| 304 |
+
"step": 42
|
| 305 |
+
},
|
| 306 |
+
{
|
| 307 |
+
"epoch": 0.524390243902439,
|
| 308 |
+
"grad_norm": 3.0411853790283203,
|
| 309 |
+
"learning_rate": 9.999959340292497e-06,
|
| 310 |
+
"loss": 0.743,
|
| 311 |
+
"step": 43
|
| 312 |
+
},
|
| 313 |
+
{
|
| 314 |
+
"epoch": 0.5365853658536586,
|
| 315 |
+
"grad_norm": 3.015455484390259,
|
| 316 |
+
"learning_rate": 9.999837361831269e-06,
|
| 317 |
+
"loss": 0.6727,
|
| 318 |
+
"step": 44
|
| 319 |
+
},
|
| 320 |
+
{
|
| 321 |
+
"epoch": 0.5487804878048781,
|
| 322 |
+
"grad_norm": 3.099972724914551,
|
| 323 |
+
"learning_rate": 9.999634066600162e-06,
|
| 324 |
+
"loss": 0.7748,
|
| 325 |
+
"step": 45
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"epoch": 0.5609756097560976,
|
| 329 |
+
"grad_norm": 2.834282875061035,
|
| 330 |
+
"learning_rate": 9.999349457905545e-06,
|
| 331 |
+
"loss": 0.6954,
|
| 332 |
+
"step": 46
|
| 333 |
+
},
|
| 334 |
+
{
|
| 335 |
+
"epoch": 0.573170731707317,
|
| 336 |
+
"grad_norm": 3.012594223022461,
|
| 337 |
+
"learning_rate": 9.998983540376262e-06,
|
| 338 |
+
"loss": 0.8249,
|
| 339 |
+
"step": 47
|
| 340 |
+
},
|
| 341 |
+
{
|
| 342 |
+
"epoch": 0.5853658536585366,
|
| 343 |
+
"grad_norm": 3.121540069580078,
|
| 344 |
+
"learning_rate": 9.99853631996355e-06,
|
| 345 |
+
"loss": 0.7512,
|
| 346 |
+
"step": 48
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"epoch": 0.5975609756097561,
|
| 350 |
+
"grad_norm": 2.814594030380249,
|
| 351 |
+
"learning_rate": 9.99800780394095e-06,
|
| 352 |
+
"loss": 0.749,
|
| 353 |
+
"step": 49
|
| 354 |
+
},
|
| 355 |
+
{
|
| 356 |
+
"epoch": 0.6097560975609756,
|
| 357 |
+
"grad_norm": 2.8075897693634033,
|
| 358 |
+
"learning_rate": 9.997398000904185e-06,
|
| 359 |
+
"loss": 0.7249,
|
| 360 |
+
"step": 50
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"epoch": 0.6219512195121951,
|
| 364 |
+
"grad_norm": 3.2552330493927,
|
| 365 |
+
"learning_rate": 9.996706920771024e-06,
|
| 366 |
+
"loss": 0.7802,
|
| 367 |
+
"step": 51
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"epoch": 0.6341463414634146,
|
| 371 |
+
"grad_norm": 3.095428705215454,
|
| 372 |
+
"learning_rate": 9.995934574781108e-06,
|
| 373 |
+
"loss": 0.753,
|
| 374 |
+
"step": 52
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"epoch": 0.6463414634146342,
|
| 378 |
+
"grad_norm": 2.9792091846466064,
|
| 379 |
+
"learning_rate": 9.995080975495786e-06,
|
| 380 |
+
"loss": 0.7911,
|
| 381 |
+
"step": 53
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"epoch": 0.6585365853658537,
|
| 385 |
+
"grad_norm": 3.0372695922851562,
|
| 386 |
+
"learning_rate": 9.994146136797893e-06,
|
| 387 |
+
"loss": 0.7471,
|
| 388 |
+
"step": 54
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"epoch": 0.6707317073170732,
|
| 392 |
+
"grad_norm": 3.14581036567688,
|
| 393 |
+
"learning_rate": 9.993130073891539e-06,
|
| 394 |
+
"loss": 0.7912,
|
| 395 |
+
"step": 55
|
| 396 |
+
},
|
| 397 |
+
{
|
| 398 |
+
"epoch": 0.6829268292682927,
|
| 399 |
+
"grad_norm": 2.859478235244751,
|
| 400 |
+
"learning_rate": 9.992032803301852e-06,
|
| 401 |
+
"loss": 0.6547,
|
| 402 |
+
"step": 56
|
| 403 |
+
},
|
| 404 |
+
{
|
| 405 |
+
"epoch": 0.6951219512195121,
|
| 406 |
+
"grad_norm": 2.866575002670288,
|
| 407 |
+
"learning_rate": 9.990854342874712e-06,
|
| 408 |
+
"loss": 0.7098,
|
| 409 |
+
"step": 57
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"epoch": 0.7073170731707317,
|
| 413 |
+
"grad_norm": 3.036907434463501,
|
| 414 |
+
"learning_rate": 9.98959471177646e-06,
|
| 415 |
+
"loss": 0.8274,
|
| 416 |
+
"step": 58
|
| 417 |
+
},
|
| 418 |
+
{
|
| 419 |
+
"epoch": 0.7195121951219512,
|
| 420 |
+
"grad_norm": 2.837873935699463,
|
| 421 |
+
"learning_rate": 9.988253930493592e-06,
|
| 422 |
+
"loss": 0.7151,
|
| 423 |
+
"step": 59
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"epoch": 0.7317073170731707,
|
| 427 |
+
"grad_norm": 2.6678829193115234,
|
| 428 |
+
"learning_rate": 9.986832020832416e-06,
|
| 429 |
+
"loss": 0.6541,
|
| 430 |
+
"step": 60
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"epoch": 0.7439024390243902,
|
| 434 |
+
"grad_norm": 2.9930105209350586,
|
| 435 |
+
"learning_rate": 9.985329005918702e-06,
|
| 436 |
+
"loss": 0.6892,
|
| 437 |
+
"step": 61
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"epoch": 0.7560975609756098,
|
| 441 |
+
"grad_norm": 2.858548164367676,
|
| 442 |
+
"learning_rate": 9.983744910197315e-06,
|
| 443 |
+
"loss": 0.6988,
|
| 444 |
+
"step": 62
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"epoch": 0.7682926829268293,
|
| 448 |
+
"grad_norm": 3.0590319633483887,
|
| 449 |
+
"learning_rate": 9.982079759431797e-06,
|
| 450 |
+
"loss": 0.6853,
|
| 451 |
+
"step": 63
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"epoch": 0.7804878048780488,
|
| 455 |
+
"grad_norm": 2.8750498294830322,
|
| 456 |
+
"learning_rate": 9.980333580703968e-06,
|
| 457 |
+
"loss": 0.7181,
|
| 458 |
+
"step": 64
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"epoch": 0.7926829268292683,
|
| 462 |
+
"grad_norm": 2.720283031463623,
|
| 463 |
+
"learning_rate": 9.978506402413472e-06,
|
| 464 |
+
"loss": 0.6339,
|
| 465 |
+
"step": 65
|
| 466 |
+
},
|
| 467 |
+
{
|
| 468 |
+
"epoch": 0.8048780487804879,
|
| 469 |
+
"grad_norm": 2.936540126800537,
|
| 470 |
+
"learning_rate": 9.976598254277324e-06,
|
| 471 |
+
"loss": 0.7085,
|
| 472 |
+
"step": 66
|
| 473 |
+
},
|
| 474 |
+
{
|
| 475 |
+
"epoch": 0.8170731707317073,
|
| 476 |
+
"grad_norm": 2.7820205688476562,
|
| 477 |
+
"learning_rate": 9.974609167329425e-06,
|
| 478 |
+
"loss": 0.6682,
|
| 479 |
+
"step": 67
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"epoch": 0.8292682926829268,
|
| 483 |
+
"grad_norm": 2.852302312850952,
|
| 484 |
+
"learning_rate": 9.972539173920048e-06,
|
| 485 |
+
"loss": 0.7067,
|
| 486 |
+
"step": 68
|
| 487 |
+
},
|
| 488 |
+
{
|
| 489 |
+
"epoch": 0.8414634146341463,
|
| 490 |
+
"grad_norm": 2.763120651245117,
|
| 491 |
+
"learning_rate": 9.970388307715326e-06,
|
| 492 |
+
"loss": 0.6512,
|
| 493 |
+
"step": 69
|
| 494 |
+
},
|
| 495 |
+
{
|
| 496 |
+
"epoch": 0.8536585365853658,
|
| 497 |
+
"grad_norm": 2.834955930709839,
|
| 498 |
+
"learning_rate": 9.968156603696696e-06,
|
| 499 |
+
"loss": 0.692,
|
| 500 |
+
"step": 70
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"epoch": 0.8658536585365854,
|
| 504 |
+
"grad_norm": 2.5952882766723633,
|
| 505 |
+
"learning_rate": 9.965844098160326e-06,
|
| 506 |
+
"loss": 0.6458,
|
| 507 |
+
"step": 71
|
| 508 |
+
},
|
| 509 |
+
{
|
| 510 |
+
"epoch": 0.8780487804878049,
|
| 511 |
+
"grad_norm": 2.793827533721924,
|
| 512 |
+
"learning_rate": 9.963450828716543e-06,
|
| 513 |
+
"loss": 0.7312,
|
| 514 |
+
"step": 72
|
| 515 |
+
},
|
| 516 |
+
{
|
| 517 |
+
"epoch": 0.8902439024390244,
|
| 518 |
+
"grad_norm": 2.7760300636291504,
|
| 519 |
+
"learning_rate": 9.960976834289197e-06,
|
| 520 |
+
"loss": 0.6733,
|
| 521 |
+
"step": 73
|
| 522 |
+
},
|
| 523 |
+
{
|
| 524 |
+
"epoch": 0.9024390243902439,
|
| 525 |
+
"grad_norm": 3.0652453899383545,
|
| 526 |
+
"learning_rate": 9.958422155115044e-06,
|
| 527 |
+
"loss": 0.7255,
|
| 528 |
+
"step": 74
|
| 529 |
+
},
|
| 530 |
+
{
|
| 531 |
+
"epoch": 0.9146341463414634,
|
| 532 |
+
"grad_norm": 2.7409512996673584,
|
| 533 |
+
"learning_rate": 9.955786832743089e-06,
|
| 534 |
+
"loss": 0.7146,
|
| 535 |
+
"step": 75
|
| 536 |
+
},
|
| 537 |
+
{
|
| 538 |
+
"epoch": 0.926829268292683,
|
| 539 |
+
"grad_norm": 2.671405553817749,
|
| 540 |
+
"learning_rate": 9.953070910033904e-06,
|
| 541 |
+
"loss": 0.7051,
|
| 542 |
+
"step": 76
|
| 543 |
+
},
|
| 544 |
+
{
|
| 545 |
+
"epoch": 0.9390243902439024,
|
| 546 |
+
"grad_norm": 3.065516233444214,
|
| 547 |
+
"learning_rate": 9.95027443115894e-06,
|
| 548 |
+
"loss": 0.7027,
|
| 549 |
+
"step": 77
|
| 550 |
+
},
|
| 551 |
+
{
|
| 552 |
+
"epoch": 0.9512195121951219,
|
| 553 |
+
"grad_norm": 2.724518060684204,
|
| 554 |
+
"learning_rate": 9.947397441599801e-06,
|
| 555 |
+
"loss": 0.7046,
|
| 556 |
+
"step": 78
|
| 557 |
+
},
|
| 558 |
+
{
|
| 559 |
+
"epoch": 0.9634146341463414,
|
| 560 |
+
"grad_norm": 2.762394428253174,
|
| 561 |
+
"learning_rate": 9.944439988147509e-06,
|
| 562 |
+
"loss": 0.6638,
|
| 563 |
+
"step": 79
|
| 564 |
+
},
|
| 565 |
+
{
|
| 566 |
+
"epoch": 0.975609756097561,
|
| 567 |
+
"grad_norm": 2.7874350547790527,
|
| 568 |
+
"learning_rate": 9.941402118901743e-06,
|
| 569 |
+
"loss": 0.6985,
|
| 570 |
+
"step": 80
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"epoch": 0.9878048780487805,
|
| 574 |
+
"grad_norm": 2.785700798034668,
|
| 575 |
+
"learning_rate": 9.938283883270051e-06,
|
| 576 |
+
"loss": 0.6443,
|
| 577 |
+
"step": 81
|
| 578 |
+
},
|
| 579 |
+
{
|
| 580 |
+
"epoch": 1.0,
|
| 581 |
+
"grad_norm": 2.859963893890381,
|
| 582 |
+
"learning_rate": 9.935085331967054e-06,
|
| 583 |
+
"loss": 0.6987,
|
| 584 |
+
"step": 82
|
| 585 |
+
},
|
| 586 |
+
{
|
| 587 |
+
"epoch": 1.0121951219512195,
|
| 588 |
+
"grad_norm": 2.341641902923584,
|
| 589 |
+
"learning_rate": 9.931806517013612e-06,
|
| 590 |
+
"loss": 0.4309,
|
| 591 |
+
"step": 83
|
| 592 |
+
},
|
| 593 |
+
{
|
| 594 |
+
"epoch": 1.024390243902439,
|
| 595 |
+
"grad_norm": 2.2350566387176514,
|
| 596 |
+
"learning_rate": 9.928447491735994e-06,
|
| 597 |
+
"loss": 0.3769,
|
| 598 |
+
"step": 84
|
| 599 |
+
},
|
| 600 |
+
{
|
| 601 |
+
"epoch": 1.0365853658536586,
|
| 602 |
+
"grad_norm": 2.750514030456543,
|
| 603 |
+
"learning_rate": 9.925008310764988e-06,
|
| 604 |
+
"loss": 0.5076,
|
| 605 |
+
"step": 85
|
| 606 |
+
},
|
| 607 |
+
{
|
| 608 |
+
"epoch": 1.048780487804878,
|
| 609 |
+
"grad_norm": 2.627335548400879,
|
| 610 |
+
"learning_rate": 9.921489030035036e-06,
|
| 611 |
+
"loss": 0.359,
|
| 612 |
+
"step": 86
|
| 613 |
+
},
|
| 614 |
+
{
|
| 615 |
+
"epoch": 1.0609756097560976,
|
| 616 |
+
"grad_norm": 2.739978075027466,
|
| 617 |
+
"learning_rate": 9.917889706783304e-06,
|
| 618 |
+
"loss": 0.4735,
|
| 619 |
+
"step": 87
|
| 620 |
+
},
|
| 621 |
+
{
|
| 622 |
+
"epoch": 1.0731707317073171,
|
| 623 |
+
"grad_norm": 3.0831549167633057,
|
| 624 |
+
"learning_rate": 9.914210399548768e-06,
|
| 625 |
+
"loss": 0.5604,
|
| 626 |
+
"step": 88
|
| 627 |
+
},
|
| 628 |
+
{
|
| 629 |
+
"epoch": 1.0853658536585367,
|
| 630 |
+
"grad_norm": 3.0366146564483643,
|
| 631 |
+
"learning_rate": 9.910451168171248e-06,
|
| 632 |
+
"loss": 0.3986,
|
| 633 |
+
"step": 89
|
| 634 |
+
},
|
| 635 |
+
{
|
| 636 |
+
"epoch": 1.0975609756097562,
|
| 637 |
+
"grad_norm": 2.8682730197906494,
|
| 638 |
+
"learning_rate": 9.906612073790443e-06,
|
| 639 |
+
"loss": 0.4118,
|
| 640 |
+
"step": 90
|
| 641 |
+
},
|
| 642 |
+
{
|
| 643 |
+
"epoch": 1.1097560975609757,
|
| 644 |
+
"grad_norm": 2.9994473457336426,
|
| 645 |
+
"learning_rate": 9.902693178844937e-06,
|
| 646 |
+
"loss": 0.4581,
|
| 647 |
+
"step": 91
|
| 648 |
+
},
|
| 649 |
+
{
|
| 650 |
+
"epoch": 1.1219512195121952,
|
| 651 |
+
"grad_norm": 3.4703030586242676,
|
| 652 |
+
"learning_rate": 9.898694547071177e-06,
|
| 653 |
+
"loss": 0.5222,
|
| 654 |
+
"step": 92
|
| 655 |
+
},
|
| 656 |
+
{
|
| 657 |
+
"epoch": 1.1341463414634148,
|
| 658 |
+
"grad_norm": 2.6934309005737305,
|
| 659 |
+
"learning_rate": 9.894616243502442e-06,
|
| 660 |
+
"loss": 0.3656,
|
| 661 |
+
"step": 93
|
| 662 |
+
},
|
| 663 |
+
{
|
| 664 |
+
"epoch": 1.146341463414634,
|
| 665 |
+
"grad_norm": 2.379758834838867,
|
| 666 |
+
"learning_rate": 9.890458334467784e-06,
|
| 667 |
+
"loss": 0.3277,
|
| 668 |
+
"step": 94
|
| 669 |
+
},
|
| 670 |
+
{
|
| 671 |
+
"epoch": 1.1585365853658536,
|
| 672 |
+
"grad_norm": 2.7950727939605713,
|
| 673 |
+
"learning_rate": 9.886220887590953e-06,
|
| 674 |
+
"loss": 0.4012,
|
| 675 |
+
"step": 95
|
| 676 |
+
},
|
| 677 |
+
{
|
| 678 |
+
"epoch": 1.170731707317073,
|
| 679 |
+
"grad_norm": 2.668951988220215,
|
| 680 |
+
"learning_rate": 9.881903971789285e-06,
|
| 681 |
+
"loss": 0.4384,
|
| 682 |
+
"step": 96
|
| 683 |
+
},
|
| 684 |
+
{
|
| 685 |
+
"epoch": 1.1829268292682926,
|
| 686 |
+
"grad_norm": 2.785778522491455,
|
| 687 |
+
"learning_rate": 9.877507657272596e-06,
|
| 688 |
+
"loss": 0.4727,
|
| 689 |
+
"step": 97
|
| 690 |
+
},
|
| 691 |
+
{
|
| 692 |
+
"epoch": 1.1951219512195121,
|
| 693 |
+
"grad_norm": 2.7798571586608887,
|
| 694 |
+
"learning_rate": 9.873032015542027e-06,
|
| 695 |
+
"loss": 0.4594,
|
| 696 |
+
"step": 98
|
| 697 |
+
},
|
| 698 |
+
{
|
| 699 |
+
"epoch": 1.2073170731707317,
|
| 700 |
+
"grad_norm": 2.9862515926361084,
|
| 701 |
+
"learning_rate": 9.868477119388897e-06,
|
| 702 |
+
"loss": 0.4715,
|
| 703 |
+
"step": 99
|
| 704 |
+
},
|
| 705 |
+
{
|
| 706 |
+
"epoch": 1.2195121951219512,
|
| 707 |
+
"grad_norm": 2.749171495437622,
|
| 708 |
+
"learning_rate": 9.863843042893499e-06,
|
| 709 |
+
"loss": 0.4125,
|
| 710 |
+
"step": 100
|
| 711 |
+
},
|
| 712 |
+
{
|
| 713 |
+
"epoch": 1.2317073170731707,
|
| 714 |
+
"grad_norm": 2.4786319732666016,
|
| 715 |
+
"learning_rate": 9.859129861423915e-06,
|
| 716 |
+
"loss": 0.4036,
|
| 717 |
+
"step": 101
|
| 718 |
+
},
|
| 719 |
+
{
|
| 720 |
+
"epoch": 1.2439024390243902,
|
| 721 |
+
"grad_norm": 2.724829912185669,
|
| 722 |
+
"learning_rate": 9.854337651634773e-06,
|
| 723 |
+
"loss": 0.4688,
|
| 724 |
+
"step": 102
|
| 725 |
+
},
|
| 726 |
+
{
|
| 727 |
+
"epoch": 1.2560975609756098,
|
| 728 |
+
"grad_norm": 2.5419397354125977,
|
| 729 |
+
"learning_rate": 9.849466491466017e-06,
|
| 730 |
+
"loss": 0.4276,
|
| 731 |
+
"step": 103
|
| 732 |
+
},
|
| 733 |
+
{
|
| 734 |
+
"epoch": 1.2682926829268293,
|
| 735 |
+
"grad_norm": 2.508129596710205,
|
| 736 |
+
"learning_rate": 9.844516460141622e-06,
|
| 737 |
+
"loss": 0.401,
|
| 738 |
+
"step": 104
|
| 739 |
+
},
|
| 740 |
+
{
|
| 741 |
+
"epoch": 1.2804878048780488,
|
| 742 |
+
"grad_norm": 2.677839756011963,
|
| 743 |
+
"learning_rate": 9.839487638168321e-06,
|
| 744 |
+
"loss": 0.3839,
|
| 745 |
+
"step": 105
|
| 746 |
+
},
|
| 747 |
+
{
|
| 748 |
+
"epoch": 1.2926829268292683,
|
| 749 |
+
"grad_norm": 2.811065912246704,
|
| 750 |
+
"learning_rate": 9.834380107334284e-06,
|
| 751 |
+
"loss": 0.3876,
|
| 752 |
+
"step": 106
|
| 753 |
+
},
|
| 754 |
+
{
|
| 755 |
+
"epoch": 1.3048780487804879,
|
| 756 |
+
"grad_norm": 2.7741312980651855,
|
| 757 |
+
"learning_rate": 9.829193950707798e-06,
|
| 758 |
+
"loss": 0.4019,
|
| 759 |
+
"step": 107
|
| 760 |
+
},
|
| 761 |
+
{
|
| 762 |
+
"epoch": 1.3170731707317074,
|
| 763 |
+
"grad_norm": 2.604609727859497,
|
| 764 |
+
"learning_rate": 9.823929252635905e-06,
|
| 765 |
+
"loss": 0.3753,
|
| 766 |
+
"step": 108
|
| 767 |
+
},
|
| 768 |
+
{
|
| 769 |
+
"epoch": 1.329268292682927,
|
| 770 |
+
"grad_norm": 3.5267436504364014,
|
| 771 |
+
"learning_rate": 9.818586098743038e-06,
|
| 772 |
+
"loss": 0.5063,
|
| 773 |
+
"step": 109
|
| 774 |
+
},
|
| 775 |
+
{
|
| 776 |
+
"epoch": 1.3414634146341464,
|
| 777 |
+
"grad_norm": 2.785386085510254,
|
| 778 |
+
"learning_rate": 9.813164575929628e-06,
|
| 779 |
+
"loss": 0.4035,
|
| 780 |
+
"step": 110
|
| 781 |
+
},
|
| 782 |
+
{
|
| 783 |
+
"epoch": 1.3536585365853657,
|
| 784 |
+
"grad_norm": 2.7874209880828857,
|
| 785 |
+
"learning_rate": 9.807664772370689e-06,
|
| 786 |
+
"loss": 0.4387,
|
| 787 |
+
"step": 111
|
| 788 |
+
},
|
| 789 |
+
{
|
| 790 |
+
"epoch": 1.3658536585365852,
|
| 791 |
+
"grad_norm": 2.616459369659424,
|
| 792 |
+
"learning_rate": 9.80208677751438e-06,
|
| 793 |
+
"loss": 0.4403,
|
| 794 |
+
"step": 112
|
| 795 |
+
},
|
| 796 |
+
{
|
| 797 |
+
"epoch": 1.3780487804878048,
|
| 798 |
+
"grad_norm": 2.593151092529297,
|
| 799 |
+
"learning_rate": 9.79643068208056e-06,
|
| 800 |
+
"loss": 0.418,
|
| 801 |
+
"step": 113
|
| 802 |
+
},
|
| 803 |
+
{
|
| 804 |
+
"epoch": 1.3902439024390243,
|
| 805 |
+
"grad_norm": 2.3522331714630127,
|
| 806 |
+
"learning_rate": 9.7906965780593e-06,
|
| 807 |
+
"loss": 0.3226,
|
| 808 |
+
"step": 114
|
| 809 |
+
},
|
| 810 |
+
{
|
| 811 |
+
"epoch": 1.4024390243902438,
|
| 812 |
+
"grad_norm": 2.945878028869629,
|
| 813 |
+
"learning_rate": 9.784884558709398e-06,
|
| 814 |
+
"loss": 0.4744,
|
| 815 |
+
"step": 115
|
| 816 |
+
},
|
| 817 |
+
{
|
| 818 |
+
"epoch": 1.4146341463414633,
|
| 819 |
+
"grad_norm": 2.6254990100860596,
|
| 820 |
+
"learning_rate": 9.778994718556856e-06,
|
| 821 |
+
"loss": 0.3656,
|
| 822 |
+
"step": 116
|
| 823 |
+
},
|
| 824 |
+
{
|
| 825 |
+
"epoch": 1.4268292682926829,
|
| 826 |
+
"grad_norm": 2.6019349098205566,
|
| 827 |
+
"learning_rate": 9.773027153393349e-06,
|
| 828 |
+
"loss": 0.3957,
|
| 829 |
+
"step": 117
|
| 830 |
+
},
|
| 831 |
+
{
|
| 832 |
+
"epoch": 1.4390243902439024,
|
| 833 |
+
"grad_norm": 2.8025217056274414,
|
| 834 |
+
"learning_rate": 9.766981960274653e-06,
|
| 835 |
+
"loss": 0.4242,
|
| 836 |
+
"step": 118
|
| 837 |
+
},
|
| 838 |
+
{
|
| 839 |
+
"epoch": 1.451219512195122,
|
| 840 |
+
"grad_norm": 2.747736930847168,
|
| 841 |
+
"learning_rate": 9.760859237519087e-06,
|
| 842 |
+
"loss": 0.4247,
|
| 843 |
+
"step": 119
|
| 844 |
+
},
|
| 845 |
+
{
|
| 846 |
+
"epoch": 1.4634146341463414,
|
| 847 |
+
"grad_norm": 2.8022918701171875,
|
| 848 |
+
"learning_rate": 9.754659084705893e-06,
|
| 849 |
+
"loss": 0.3984,
|
| 850 |
+
"step": 120
|
| 851 |
+
},
|
| 852 |
+
{
|
| 853 |
+
"epoch": 1.475609756097561,
|
| 854 |
+
"grad_norm": 2.5835225582122803,
|
| 855 |
+
"learning_rate": 9.748381602673633e-06,
|
| 856 |
+
"loss": 0.4205,
|
| 857 |
+
"step": 121
|
| 858 |
+
},
|
| 859 |
+
{
|
| 860 |
+
"epoch": 1.4878048780487805,
|
| 861 |
+
"grad_norm": 2.7356934547424316,
|
| 862 |
+
"learning_rate": 9.742026893518541e-06,
|
| 863 |
+
"loss": 0.4098,
|
| 864 |
+
"step": 122
|
| 865 |
+
},
|
| 866 |
+
{
|
| 867 |
+
"epoch": 1.5,
|
| 868 |
+
"grad_norm": 2.6171412467956543,
|
| 869 |
+
"learning_rate": 9.735595060592861e-06,
|
| 870 |
+
"loss": 0.4281,
|
| 871 |
+
"step": 123
|
| 872 |
+
},
|
| 873 |
+
{
|
| 874 |
+
"epoch": 1.5121951219512195,
|
| 875 |
+
"grad_norm": 2.646216630935669,
|
| 876 |
+
"learning_rate": 9.729086208503174e-06,
|
| 877 |
+
"loss": 0.4301,
|
| 878 |
+
"step": 124
|
| 879 |
+
},
|
| 880 |
+
{
|
| 881 |
+
"epoch": 1.524390243902439,
|
| 882 |
+
"grad_norm": 3.031221866607666,
|
| 883 |
+
"learning_rate": 9.722500443108687e-06,
|
| 884 |
+
"loss": 0.5132,
|
| 885 |
+
"step": 125
|
| 886 |
+
},
|
| 887 |
+
{
|
| 888 |
+
"epoch": 1.5365853658536586,
|
| 889 |
+
"grad_norm": 2.813753843307495,
|
| 890 |
+
"learning_rate": 9.715837871519518e-06,
|
| 891 |
+
"loss": 0.464,
|
| 892 |
+
"step": 126
|
| 893 |
+
},
|
| 894 |
+
{
|
| 895 |
+
"epoch": 1.548780487804878,
|
| 896 |
+
"grad_norm": 2.7644271850585938,
|
| 897 |
+
"learning_rate": 9.709098602094952e-06,
|
| 898 |
+
"loss": 0.4589,
|
| 899 |
+
"step": 127
|
| 900 |
+
},
|
| 901 |
+
{
|
| 902 |
+
"epoch": 1.5609756097560976,
|
| 903 |
+
"grad_norm": 2.8581771850585938,
|
| 904 |
+
"learning_rate": 9.70228274444168e-06,
|
| 905 |
+
"loss": 0.4659,
|
| 906 |
+
"step": 128
|
| 907 |
+
},
|
| 908 |
+
{
|
| 909 |
+
"epoch": 1.5731707317073171,
|
| 910 |
+
"grad_norm": 2.6003692150115967,
|
| 911 |
+
"learning_rate": 9.695390409412011e-06,
|
| 912 |
+
"loss": 0.3784,
|
| 913 |
+
"step": 129
|
| 914 |
+
},
|
| 915 |
+
{
|
| 916 |
+
"epoch": 1.5853658536585367,
|
| 917 |
+
"grad_norm": 2.455249547958374,
|
| 918 |
+
"learning_rate": 9.688421709102076e-06,
|
| 919 |
+
"loss": 0.4141,
|
| 920 |
+
"step": 130
|
| 921 |
+
},
|
| 922 |
+
{
|
| 923 |
+
"epoch": 1.5975609756097562,
|
| 924 |
+
"grad_norm": 2.439664363861084,
|
| 925 |
+
"learning_rate": 9.681376756850003e-06,
|
| 926 |
+
"loss": 0.3995,
|
| 927 |
+
"step": 131
|
| 928 |
+
},
|
| 929 |
+
{
|
| 930 |
+
"epoch": 1.6097560975609757,
|
| 931 |
+
"grad_norm": 2.6555984020233154,
|
| 932 |
+
"learning_rate": 9.67425566723407e-06,
|
| 933 |
+
"loss": 0.4611,
|
| 934 |
+
"step": 132
|
| 935 |
+
},
|
| 936 |
+
{
|
| 937 |
+
"epoch": 1.6219512195121952,
|
| 938 |
+
"grad_norm": 2.4294567108154297,
|
| 939 |
+
"learning_rate": 9.667058556070846e-06,
|
| 940 |
+
"loss": 0.4316,
|
| 941 |
+
"step": 133
|
| 942 |
+
},
|
| 943 |
+
{
|
| 944 |
+
"epoch": 1.6341463414634148,
|
| 945 |
+
"grad_norm": 2.5822300910949707,
|
| 946 |
+
"learning_rate": 9.659785540413303e-06,
|
| 947 |
+
"loss": 0.4274,
|
| 948 |
+
"step": 134
|
| 949 |
+
},
|
| 950 |
+
{
|
| 951 |
+
"epoch": 1.6463414634146343,
|
| 952 |
+
"grad_norm": 2.7250919342041016,
|
| 953 |
+
"learning_rate": 9.652436738548917e-06,
|
| 954 |
+
"loss": 0.4271,
|
| 955 |
+
"step": 135
|
| 956 |
+
},
|
| 957 |
+
{
|
| 958 |
+
"epoch": 1.6585365853658538,
|
| 959 |
+
"grad_norm": 2.6819536685943604,
|
| 960 |
+
"learning_rate": 9.645012269997747e-06,
|
| 961 |
+
"loss": 0.4141,
|
| 962 |
+
"step": 136
|
| 963 |
+
},
|
| 964 |
+
{
|
| 965 |
+
"epoch": 1.6707317073170733,
|
| 966 |
+
"grad_norm": 2.830106496810913,
|
| 967 |
+
"learning_rate": 9.637512255510475e-06,
|
| 968 |
+
"loss": 0.466,
|
| 969 |
+
"step": 137
|
| 970 |
+
},
|
| 971 |
+
{
|
| 972 |
+
"epoch": 1.6829268292682928,
|
| 973 |
+
"grad_norm": 2.6315557956695557,
|
| 974 |
+
"learning_rate": 9.629936817066459e-06,
|
| 975 |
+
"loss": 0.4085,
|
| 976 |
+
"step": 138
|
| 977 |
+
},
|
| 978 |
+
{
|
| 979 |
+
"epoch": 1.6951219512195121,
|
| 980 |
+
"grad_norm": 2.916368246078491,
|
| 981 |
+
"learning_rate": 9.622286077871748e-06,
|
| 982 |
+
"loss": 0.4728,
|
| 983 |
+
"step": 139
|
| 984 |
+
},
|
| 985 |
+
{
|
| 986 |
+
"epoch": 1.7073170731707317,
|
| 987 |
+
"grad_norm": 3.0268235206604004,
|
| 988 |
+
"learning_rate": 9.614560162357065e-06,
|
| 989 |
+
"loss": 0.4548,
|
| 990 |
+
"step": 140
|
| 991 |
+
},
|
| 992 |
+
{
|
| 993 |
+
"epoch": 1.7195121951219512,
|
| 994 |
+
"grad_norm": 2.8294835090637207,
|
| 995 |
+
"learning_rate": 9.606759196175799e-06,
|
| 996 |
+
"loss": 0.4145,
|
| 997 |
+
"step": 141
|
| 998 |
+
},
|
| 999 |
+
{
|
| 1000 |
+
"epoch": 1.7317073170731707,
|
| 1001 |
+
"grad_norm": 2.861173391342163,
|
| 1002 |
+
"learning_rate": 9.598883306201949e-06,
|
| 1003 |
+
"loss": 0.4283,
|
| 1004 |
+
"step": 142
|
| 1005 |
+
},
|
| 1006 |
+
{
|
| 1007 |
+
"epoch": 1.7439024390243902,
|
| 1008 |
+
"grad_norm": 2.8794517517089844,
|
| 1009 |
+
"learning_rate": 9.590932620528068e-06,
|
| 1010 |
+
"loss": 0.5036,
|
| 1011 |
+
"step": 143
|
| 1012 |
+
},
|
| 1013 |
+
{
|
| 1014 |
+
"epoch": 1.7560975609756098,
|
| 1015 |
+
"grad_norm": 2.633896589279175,
|
| 1016 |
+
"learning_rate": 9.58290726846318e-06,
|
| 1017 |
+
"loss": 0.4355,
|
| 1018 |
+
"step": 144
|
| 1019 |
+
},
|
| 1020 |
+
{
|
| 1021 |
+
"epoch": 1.7682926829268293,
|
| 1022 |
+
"grad_norm": 2.5964772701263428,
|
| 1023 |
+
"learning_rate": 9.57480738053067e-06,
|
| 1024 |
+
"loss": 0.443,
|
| 1025 |
+
"step": 145
|
| 1026 |
+
},
|
| 1027 |
+
{
|
| 1028 |
+
"epoch": 1.7804878048780488,
|
| 1029 |
+
"grad_norm": 2.5255353450775146,
|
| 1030 |
+
"learning_rate": 9.566633088466169e-06,
|
| 1031 |
+
"loss": 0.4135,
|
| 1032 |
+
"step": 146
|
| 1033 |
+
},
|
| 1034 |
+
{
|
| 1035 |
+
"epoch": 1.7926829268292683,
|
| 1036 |
+
"grad_norm": 2.3389077186584473,
|
| 1037 |
+
"learning_rate": 9.558384525215406e-06,
|
| 1038 |
+
"loss": 0.4233,
|
| 1039 |
+
"step": 147
|
| 1040 |
+
},
|
| 1041 |
+
{
|
| 1042 |
+
"epoch": 1.8048780487804879,
|
| 1043 |
+
"grad_norm": 2.570801019668579,
|
| 1044 |
+
"learning_rate": 9.550061824932047e-06,
|
| 1045 |
+
"loss": 0.4227,
|
| 1046 |
+
"step": 148
|
| 1047 |
+
},
|
| 1048 |
+
{
|
| 1049 |
+
"epoch": 1.8170731707317072,
|
| 1050 |
+
"grad_norm": 2.7482798099517822,
|
| 1051 |
+
"learning_rate": 9.54166512297552e-06,
|
| 1052 |
+
"loss": 0.4779,
|
| 1053 |
+
"step": 149
|
| 1054 |
+
},
|
| 1055 |
+
{
|
| 1056 |
+
"epoch": 1.8292682926829267,
|
| 1057 |
+
"grad_norm": 3.0880026817321777,
|
| 1058 |
+
"learning_rate": 9.533194555908796e-06,
|
| 1059 |
+
"loss": 0.5231,
|
| 1060 |
+
"step": 150
|
| 1061 |
+
},
|
| 1062 |
+
{
|
| 1063 |
+
"epoch": 1.8414634146341462,
|
| 1064 |
+
"grad_norm": 2.6744909286499023,
|
| 1065 |
+
"learning_rate": 9.524650261496195e-06,
|
| 1066 |
+
"loss": 0.4608,
|
| 1067 |
+
"step": 151
|
| 1068 |
+
},
|
| 1069 |
+
{
|
| 1070 |
+
"epoch": 1.8536585365853657,
|
| 1071 |
+
"grad_norm": 2.891713857650757,
|
| 1072 |
+
"learning_rate": 9.516032378701117e-06,
|
| 1073 |
+
"loss": 0.473,
|
| 1074 |
+
"step": 152
|
| 1075 |
+
},
|
| 1076 |
+
{
|
| 1077 |
+
"epoch": 1.8658536585365852,
|
| 1078 |
+
"grad_norm": 2.547239303588867,
|
| 1079 |
+
"learning_rate": 9.5073410476838e-06,
|
| 1080 |
+
"loss": 0.4051,
|
| 1081 |
+
"step": 153
|
| 1082 |
+
},
|
| 1083 |
+
{
|
| 1084 |
+
"epoch": 1.8780487804878048,
|
| 1085 |
+
"grad_norm": 2.723076581954956,
|
| 1086 |
+
"learning_rate": 9.498576409799034e-06,
|
| 1087 |
+
"loss": 0.4558,
|
| 1088 |
+
"step": 154
|
| 1089 |
+
},
|
| 1090 |
+
{
|
| 1091 |
+
"epoch": 1.8902439024390243,
|
| 1092 |
+
"grad_norm": 3.1596052646636963,
|
| 1093 |
+
"learning_rate": 9.489738607593867e-06,
|
| 1094 |
+
"loss": 0.4865,
|
| 1095 |
+
"step": 155
|
| 1096 |
+
},
|
| 1097 |
+
{
|
| 1098 |
+
"epoch": 1.9024390243902438,
|
| 1099 |
+
"grad_norm": 2.7183949947357178,
|
| 1100 |
+
"learning_rate": 9.480827784805278e-06,
|
| 1101 |
+
"loss": 0.5014,
|
| 1102 |
+
"step": 156
|
| 1103 |
+
},
|
| 1104 |
+
{
|
| 1105 |
+
"epoch": 1.9146341463414633,
|
| 1106 |
+
"grad_norm": 2.5864574909210205,
|
| 1107 |
+
"learning_rate": 9.471844086357848e-06,
|
| 1108 |
+
"loss": 0.4149,
|
| 1109 |
+
"step": 157
|
| 1110 |
+
},
|
| 1111 |
+
{
|
| 1112 |
+
"epoch": 1.9268292682926829,
|
| 1113 |
+
"grad_norm": 2.5046157836914062,
|
| 1114 |
+
"learning_rate": 9.462787658361394e-06,
|
| 1115 |
+
"loss": 0.3962,
|
| 1116 |
+
"step": 158
|
| 1117 |
+
},
|
| 1118 |
+
{
|
| 1119 |
+
"epoch": 1.9390243902439024,
|
| 1120 |
+
"grad_norm": 2.8331422805786133,
|
| 1121 |
+
"learning_rate": 9.453658648108604e-06,
|
| 1122 |
+
"loss": 0.3853,
|
| 1123 |
+
"step": 159
|
| 1124 |
+
},
|
| 1125 |
+
{
|
| 1126 |
+
"epoch": 1.951219512195122,
|
| 1127 |
+
"grad_norm": 2.512298822402954,
|
| 1128 |
+
"learning_rate": 9.444457204072632e-06,
|
| 1129 |
+
"loss": 0.4437,
|
| 1130 |
+
"step": 160
|
| 1131 |
+
},
|
| 1132 |
+
{
|
| 1133 |
+
"epoch": 1.9634146341463414,
|
| 1134 |
+
"grad_norm": 2.444852828979492,
|
| 1135 |
+
"learning_rate": 9.435183475904688e-06,
|
| 1136 |
+
"loss": 0.3504,
|
| 1137 |
+
"step": 161
|
| 1138 |
+
},
|
| 1139 |
+
{
|
| 1140 |
+
"epoch": 1.975609756097561,
|
| 1141 |
+
"grad_norm": 2.8331000804901123,
|
| 1142 |
+
"learning_rate": 9.425837614431601e-06,
|
| 1143 |
+
"loss": 0.4716,
|
| 1144 |
+
"step": 162
|
| 1145 |
+
},
|
| 1146 |
+
{
|
| 1147 |
+
"epoch": 1.9878048780487805,
|
| 1148 |
+
"grad_norm": 2.661059856414795,
|
| 1149 |
+
"learning_rate": 9.416419771653368e-06,
|
| 1150 |
+
"loss": 0.4385,
|
| 1151 |
+
"step": 163
|
| 1152 |
+
},
|
| 1153 |
+
{
|
| 1154 |
+
"epoch": 2.0,
|
| 1155 |
+
"grad_norm": 2.646305799484253,
|
| 1156 |
+
"learning_rate": 9.406930100740686e-06,
|
| 1157 |
+
"loss": 0.4184,
|
| 1158 |
+
"step": 164
|
| 1159 |
+
},
|
| 1160 |
+
{
|
| 1161 |
+
"epoch": 2.0121951219512195,
|
| 1162 |
+
"grad_norm": 2.712597608566284,
|
| 1163 |
+
"learning_rate": 9.397368756032445e-06,
|
| 1164 |
+
"loss": 0.2314,
|
| 1165 |
+
"step": 165
|
| 1166 |
+
},
|
| 1167 |
+
{
|
| 1168 |
+
"epoch": 2.024390243902439,
|
| 1169 |
+
"grad_norm": 2.586576461791992,
|
| 1170 |
+
"learning_rate": 9.387735893033244e-06,
|
| 1171 |
+
"loss": 0.1831,
|
| 1172 |
+
"step": 166
|
| 1173 |
+
},
|
| 1174 |
+
{
|
| 1175 |
+
"epoch": 2.0365853658536586,
|
| 1176 |
+
"grad_norm": 2.5278258323669434,
|
| 1177 |
+
"learning_rate": 9.378031668410836e-06,
|
| 1178 |
+
"loss": 0.2375,
|
| 1179 |
+
"step": 167
|
| 1180 |
+
},
|
| 1181 |
+
{
|
| 1182 |
+
"epoch": 2.048780487804878,
|
| 1183 |
+
"grad_norm": 2.541187047958374,
|
| 1184 |
+
"learning_rate": 9.368256239993597e-06,
|
| 1185 |
+
"loss": 0.1981,
|
| 1186 |
+
"step": 168
|
| 1187 |
+
},
|
| 1188 |
+
{
|
| 1189 |
+
"epoch": 2.0609756097560976,
|
| 1190 |
+
"grad_norm": 2.764477252960205,
|
| 1191 |
+
"learning_rate": 9.358409766767946e-06,
|
| 1192 |
+
"loss": 0.2029,
|
| 1193 |
+
"step": 169
|
| 1194 |
+
},
|
| 1195 |
+
{
|
| 1196 |
+
"epoch": 2.073170731707317,
|
| 1197 |
+
"grad_norm": 2.4784131050109863,
|
| 1198 |
+
"learning_rate": 9.348492408875779e-06,
|
| 1199 |
+
"loss": 0.1535,
|
| 1200 |
+
"step": 170
|
| 1201 |
+
},
|
| 1202 |
+
{
|
| 1203 |
+
"epoch": 2.0853658536585367,
|
| 1204 |
+
"grad_norm": 2.915125846862793,
|
| 1205 |
+
"learning_rate": 9.338504327611839e-06,
|
| 1206 |
+
"loss": 0.1598,
|
| 1207 |
+
"step": 171
|
| 1208 |
+
},
|
| 1209 |
+
{
|
| 1210 |
+
"epoch": 2.097560975609756,
|
| 1211 |
+
"grad_norm": 2.7254488468170166,
|
| 1212 |
+
"learning_rate": 9.328445685421113e-06,
|
| 1213 |
+
"loss": 0.1462,
|
| 1214 |
+
"step": 172
|
| 1215 |
+
},
|
| 1216 |
+
{
|
| 1217 |
+
"epoch": 2.1097560975609757,
|
| 1218 |
+
"grad_norm": 2.9409985542297363,
|
| 1219 |
+
"learning_rate": 9.318316645896182e-06,
|
| 1220 |
+
"loss": 0.203,
|
| 1221 |
+
"step": 173
|
| 1222 |
+
},
|
| 1223 |
+
{
|
| 1224 |
+
"epoch": 2.1219512195121952,
|
| 1225 |
+
"grad_norm": 2.588385820388794,
|
| 1226 |
+
"learning_rate": 9.308117373774555e-06,
|
| 1227 |
+
"loss": 0.1795,
|
| 1228 |
+
"step": 174
|
| 1229 |
+
},
|
| 1230 |
+
{
|
| 1231 |
+
"epoch": 2.1341463414634148,
|
| 1232 |
+
"grad_norm": 2.7931816577911377,
|
| 1233 |
+
"learning_rate": 9.297848034936007e-06,
|
| 1234 |
+
"loss": 0.1993,
|
| 1235 |
+
"step": 175
|
| 1236 |
+
},
|
| 1237 |
+
{
|
| 1238 |
+
"epoch": 2.1463414634146343,
|
| 1239 |
+
"grad_norm": 2.3102173805236816,
|
| 1240 |
+
"learning_rate": 9.287508796399858e-06,
|
| 1241 |
+
"loss": 0.1839,
|
| 1242 |
+
"step": 176
|
| 1243 |
+
},
|
| 1244 |
+
{
|
| 1245 |
+
"epoch": 2.158536585365854,
|
| 1246 |
+
"grad_norm": 2.3756439685821533,
|
| 1247 |
+
"learning_rate": 9.277099826322277e-06,
|
| 1248 |
+
"loss": 0.2063,
|
| 1249 |
+
"step": 177
|
| 1250 |
+
},
|
| 1251 |
+
{
|
| 1252 |
+
"epoch": 2.1707317073170733,
|
| 1253 |
+
"grad_norm": 2.2752017974853516,
|
| 1254 |
+
"learning_rate": 9.266621293993534e-06,
|
| 1255 |
+
"loss": 0.1699,
|
| 1256 |
+
"step": 178
|
| 1257 |
+
},
|
| 1258 |
+
{
|
| 1259 |
+
"epoch": 2.182926829268293,
|
| 1260 |
+
"grad_norm": 2.484127998352051,
|
| 1261 |
+
"learning_rate": 9.256073369835255e-06,
|
| 1262 |
+
"loss": 0.1763,
|
| 1263 |
+
"step": 179
|
| 1264 |
+
},
|
| 1265 |
+
{
|
| 1266 |
+
"epoch": 2.1951219512195124,
|
| 1267 |
+
"grad_norm": 2.3598098754882812,
|
| 1268 |
+
"learning_rate": 9.245456225397642e-06,
|
| 1269 |
+
"loss": 0.1677,
|
| 1270 |
+
"step": 180
|
| 1271 |
+
},
|
| 1272 |
+
{
|
| 1273 |
+
"epoch": 2.207317073170732,
|
| 1274 |
+
"grad_norm": 2.2330524921417236,
|
| 1275 |
+
"learning_rate": 9.23477003335669e-06,
|
| 1276 |
+
"loss": 0.185,
|
| 1277 |
+
"step": 181
|
| 1278 |
+
},
|
| 1279 |
+
{
|
| 1280 |
+
"epoch": 2.2195121951219514,
|
| 1281 |
+
"grad_norm": 2.439162492752075,
|
| 1282 |
+
"learning_rate": 9.224014967511378e-06,
|
| 1283 |
+
"loss": 0.1582,
|
| 1284 |
+
"step": 182
|
| 1285 |
+
},
|
| 1286 |
+
{
|
| 1287 |
+
"epoch": 2.231707317073171,
|
| 1288 |
+
"grad_norm": 2.601541042327881,
|
| 1289 |
+
"learning_rate": 9.213191202780835e-06,
|
| 1290 |
+
"loss": 0.1737,
|
| 1291 |
+
"step": 183
|
| 1292 |
+
},
|
| 1293 |
+
{
|
| 1294 |
+
"epoch": 2.2439024390243905,
|
| 1295 |
+
"grad_norm": 2.3318488597869873,
|
| 1296 |
+
"learning_rate": 9.20229891520151e-06,
|
| 1297 |
+
"loss": 0.1688,
|
| 1298 |
+
"step": 184
|
| 1299 |
+
},
|
| 1300 |
+
{
|
| 1301 |
+
"epoch": 2.2560975609756095,
|
| 1302 |
+
"grad_norm": 2.883798122406006,
|
| 1303 |
+
"learning_rate": 9.191338281924288e-06,
|
| 1304 |
+
"loss": 0.2094,
|
| 1305 |
+
"step": 185
|
| 1306 |
+
},
|
| 1307 |
+
{
|
| 1308 |
+
"epoch": 2.2682926829268295,
|
| 1309 |
+
"grad_norm": 2.4024503231048584,
|
| 1310 |
+
"learning_rate": 9.180309481211629e-06,
|
| 1311 |
+
"loss": 0.183,
|
| 1312 |
+
"step": 186
|
| 1313 |
+
},
|
| 1314 |
+
{
|
| 1315 |
+
"epoch": 2.2804878048780486,
|
| 1316 |
+
"grad_norm": 2.7932958602905273,
|
| 1317 |
+
"learning_rate": 9.169212692434658e-06,
|
| 1318 |
+
"loss": 0.2388,
|
| 1319 |
+
"step": 187
|
| 1320 |
+
},
|
| 1321 |
+
{
|
| 1322 |
+
"epoch": 2.292682926829268,
|
| 1323 |
+
"grad_norm": 2.345780372619629,
|
| 1324 |
+
"learning_rate": 9.158048096070249e-06,
|
| 1325 |
+
"loss": 0.1698,
|
| 1326 |
+
"step": 188
|
| 1327 |
+
},
|
| 1328 |
+
{
|
| 1329 |
+
"epoch": 2.3048780487804876,
|
| 1330 |
+
"grad_norm": 2.3633759021759033,
|
| 1331 |
+
"learning_rate": 9.14681587369809e-06,
|
| 1332 |
+
"loss": 0.1797,
|
| 1333 |
+
"step": 189
|
| 1334 |
+
},
|
| 1335 |
+
{
|
| 1336 |
+
"epoch": 2.317073170731707,
|
| 1337 |
+
"grad_norm": 2.4073266983032227,
|
| 1338 |
+
"learning_rate": 9.13551620799773e-06,
|
| 1339 |
+
"loss": 0.1744,
|
| 1340 |
+
"step": 190
|
| 1341 |
+
},
|
| 1342 |
+
{
|
| 1343 |
+
"epoch": 2.3292682926829267,
|
| 1344 |
+
"grad_norm": 2.4266092777252197,
|
| 1345 |
+
"learning_rate": 9.124149282745614e-06,
|
| 1346 |
+
"loss": 0.1874,
|
| 1347 |
+
"step": 191
|
| 1348 |
+
},
|
| 1349 |
+
{
|
| 1350 |
+
"epoch": 2.341463414634146,
|
| 1351 |
+
"grad_norm": 2.277799129486084,
|
| 1352 |
+
"learning_rate": 9.112715282812081e-06,
|
| 1353 |
+
"loss": 0.2014,
|
| 1354 |
+
"step": 192
|
| 1355 |
+
},
|
| 1356 |
+
{
|
| 1357 |
+
"epoch": 2.3536585365853657,
|
| 1358 |
+
"grad_norm": 2.5907177925109863,
|
| 1359 |
+
"learning_rate": 9.101214394158371e-06,
|
| 1360 |
+
"loss": 0.1911,
|
| 1361 |
+
"step": 193
|
| 1362 |
+
},
|
| 1363 |
+
{
|
| 1364 |
+
"epoch": 2.3658536585365852,
|
| 1365 |
+
"grad_norm": 2.6057519912719727,
|
| 1366 |
+
"learning_rate": 9.089646803833589e-06,
|
| 1367 |
+
"loss": 0.2172,
|
| 1368 |
+
"step": 194
|
| 1369 |
+
},
|
| 1370 |
+
{
|
| 1371 |
+
"epoch": 2.3780487804878048,
|
| 1372 |
+
"grad_norm": 2.3195533752441406,
|
| 1373 |
+
"learning_rate": 9.078012699971673e-06,
|
| 1374 |
+
"loss": 0.184,
|
| 1375 |
+
"step": 195
|
| 1376 |
+
},
|
| 1377 |
+
{
|
| 1378 |
+
"epoch": 2.3902439024390243,
|
| 1379 |
+
"grad_norm": 2.62652850151062,
|
| 1380 |
+
"learning_rate": 9.066312271788323e-06,
|
| 1381 |
+
"loss": 0.2185,
|
| 1382 |
+
"step": 196
|
| 1383 |
+
},
|
| 1384 |
+
{
|
| 1385 |
+
"epoch": 2.402439024390244,
|
| 1386 |
+
"grad_norm": 2.2538259029388428,
|
| 1387 |
+
"learning_rate": 9.054545709577939e-06,
|
| 1388 |
+
"loss": 0.1797,
|
| 1389 |
+
"step": 197
|
| 1390 |
+
},
|
| 1391 |
+
{
|
| 1392 |
+
"epoch": 2.4146341463414633,
|
| 1393 |
+
"grad_norm": 2.573920965194702,
|
| 1394 |
+
"learning_rate": 9.042713204710509e-06,
|
| 1395 |
+
"loss": 0.1791,
|
| 1396 |
+
"step": 198
|
| 1397 |
+
},
|
| 1398 |
+
{
|
| 1399 |
+
"epoch": 2.426829268292683,
|
| 1400 |
+
"grad_norm": 2.010896921157837,
|
| 1401 |
+
"learning_rate": 9.030814949628509e-06,
|
| 1402 |
+
"loss": 0.1471,
|
| 1403 |
+
"step": 199
|
| 1404 |
+
},
|
| 1405 |
+
{
|
| 1406 |
+
"epoch": 2.4390243902439024,
|
| 1407 |
+
"grad_norm": 2.5009727478027344,
|
| 1408 |
+
"learning_rate": 9.018851137843765e-06,
|
| 1409 |
+
"loss": 0.1805,
|
| 1410 |
+
"step": 200
|
| 1411 |
+
},
|
| 1412 |
+
{
|
| 1413 |
+
"epoch": 2.451219512195122,
|
| 1414 |
+
"grad_norm": 2.673194169998169,
|
| 1415 |
+
"learning_rate": 9.006821963934316e-06,
|
| 1416 |
+
"loss": 0.2134,
|
| 1417 |
+
"step": 201
|
| 1418 |
+
},
|
| 1419 |
+
{
|
| 1420 |
+
"epoch": 2.4634146341463414,
|
| 1421 |
+
"grad_norm": 2.851163387298584,
|
| 1422 |
+
"learning_rate": 8.994727623541237e-06,
|
| 1423 |
+
"loss": 0.1902,
|
| 1424 |
+
"step": 202
|
| 1425 |
+
},
|
| 1426 |
+
{
|
| 1427 |
+
"epoch": 2.475609756097561,
|
| 1428 |
+
"grad_norm": 3.064375877380371,
|
| 1429 |
+
"learning_rate": 8.982568313365467e-06,
|
| 1430 |
+
"loss": 0.2247,
|
| 1431 |
+
"step": 203
|
| 1432 |
+
},
|
| 1433 |
+
{
|
| 1434 |
+
"epoch": 2.4878048780487805,
|
| 1435 |
+
"grad_norm": 2.5090184211730957,
|
| 1436 |
+
"learning_rate": 8.970344231164602e-06,
|
| 1437 |
+
"loss": 0.2022,
|
| 1438 |
+
"step": 204
|
| 1439 |
+
},
|
| 1440 |
+
{
|
| 1441 |
+
"epoch": 2.5,
|
| 1442 |
+
"grad_norm": 2.2384963035583496,
|
| 1443 |
+
"learning_rate": 8.958055575749685e-06,
|
| 1444 |
+
"loss": 0.1954,
|
| 1445 |
+
"step": 205
|
| 1446 |
+
},
|
| 1447 |
+
{
|
| 1448 |
+
"epoch": 2.5121951219512195,
|
| 1449 |
+
"grad_norm": 2.3855085372924805,
|
| 1450 |
+
"learning_rate": 8.94570254698197e-06,
|
| 1451 |
+
"loss": 0.2088,
|
| 1452 |
+
"step": 206
|
| 1453 |
+
},
|
| 1454 |
+
{
|
| 1455 |
+
"epoch": 2.524390243902439,
|
| 1456 |
+
"grad_norm": 2.38485050201416,
|
| 1457 |
+
"learning_rate": 8.933285345769671e-06,
|
| 1458 |
+
"loss": 0.1926,
|
| 1459 |
+
"step": 207
|
| 1460 |
+
},
|
| 1461 |
+
{
|
| 1462 |
+
"epoch": 2.5365853658536586,
|
| 1463 |
+
"grad_norm": 2.5828115940093994,
|
| 1464 |
+
"learning_rate": 8.920804174064697e-06,
|
| 1465 |
+
"loss": 0.2452,
|
| 1466 |
+
"step": 208
|
| 1467 |
+
},
|
| 1468 |
+
{
|
| 1469 |
+
"epoch": 2.548780487804878,
|
| 1470 |
+
"grad_norm": 2.271554470062256,
|
| 1471 |
+
"learning_rate": 8.908259234859365e-06,
|
| 1472 |
+
"loss": 0.1858,
|
| 1473 |
+
"step": 209
|
| 1474 |
+
},
|
| 1475 |
+
{
|
| 1476 |
+
"epoch": 2.5609756097560976,
|
| 1477 |
+
"grad_norm": 2.114044189453125,
|
| 1478 |
+
"learning_rate": 8.895650732183094e-06,
|
| 1479 |
+
"loss": 0.1766,
|
| 1480 |
+
"step": 210
|
| 1481 |
+
},
|
| 1482 |
+
{
|
| 1483 |
+
"epoch": 2.573170731707317,
|
| 1484 |
+
"grad_norm": 2.3854148387908936,
|
| 1485 |
+
"learning_rate": 8.882978871099104e-06,
|
| 1486 |
+
"loss": 0.2026,
|
| 1487 |
+
"step": 211
|
| 1488 |
+
},
|
| 1489 |
+
{
|
| 1490 |
+
"epoch": 2.5853658536585367,
|
| 1491 |
+
"grad_norm": 2.409749746322632,
|
| 1492 |
+
"learning_rate": 8.870243857701054e-06,
|
| 1493 |
+
"loss": 0.2135,
|
| 1494 |
+
"step": 212
|
| 1495 |
+
},
|
| 1496 |
+
{
|
| 1497 |
+
"epoch": 2.597560975609756,
|
| 1498 |
+
"grad_norm": 2.269014596939087,
|
| 1499 |
+
"learning_rate": 8.857445899109716e-06,
|
| 1500 |
+
"loss": 0.173,
|
| 1501 |
+
"step": 213
|
| 1502 |
+
},
|
| 1503 |
+
{
|
| 1504 |
+
"epoch": 2.6097560975609757,
|
| 1505 |
+
"grad_norm": 2.1958768367767334,
|
| 1506 |
+
"learning_rate": 8.84458520346959e-06,
|
| 1507 |
+
"loss": 0.1803,
|
| 1508 |
+
"step": 214
|
| 1509 |
+
},
|
| 1510 |
+
{
|
| 1511 |
+
"epoch": 2.6219512195121952,
|
| 1512 |
+
"grad_norm": 2.2031567096710205,
|
| 1513 |
+
"learning_rate": 8.831661979945522e-06,
|
| 1514 |
+
"loss": 0.1701,
|
| 1515 |
+
"step": 215
|
| 1516 |
+
},
|
| 1517 |
+
{
|
| 1518 |
+
"epoch": 2.6341463414634148,
|
| 1519 |
+
"grad_norm": 2.523292303085327,
|
| 1520 |
+
"learning_rate": 8.818676438719314e-06,
|
| 1521 |
+
"loss": 0.1988,
|
| 1522 |
+
"step": 216
|
| 1523 |
+
},
|
| 1524 |
+
{
|
| 1525 |
+
"epoch": 2.6463414634146343,
|
| 1526 |
+
"grad_norm": 2.597362995147705,
|
| 1527 |
+
"learning_rate": 8.805628790986284e-06,
|
| 1528 |
+
"loss": 0.2264,
|
| 1529 |
+
"step": 217
|
| 1530 |
+
},
|
| 1531 |
+
{
|
| 1532 |
+
"epoch": 2.658536585365854,
|
| 1533 |
+
"grad_norm": 2.802621603012085,
|
| 1534 |
+
"learning_rate": 8.792519248951851e-06,
|
| 1535 |
+
"loss": 0.2293,
|
| 1536 |
+
"step": 218
|
| 1537 |
+
},
|
| 1538 |
+
{
|
| 1539 |
+
"epoch": 2.6707317073170733,
|
| 1540 |
+
"grad_norm": 2.707906484603882,
|
| 1541 |
+
"learning_rate": 8.779348025828071e-06,
|
| 1542 |
+
"loss": 0.2012,
|
| 1543 |
+
"step": 219
|
| 1544 |
+
},
|
| 1545 |
+
{
|
| 1546 |
+
"epoch": 2.682926829268293,
|
| 1547 |
+
"grad_norm": 2.630911350250244,
|
| 1548 |
+
"learning_rate": 8.766115335830178e-06,
|
| 1549 |
+
"loss": 0.1975,
|
| 1550 |
+
"step": 220
|
| 1551 |
+
},
|
| 1552 |
+
{
|
| 1553 |
+
"epoch": 2.6951219512195124,
|
| 1554 |
+
"grad_norm": 2.492384195327759,
|
| 1555 |
+
"learning_rate": 8.752821394173092e-06,
|
| 1556 |
+
"loss": 0.1893,
|
| 1557 |
+
"step": 221
|
| 1558 |
+
},
|
| 1559 |
+
{
|
| 1560 |
+
"epoch": 2.7073170731707314,
|
| 1561 |
+
"grad_norm": 2.3401095867156982,
|
| 1562 |
+
"learning_rate": 8.739466417067926e-06,
|
| 1563 |
+
"loss": 0.1769,
|
| 1564 |
+
"step": 222
|
| 1565 |
+
},
|
| 1566 |
+
{
|
| 1567 |
+
"epoch": 2.7195121951219514,
|
| 1568 |
+
"grad_norm": 2.6099853515625,
|
| 1569 |
+
"learning_rate": 8.726050621718462e-06,
|
| 1570 |
+
"loss": 0.1746,
|
| 1571 |
+
"step": 223
|
| 1572 |
+
},
|
| 1573 |
+
{
|
| 1574 |
+
"epoch": 2.7317073170731705,
|
| 1575 |
+
"grad_norm": 2.4008710384368896,
|
| 1576 |
+
"learning_rate": 8.71257422631763e-06,
|
| 1577 |
+
"loss": 0.222,
|
| 1578 |
+
"step": 224
|
| 1579 |
+
},
|
| 1580 |
+
{
|
| 1581 |
+
"epoch": 2.7439024390243905,
|
| 1582 |
+
"grad_norm": 2.5295095443725586,
|
| 1583 |
+
"learning_rate": 8.699037450043945e-06,
|
| 1584 |
+
"loss": 0.2196,
|
| 1585 |
+
"step": 225
|
| 1586 |
+
},
|
| 1587 |
+
{
|
| 1588 |
+
"epoch": 2.7560975609756095,
|
| 1589 |
+
"grad_norm": 2.4341542720794678,
|
| 1590 |
+
"learning_rate": 8.685440513057955e-06,
|
| 1591 |
+
"loss": 0.2019,
|
| 1592 |
+
"step": 226
|
| 1593 |
+
},
|
| 1594 |
+
{
|
| 1595 |
+
"epoch": 2.7682926829268295,
|
| 1596 |
+
"grad_norm": 2.379326343536377,
|
| 1597 |
+
"learning_rate": 8.671783636498652e-06,
|
| 1598 |
+
"loss": 0.2263,
|
| 1599 |
+
"step": 227
|
| 1600 |
+
},
|
| 1601 |
+
{
|
| 1602 |
+
"epoch": 2.7804878048780486,
|
| 1603 |
+
"grad_norm": 2.4653515815734863,
|
| 1604 |
+
"learning_rate": 8.658067042479877e-06,
|
| 1605 |
+
"loss": 0.197,
|
| 1606 |
+
"step": 228
|
| 1607 |
+
},
|
| 1608 |
+
{
|
| 1609 |
+
"epoch": 2.7926829268292686,
|
| 1610 |
+
"grad_norm": 2.4599173069000244,
|
| 1611 |
+
"learning_rate": 8.644290954086711e-06,
|
| 1612 |
+
"loss": 0.1995,
|
| 1613 |
+
"step": 229
|
| 1614 |
+
},
|
| 1615 |
+
{
|
| 1616 |
+
"epoch": 2.8048780487804876,
|
| 1617 |
+
"grad_norm": 2.559979200363159,
|
| 1618 |
+
"learning_rate": 8.630455595371846e-06,
|
| 1619 |
+
"loss": 0.2138,
|
| 1620 |
+
"step": 230
|
| 1621 |
+
},
|
| 1622 |
+
{
|
| 1623 |
+
"epoch": 2.817073170731707,
|
| 1624 |
+
"grad_norm": 2.173933267593384,
|
| 1625 |
+
"learning_rate": 8.616561191351934e-06,
|
| 1626 |
+
"loss": 0.1822,
|
| 1627 |
+
"step": 231
|
| 1628 |
+
},
|
| 1629 |
+
{
|
| 1630 |
+
"epoch": 2.8292682926829267,
|
| 1631 |
+
"grad_norm": 2.4872312545776367,
|
| 1632 |
+
"learning_rate": 8.602607968003935e-06,
|
| 1633 |
+
"loss": 0.1805,
|
| 1634 |
+
"step": 232
|
| 1635 |
+
},
|
| 1636 |
+
{
|
| 1637 |
+
"epoch": 2.841463414634146,
|
| 1638 |
+
"grad_norm": 2.255208730697632,
|
| 1639 |
+
"learning_rate": 8.588596152261447e-06,
|
| 1640 |
+
"loss": 0.1825,
|
| 1641 |
+
"step": 233
|
| 1642 |
+
},
|
| 1643 |
+
{
|
| 1644 |
+
"epoch": 2.8536585365853657,
|
| 1645 |
+
"grad_norm": 2.602861166000366,
|
| 1646 |
+
"learning_rate": 8.574525972010997e-06,
|
| 1647 |
+
"loss": 0.2079,
|
| 1648 |
+
"step": 234
|
| 1649 |
+
},
|
| 1650 |
+
{
|
| 1651 |
+
"epoch": 2.8658536585365852,
|
| 1652 |
+
"grad_norm": 2.6664066314697266,
|
| 1653 |
+
"learning_rate": 8.560397656088353e-06,
|
| 1654 |
+
"loss": 0.1909,
|
| 1655 |
+
"step": 235
|
| 1656 |
+
},
|
| 1657 |
+
{
|
| 1658 |
+
"epoch": 2.8780487804878048,
|
| 1659 |
+
"grad_norm": 3.140064001083374,
|
| 1660 |
+
"learning_rate": 8.546211434274791e-06,
|
| 1661 |
+
"loss": 0.1985,
|
| 1662 |
+
"step": 236
|
| 1663 |
+
},
|
| 1664 |
+
{
|
| 1665 |
+
"epoch": 2.8902439024390243,
|
| 1666 |
+
"grad_norm": 2.759251832962036,
|
| 1667 |
+
"learning_rate": 8.531967537293365e-06,
|
| 1668 |
+
"loss": 0.1862,
|
| 1669 |
+
"step": 237
|
| 1670 |
+
},
|
| 1671 |
+
{
|
| 1672 |
+
"epoch": 2.902439024390244,
|
| 1673 |
+
"grad_norm": 2.6289727687835693,
|
| 1674 |
+
"learning_rate": 8.517666196805142e-06,
|
| 1675 |
+
"loss": 0.207,
|
| 1676 |
+
"step": 238
|
| 1677 |
+
},
|
| 1678 |
+
{
|
| 1679 |
+
"epoch": 2.9146341463414633,
|
| 1680 |
+
"grad_norm": 2.671435594558716,
|
| 1681 |
+
"learning_rate": 8.503307645405461e-06,
|
| 1682 |
+
"loss": 0.2103,
|
| 1683 |
+
"step": 239
|
| 1684 |
+
},
|
| 1685 |
+
{
|
| 1686 |
+
"epoch": 2.926829268292683,
|
| 1687 |
+
"grad_norm": 2.4491989612579346,
|
| 1688 |
+
"learning_rate": 8.488892116620114e-06,
|
| 1689 |
+
"loss": 0.2086,
|
| 1690 |
+
"step": 240
|
| 1691 |
+
},
|
| 1692 |
+
{
|
| 1693 |
+
"epoch": 2.9390243902439024,
|
| 1694 |
+
"grad_norm": 2.1627562046051025,
|
| 1695 |
+
"learning_rate": 8.474419844901575e-06,
|
| 1696 |
+
"loss": 0.1785,
|
| 1697 |
+
"step": 241
|
| 1698 |
+
},
|
| 1699 |
+
{
|
| 1700 |
+
"epoch": 2.951219512195122,
|
| 1701 |
+
"grad_norm": 2.683394432067871,
|
| 1702 |
+
"learning_rate": 8.459891065625184e-06,
|
| 1703 |
+
"loss": 0.2746,
|
| 1704 |
+
"step": 242
|
| 1705 |
+
},
|
| 1706 |
+
{
|
| 1707 |
+
"epoch": 2.9634146341463414,
|
| 1708 |
+
"grad_norm": 2.3977043628692627,
|
| 1709 |
+
"learning_rate": 8.445306015085301e-06,
|
| 1710 |
+
"loss": 0.2042,
|
| 1711 |
+
"step": 243
|
| 1712 |
+
},
|
| 1713 |
+
{
|
| 1714 |
+
"epoch": 2.975609756097561,
|
| 1715 |
+
"grad_norm": 2.0520613193511963,
|
| 1716 |
+
"learning_rate": 8.430664930491485e-06,
|
| 1717 |
+
"loss": 0.1897,
|
| 1718 |
+
"step": 244
|
| 1719 |
+
},
|
| 1720 |
+
{
|
| 1721 |
+
"epoch": 2.9878048780487805,
|
| 1722 |
+
"grad_norm": 2.36509370803833,
|
| 1723 |
+
"learning_rate": 8.415968049964623e-06,
|
| 1724 |
+
"loss": 0.1859,
|
| 1725 |
+
"step": 245
|
| 1726 |
+
},
|
| 1727 |
+
{
|
| 1728 |
+
"epoch": 3.0,
|
| 1729 |
+
"grad_norm": 2.167886257171631,
|
| 1730 |
+
"learning_rate": 8.401215612533056e-06,
|
| 1731 |
+
"loss": 0.1665,
|
| 1732 |
+
"step": 246
|
| 1733 |
+
},
|
| 1734 |
+
{
|
| 1735 |
+
"epoch": 3.0121951219512195,
|
| 1736 |
+
"grad_norm": 1.8608198165893555,
|
| 1737 |
+
"learning_rate": 8.386407858128707e-06,
|
| 1738 |
+
"loss": 0.1037,
|
| 1739 |
+
"step": 247
|
| 1740 |
+
},
|
| 1741 |
+
{
|
| 1742 |
+
"epoch": 3.024390243902439,
|
| 1743 |
+
"grad_norm": 1.8207582235336304,
|
| 1744 |
+
"learning_rate": 8.371545027583154e-06,
|
| 1745 |
+
"loss": 0.0807,
|
| 1746 |
+
"step": 248
|
| 1747 |
+
},
|
| 1748 |
+
{
|
| 1749 |
+
"epoch": 3.0365853658536586,
|
| 1750 |
+
"grad_norm": 1.7909525632858276,
|
| 1751 |
+
"learning_rate": 8.356627362623742e-06,
|
| 1752 |
+
"loss": 0.0819,
|
| 1753 |
+
"step": 249
|
| 1754 |
+
},
|
| 1755 |
+
{
|
| 1756 |
+
"epoch": 3.048780487804878,
|
| 1757 |
+
"grad_norm": 2.130682945251465,
|
| 1758 |
+
"learning_rate": 8.341655105869622e-06,
|
| 1759 |
+
"loss": 0.1154,
|
| 1760 |
+
"step": 250
|
| 1761 |
+
},
|
| 1762 |
+
{
|
| 1763 |
+
"epoch": 3.0609756097560976,
|
| 1764 |
+
"grad_norm": 1.9704978466033936,
|
| 1765 |
+
"learning_rate": 8.326628500827826e-06,
|
| 1766 |
+
"loss": 0.0959,
|
| 1767 |
+
"step": 251
|
| 1768 |
+
},
|
| 1769 |
+
{
|
| 1770 |
+
"epoch": 3.073170731707317,
|
| 1771 |
+
"grad_norm": 2.402252197265625,
|
| 1772 |
+
"learning_rate": 8.311547791889307e-06,
|
| 1773 |
+
"loss": 0.1006,
|
| 1774 |
+
"step": 252
|
| 1775 |
+
},
|
| 1776 |
+
{
|
| 1777 |
+
"epoch": 3.0853658536585367,
|
| 1778 |
+
"grad_norm": 2.2904582023620605,
|
| 1779 |
+
"learning_rate": 8.296413224324944e-06,
|
| 1780 |
+
"loss": 0.0985,
|
| 1781 |
+
"step": 253
|
| 1782 |
+
},
|
| 1783 |
+
{
|
| 1784 |
+
"epoch": 3.097560975609756,
|
| 1785 |
+
"grad_norm": 2.511240005493164,
|
| 1786 |
+
"learning_rate": 8.281225044281578e-06,
|
| 1787 |
+
"loss": 0.0695,
|
| 1788 |
+
"step": 254
|
| 1789 |
+
},
|
| 1790 |
+
{
|
| 1791 |
+
"epoch": 3.1097560975609757,
|
| 1792 |
+
"grad_norm": 2.37315034866333,
|
| 1793 |
+
"learning_rate": 8.265983498777987e-06,
|
| 1794 |
+
"loss": 0.086,
|
| 1795 |
+
"step": 255
|
| 1796 |
+
},
|
| 1797 |
+
{
|
| 1798 |
+
"epoch": 3.1219512195121952,
|
| 1799 |
+
"grad_norm": 2.4025444984436035,
|
| 1800 |
+
"learning_rate": 8.25068883570089e-06,
|
| 1801 |
+
"loss": 0.0877,
|
| 1802 |
+
"step": 256
|
| 1803 |
+
},
|
| 1804 |
+
{
|
| 1805 |
+
"epoch": 3.1341463414634148,
|
| 1806 |
+
"grad_norm": 2.855544328689575,
|
| 1807 |
+
"learning_rate": 8.235341303800892e-06,
|
| 1808 |
+
"loss": 0.1104,
|
| 1809 |
+
"step": 257
|
| 1810 |
+
},
|
| 1811 |
+
{
|
| 1812 |
+
"epoch": 3.1463414634146343,
|
| 1813 |
+
"grad_norm": 2.7334654331207275,
|
| 1814 |
+
"learning_rate": 8.219941152688459e-06,
|
| 1815 |
+
"loss": 0.0996,
|
| 1816 |
+
"step": 258
|
| 1817 |
+
},
|
| 1818 |
+
{
|
| 1819 |
+
"epoch": 3.158536585365854,
|
| 1820 |
+
"grad_norm": 1.7848544120788574,
|
| 1821 |
+
"learning_rate": 8.204488632829848e-06,
|
| 1822 |
+
"loss": 0.0779,
|
| 1823 |
+
"step": 259
|
| 1824 |
+
},
|
| 1825 |
+
{
|
| 1826 |
+
"epoch": 3.1707317073170733,
|
| 1827 |
+
"grad_norm": 2.5994298458099365,
|
| 1828 |
+
"learning_rate": 8.188983995543031e-06,
|
| 1829 |
+
"loss": 0.1027,
|
| 1830 |
+
"step": 260
|
| 1831 |
+
},
|
| 1832 |
+
{
|
| 1833 |
+
"epoch": 3.182926829268293,
|
| 1834 |
+
"grad_norm": 2.1597657203674316,
|
| 1835 |
+
"learning_rate": 8.173427492993617e-06,
|
| 1836 |
+
"loss": 0.0974,
|
| 1837 |
+
"step": 261
|
| 1838 |
+
},
|
| 1839 |
+
{
|
| 1840 |
+
"epoch": 3.1951219512195124,
|
| 1841 |
+
"grad_norm": 2.6595215797424316,
|
| 1842 |
+
"learning_rate": 8.157819378190743e-06,
|
| 1843 |
+
"loss": 0.1053,
|
| 1844 |
+
"step": 262
|
| 1845 |
+
},
|
| 1846 |
+
{
|
| 1847 |
+
"epoch": 3.207317073170732,
|
| 1848 |
+
"grad_norm": 1.92975652217865,
|
| 1849 |
+
"learning_rate": 8.142159904982963e-06,
|
| 1850 |
+
"loss": 0.1003,
|
| 1851 |
+
"step": 263
|
| 1852 |
+
},
|
| 1853 |
+
{
|
| 1854 |
+
"epoch": 3.2195121951219514,
|
| 1855 |
+
"grad_norm": 1.939504861831665,
|
| 1856 |
+
"learning_rate": 8.126449328054115e-06,
|
| 1857 |
+
"loss": 0.0948,
|
| 1858 |
+
"step": 264
|
| 1859 |
+
},
|
| 1860 |
+
{
|
| 1861 |
+
"epoch": 3.231707317073171,
|
| 1862 |
+
"grad_norm": 2.238565444946289,
|
| 1863 |
+
"learning_rate": 8.110687902919185e-06,
|
| 1864 |
+
"loss": 0.1021,
|
| 1865 |
+
"step": 265
|
| 1866 |
+
},
|
| 1867 |
+
{
|
| 1868 |
+
"epoch": 3.2439024390243905,
|
| 1869 |
+
"grad_norm": 2.1030704975128174,
|
| 1870 |
+
"learning_rate": 8.094875885920148e-06,
|
| 1871 |
+
"loss": 0.0961,
|
| 1872 |
+
"step": 266
|
| 1873 |
+
},
|
| 1874 |
+
{
|
| 1875 |
+
"epoch": 3.2560975609756095,
|
| 1876 |
+
"grad_norm": 2.0035948753356934,
|
| 1877 |
+
"learning_rate": 8.079013534221798e-06,
|
| 1878 |
+
"loss": 0.0985,
|
| 1879 |
+
"step": 267
|
| 1880 |
+
},
|
| 1881 |
+
{
|
| 1882 |
+
"epoch": 3.2682926829268295,
|
| 1883 |
+
"grad_norm": 2.1001100540161133,
|
| 1884 |
+
"learning_rate": 8.063101105807566e-06,
|
| 1885 |
+
"loss": 0.1089,
|
| 1886 |
+
"step": 268
|
| 1887 |
+
},
|
| 1888 |
+
{
|
| 1889 |
+
"epoch": 3.2804878048780486,
|
| 1890 |
+
"grad_norm": 1.935497760772705,
|
| 1891 |
+
"learning_rate": 8.047138859475328e-06,
|
| 1892 |
+
"loss": 0.0882,
|
| 1893 |
+
"step": 269
|
| 1894 |
+
},
|
| 1895 |
+
{
|
| 1896 |
+
"epoch": 3.292682926829268,
|
| 1897 |
+
"grad_norm": 2.4864578247070312,
|
| 1898 |
+
"learning_rate": 8.031127054833192e-06,
|
| 1899 |
+
"loss": 0.1085,
|
| 1900 |
+
"step": 270
|
| 1901 |
+
},
|
| 1902 |
+
{
|
| 1903 |
+
"epoch": 3.3048780487804876,
|
| 1904 |
+
"grad_norm": 1.89180326461792,
|
| 1905 |
+
"learning_rate": 8.01506595229527e-06,
|
| 1906 |
+
"loss": 0.1096,
|
| 1907 |
+
"step": 271
|
| 1908 |
+
},
|
| 1909 |
+
{
|
| 1910 |
+
"epoch": 3.317073170731707,
|
| 1911 |
+
"grad_norm": 2.166079521179199,
|
| 1912 |
+
"learning_rate": 7.998955813077457e-06,
|
| 1913 |
+
"loss": 0.0717,
|
| 1914 |
+
"step": 272
|
| 1915 |
+
},
|
| 1916 |
+
{
|
| 1917 |
+
"epoch": 3.3292682926829267,
|
| 1918 |
+
"grad_norm": 2.1305079460144043,
|
| 1919 |
+
"learning_rate": 7.982796899193177e-06,
|
| 1920 |
+
"loss": 0.1042,
|
| 1921 |
+
"step": 273
|
| 1922 |
+
},
|
| 1923 |
+
{
|
| 1924 |
+
"epoch": 3.341463414634146,
|
| 1925 |
+
"grad_norm": 2.0318334102630615,
|
| 1926 |
+
"learning_rate": 7.966589473449109e-06,
|
| 1927 |
+
"loss": 0.0943,
|
| 1928 |
+
"step": 274
|
| 1929 |
+
},
|
| 1930 |
+
{
|
| 1931 |
+
"epoch": 3.3536585365853657,
|
| 1932 |
+
"grad_norm": 2.6421074867248535,
|
| 1933 |
+
"learning_rate": 7.95033379944093e-06,
|
| 1934 |
+
"loss": 0.1161,
|
| 1935 |
+
"step": 275
|
| 1936 |
+
},
|
| 1937 |
+
{
|
| 1938 |
+
"epoch": 3.3658536585365852,
|
| 1939 |
+
"grad_norm": 2.3139538764953613,
|
| 1940 |
+
"learning_rate": 7.934030141549024e-06,
|
| 1941 |
+
"loss": 0.1219,
|
| 1942 |
+
"step": 276
|
| 1943 |
+
},
|
| 1944 |
+
{
|
| 1945 |
+
"epoch": 3.3780487804878048,
|
| 1946 |
+
"grad_norm": 2.0743587017059326,
|
| 1947 |
+
"learning_rate": 7.917678764934169e-06,
|
| 1948 |
+
"loss": 0.1024,
|
| 1949 |
+
"step": 277
|
| 1950 |
+
},
|
| 1951 |
+
{
|
| 1952 |
+
"epoch": 3.3902439024390243,
|
| 1953 |
+
"grad_norm": 2.187187671661377,
|
| 1954 |
+
"learning_rate": 7.901279935533248e-06,
|
| 1955 |
+
"loss": 0.0864,
|
| 1956 |
+
"step": 278
|
| 1957 |
+
},
|
| 1958 |
+
{
|
| 1959 |
+
"epoch": 3.402439024390244,
|
| 1960 |
+
"grad_norm": 1.9640257358551025,
|
| 1961 |
+
"learning_rate": 7.8848339200549e-06,
|
| 1962 |
+
"loss": 0.0954,
|
| 1963 |
+
"step": 279
|
| 1964 |
+
},
|
| 1965 |
+
{
|
| 1966 |
+
"epoch": 3.4146341463414633,
|
| 1967 |
+
"grad_norm": 2.0996806621551514,
|
| 1968 |
+
"learning_rate": 7.868340985975195e-06,
|
| 1969 |
+
"loss": 0.0941,
|
| 1970 |
+
"step": 280
|
| 1971 |
+
},
|
| 1972 |
+
{
|
| 1973 |
+
"epoch": 3.426829268292683,
|
| 1974 |
+
"grad_norm": 2.0792341232299805,
|
| 1975 |
+
"learning_rate": 7.851801401533288e-06,
|
| 1976 |
+
"loss": 0.0908,
|
| 1977 |
+
"step": 281
|
| 1978 |
+
},
|
| 1979 |
+
{
|
| 1980 |
+
"epoch": 3.4390243902439024,
|
| 1981 |
+
"grad_norm": 2.0881197452545166,
|
| 1982 |
+
"learning_rate": 7.835215435727042e-06,
|
| 1983 |
+
"loss": 0.1059,
|
| 1984 |
+
"step": 282
|
| 1985 |
+
},
|
| 1986 |
+
{
|
| 1987 |
+
"epoch": 3.451219512195122,
|
| 1988 |
+
"grad_norm": 2.6827352046966553,
|
| 1989 |
+
"learning_rate": 7.818583358308664e-06,
|
| 1990 |
+
"loss": 0.1316,
|
| 1991 |
+
"step": 283
|
| 1992 |
+
},
|
| 1993 |
+
{
|
| 1994 |
+
"epoch": 3.4634146341463414,
|
| 1995 |
+
"grad_norm": 2.0524280071258545,
|
| 1996 |
+
"learning_rate": 7.801905439780317e-06,
|
| 1997 |
+
"loss": 0.0957,
|
| 1998 |
+
"step": 284
|
| 1999 |
+
},
|
| 2000 |
+
{
|
| 2001 |
+
"epoch": 3.475609756097561,
|
| 2002 |
+
"grad_norm": 2.184852361679077,
|
| 2003 |
+
"learning_rate": 7.785181951389718e-06,
|
| 2004 |
+
"loss": 0.1123,
|
| 2005 |
+
"step": 285
|
| 2006 |
+
},
|
| 2007 |
+
{
|
| 2008 |
+
"epoch": 3.4878048780487805,
|
| 2009 |
+
"grad_norm": 2.2295339107513428,
|
| 2010 |
+
"learning_rate": 7.76841316512572e-06,
|
| 2011 |
+
"loss": 0.1198,
|
| 2012 |
+
"step": 286
|
| 2013 |
+
},
|
| 2014 |
+
{
|
| 2015 |
+
"epoch": 3.5,
|
| 2016 |
+
"grad_norm": 2.101522922515869,
|
| 2017 |
+
"learning_rate": 7.751599353713906e-06,
|
| 2018 |
+
"loss": 0.0991,
|
| 2019 |
+
"step": 287
|
| 2020 |
+
},
|
| 2021 |
+
{
|
| 2022 |
+
"epoch": 3.5121951219512195,
|
| 2023 |
+
"grad_norm": 1.8743051290512085,
|
| 2024 |
+
"learning_rate": 7.734740790612137e-06,
|
| 2025 |
+
"loss": 0.0869,
|
| 2026 |
+
"step": 288
|
| 2027 |
+
},
|
| 2028 |
+
{
|
| 2029 |
+
"epoch": 3.524390243902439,
|
| 2030 |
+
"grad_norm": 1.9927822351455688,
|
| 2031 |
+
"learning_rate": 7.717837750006106e-06,
|
| 2032 |
+
"loss": 0.1094,
|
| 2033 |
+
"step": 289
|
| 2034 |
+
},
|
| 2035 |
+
{
|
| 2036 |
+
"epoch": 3.5365853658536586,
|
| 2037 |
+
"grad_norm": 2.079759359359741,
|
| 2038 |
+
"learning_rate": 7.700890506804895e-06,
|
| 2039 |
+
"loss": 0.1011,
|
| 2040 |
+
"step": 290
|
| 2041 |
+
},
|
| 2042 |
+
{
|
| 2043 |
+
"epoch": 3.548780487804878,
|
| 2044 |
+
"grad_norm": 2.3300259113311768,
|
| 2045 |
+
"learning_rate": 7.68389933663648e-06,
|
| 2046 |
+
"loss": 0.1374,
|
| 2047 |
+
"step": 291
|
| 2048 |
+
},
|
| 2049 |
+
{
|
| 2050 |
+
"epoch": 3.5609756097560976,
|
| 2051 |
+
"grad_norm": 2.1061301231384277,
|
| 2052 |
+
"learning_rate": 7.666864515843266e-06,
|
| 2053 |
+
"loss": 0.1123,
|
| 2054 |
+
"step": 292
|
| 2055 |
+
},
|
| 2056 |
+
{
|
| 2057 |
+
"epoch": 3.573170731707317,
|
| 2058 |
+
"grad_norm": 1.9325755834579468,
|
| 2059 |
+
"learning_rate": 7.649786321477585e-06,
|
| 2060 |
+
"loss": 0.1052,
|
| 2061 |
+
"step": 293
|
| 2062 |
+
},
|
| 2063 |
+
{
|
| 2064 |
+
"epoch": 3.5853658536585367,
|
| 2065 |
+
"grad_norm": 2.3022353649139404,
|
| 2066 |
+
"learning_rate": 7.632665031297193e-06,
|
| 2067 |
+
"loss": 0.102,
|
| 2068 |
+
"step": 294
|
| 2069 |
+
},
|
| 2070 |
+
{
|
| 2071 |
+
"epoch": 3.597560975609756,
|
| 2072 |
+
"grad_norm": 1.8938615322113037,
|
| 2073 |
+
"learning_rate": 7.615500923760748e-06,
|
| 2074 |
+
"loss": 0.1065,
|
| 2075 |
+
"step": 295
|
| 2076 |
+
},
|
| 2077 |
+
{
|
| 2078 |
+
"epoch": 3.6097560975609757,
|
| 2079 |
+
"grad_norm": 1.8526796102523804,
|
| 2080 |
+
"learning_rate": 7.59829427802329e-06,
|
| 2081 |
+
"loss": 0.0971,
|
| 2082 |
+
"step": 296
|
| 2083 |
+
},
|
| 2084 |
+
{
|
| 2085 |
+
"epoch": 3.6219512195121952,
|
| 2086 |
+
"grad_norm": 2.010892391204834,
|
| 2087 |
+
"learning_rate": 7.581045373931691e-06,
|
| 2088 |
+
"loss": 0.0932,
|
| 2089 |
+
"step": 297
|
| 2090 |
+
},
|
| 2091 |
+
{
|
| 2092 |
+
"epoch": 3.6341463414634148,
|
| 2093 |
+
"grad_norm": 2.140416383743286,
|
| 2094 |
+
"learning_rate": 7.563754492020108e-06,
|
| 2095 |
+
"loss": 0.0934,
|
| 2096 |
+
"step": 298
|
| 2097 |
+
},
|
| 2098 |
+
{
|
| 2099 |
+
"epoch": 3.6463414634146343,
|
| 2100 |
+
"grad_norm": 1.9991627931594849,
|
| 2101 |
+
"learning_rate": 7.54642191350542e-06,
|
| 2102 |
+
"loss": 0.1137,
|
| 2103 |
+
"step": 299
|
| 2104 |
+
},
|
| 2105 |
+
{
|
| 2106 |
+
"epoch": 3.658536585365854,
|
| 2107 |
+
"grad_norm": 1.98257577419281,
|
| 2108 |
+
"learning_rate": 7.5290479202826596e-06,
|
| 2109 |
+
"loss": 0.1058,
|
| 2110 |
+
"step": 300
|
| 2111 |
+
},
|
| 2112 |
+
{
|
| 2113 |
+
"epoch": 3.6707317073170733,
|
| 2114 |
+
"grad_norm": 1.9862565994262695,
|
| 2115 |
+
"learning_rate": 7.511632794920419e-06,
|
| 2116 |
+
"loss": 0.0977,
|
| 2117 |
+
"step": 301
|
| 2118 |
+
},
|
| 2119 |
+
{
|
| 2120 |
+
"epoch": 3.682926829268293,
|
| 2121 |
+
"grad_norm": 2.034688711166382,
|
| 2122 |
+
"learning_rate": 7.494176820656258e-06,
|
| 2123 |
+
"loss": 0.1248,
|
| 2124 |
+
"step": 302
|
| 2125 |
+
},
|
| 2126 |
+
{
|
| 2127 |
+
"epoch": 3.6951219512195124,
|
| 2128 |
+
"grad_norm": 1.8107631206512451,
|
| 2129 |
+
"learning_rate": 7.4766802813921016e-06,
|
| 2130 |
+
"loss": 0.0888,
|
| 2131 |
+
"step": 303
|
| 2132 |
+
},
|
| 2133 |
+
{
|
| 2134 |
+
"epoch": 3.7073170731707314,
|
| 2135 |
+
"grad_norm": 1.7797682285308838,
|
| 2136 |
+
"learning_rate": 7.4591434616896156e-06,
|
| 2137 |
+
"loss": 0.0971,
|
| 2138 |
+
"step": 304
|
| 2139 |
+
},
|
| 2140 |
+
{
|
| 2141 |
+
"epoch": 3.7195121951219514,
|
| 2142 |
+
"grad_norm": 1.8483872413635254,
|
| 2143 |
+
"learning_rate": 7.4415666467655835e-06,
|
| 2144 |
+
"loss": 0.1033,
|
| 2145 |
+
"step": 305
|
| 2146 |
+
},
|
| 2147 |
+
{
|
| 2148 |
+
"epoch": 3.7317073170731705,
|
| 2149 |
+
"grad_norm": 1.8434807062149048,
|
| 2150 |
+
"learning_rate": 7.423950122487269e-06,
|
| 2151 |
+
"loss": 0.0929,
|
| 2152 |
+
"step": 306
|
| 2153 |
+
},
|
| 2154 |
+
{
|
| 2155 |
+
"epoch": 3.7439024390243905,
|
| 2156 |
+
"grad_norm": 2.006572961807251,
|
| 2157 |
+
"learning_rate": 7.406294175367758e-06,
|
| 2158 |
+
"loss": 0.1034,
|
| 2159 |
+
"step": 307
|
| 2160 |
+
},
|
| 2161 |
+
{
|
| 2162 |
+
"epoch": 3.7560975609756095,
|
| 2163 |
+
"grad_norm": 2.015620708465576,
|
| 2164 |
+
"learning_rate": 7.388599092561315e-06,
|
| 2165 |
+
"loss": 0.1091,
|
| 2166 |
+
"step": 308
|
| 2167 |
+
},
|
| 2168 |
+
{
|
| 2169 |
+
"epoch": 3.7682926829268295,
|
| 2170 |
+
"grad_norm": 2.08795428276062,
|
| 2171 |
+
"learning_rate": 7.3708651618586925e-06,
|
| 2172 |
+
"loss": 0.0908,
|
| 2173 |
+
"step": 309
|
| 2174 |
+
},
|
| 2175 |
+
{
|
| 2176 |
+
"epoch": 3.7804878048780486,
|
| 2177 |
+
"grad_norm": 2.066549777984619,
|
| 2178 |
+
"learning_rate": 7.353092671682464e-06,
|
| 2179 |
+
"loss": 0.093,
|
| 2180 |
+
"step": 310
|
| 2181 |
+
},
|
| 2182 |
+
{
|
| 2183 |
+
"epoch": 3.7926829268292686,
|
| 2184 |
+
"grad_norm": 2.227687120437622,
|
| 2185 |
+
"learning_rate": 7.335281911082332e-06,
|
| 2186 |
+
"loss": 0.1042,
|
| 2187 |
+
"step": 311
|
| 2188 |
+
},
|
| 2189 |
+
{
|
| 2190 |
+
"epoch": 3.8048780487804876,
|
| 2191 |
+
"grad_norm": 2.5046164989471436,
|
| 2192 |
+
"learning_rate": 7.317433169730421e-06,
|
| 2193 |
+
"loss": 0.136,
|
| 2194 |
+
"step": 312
|
| 2195 |
+
},
|
| 2196 |
+
{
|
| 2197 |
+
"epoch": 3.817073170731707,
|
| 2198 |
+
"grad_norm": 2.0135955810546875,
|
| 2199 |
+
"learning_rate": 7.299546737916574e-06,
|
| 2200 |
+
"loss": 0.0942,
|
| 2201 |
+
"step": 313
|
| 2202 |
+
},
|
| 2203 |
+
{
|
| 2204 |
+
"epoch": 3.8292682926829267,
|
| 2205 |
+
"grad_norm": 2.3147573471069336,
|
| 2206 |
+
"learning_rate": 7.281622906543625e-06,
|
| 2207 |
+
"loss": 0.11,
|
| 2208 |
+
"step": 314
|
| 2209 |
+
},
|
| 2210 |
+
{
|
| 2211 |
+
"epoch": 3.841463414634146,
|
| 2212 |
+
"grad_norm": 2.515584707260132,
|
| 2213 |
+
"learning_rate": 7.26366196712267e-06,
|
| 2214 |
+
"loss": 0.1248,
|
| 2215 |
+
"step": 315
|
| 2216 |
+
},
|
| 2217 |
+
{
|
| 2218 |
+
"epoch": 3.8536585365853657,
|
| 2219 |
+
"grad_norm": 1.988805890083313,
|
| 2220 |
+
"learning_rate": 7.245664211768327e-06,
|
| 2221 |
+
"loss": 0.089,
|
| 2222 |
+
"step": 316
|
| 2223 |
+
},
|
| 2224 |
+
{
|
| 2225 |
+
"epoch": 3.8658536585365852,
|
| 2226 |
+
"grad_norm": 2.0414860248565674,
|
| 2227 |
+
"learning_rate": 7.227629933193983e-06,
|
| 2228 |
+
"loss": 0.0991,
|
| 2229 |
+
"step": 317
|
| 2230 |
+
},
|
| 2231 |
+
{
|
| 2232 |
+
"epoch": 3.8780487804878048,
|
| 2233 |
+
"grad_norm": 1.9820183515548706,
|
| 2234 |
+
"learning_rate": 7.209559424707034e-06,
|
| 2235 |
+
"loss": 0.1163,
|
| 2236 |
+
"step": 318
|
| 2237 |
+
},
|
| 2238 |
+
{
|
| 2239 |
+
"epoch": 3.8902439024390243,
|
| 2240 |
+
"grad_norm": 1.9290958642959595,
|
| 2241 |
+
"learning_rate": 7.191452980204119e-06,
|
| 2242 |
+
"loss": 0.1201,
|
| 2243 |
+
"step": 319
|
| 2244 |
+
},
|
| 2245 |
+
{
|
| 2246 |
+
"epoch": 3.902439024390244,
|
| 2247 |
+
"grad_norm": 1.9230592250823975,
|
| 2248 |
+
"learning_rate": 7.173310894166328e-06,
|
| 2249 |
+
"loss": 0.1138,
|
| 2250 |
+
"step": 320
|
| 2251 |
+
},
|
| 2252 |
+
{
|
| 2253 |
+
"epoch": 3.9146341463414633,
|
| 2254 |
+
"grad_norm": 1.6345875263214111,
|
| 2255 |
+
"learning_rate": 7.155133461654429e-06,
|
| 2256 |
+
"loss": 0.0935,
|
| 2257 |
+
"step": 321
|
| 2258 |
+
},
|
| 2259 |
+
{
|
| 2260 |
+
"epoch": 3.926829268292683,
|
| 2261 |
+
"grad_norm": 1.9335048198699951,
|
| 2262 |
+
"learning_rate": 7.136920978304056e-06,
|
| 2263 |
+
"loss": 0.1031,
|
| 2264 |
+
"step": 322
|
| 2265 |
+
},
|
| 2266 |
+
{
|
| 2267 |
+
"epoch": 3.9390243902439024,
|
| 2268 |
+
"grad_norm": 1.7330572605133057,
|
| 2269 |
+
"learning_rate": 7.118673740320907e-06,
|
| 2270 |
+
"loss": 0.0945,
|
| 2271 |
+
"step": 323
|
| 2272 |
+
},
|
| 2273 |
+
{
|
| 2274 |
+
"epoch": 3.951219512195122,
|
| 2275 |
+
"grad_norm": 1.8825818300247192,
|
| 2276 |
+
"learning_rate": 7.10039204447593e-06,
|
| 2277 |
+
"loss": 0.0966,
|
| 2278 |
+
"step": 324
|
| 2279 |
+
},
|
| 2280 |
+
{
|
| 2281 |
+
"epoch": 3.9634146341463414,
|
| 2282 |
+
"grad_norm": 2.1690921783447266,
|
| 2283 |
+
"learning_rate": 7.082076188100483e-06,
|
| 2284 |
+
"loss": 0.1348,
|
| 2285 |
+
"step": 325
|
| 2286 |
+
},
|
| 2287 |
+
{
|
| 2288 |
+
"epoch": 3.975609756097561,
|
| 2289 |
+
"grad_norm": 2.1976025104522705,
|
| 2290 |
+
"learning_rate": 7.063726469081511e-06,
|
| 2291 |
+
"loss": 0.1046,
|
| 2292 |
+
"step": 326
|
| 2293 |
+
},
|
| 2294 |
+
{
|
| 2295 |
+
"epoch": 3.9878048780487805,
|
| 2296 |
+
"grad_norm": 2.0651566982269287,
|
| 2297 |
+
"learning_rate": 7.045343185856701e-06,
|
| 2298 |
+
"loss": 0.0848,
|
| 2299 |
+
"step": 327
|
| 2300 |
+
},
|
| 2301 |
+
{
|
| 2302 |
+
"epoch": 4.0,
|
| 2303 |
+
"grad_norm": 2.3218235969543457,
|
| 2304 |
+
"learning_rate": 7.026926637409615e-06,
|
| 2305 |
+
"loss": 0.1261,
|
| 2306 |
+
"step": 328
|
| 2307 |
+
},
|
| 2308 |
+
{
|
| 2309 |
+
"epoch": 4.012195121951219,
|
| 2310 |
+
"grad_norm": 1.517854928970337,
|
| 2311 |
+
"learning_rate": 7.008477123264849e-06,
|
| 2312 |
+
"loss": 0.0424,
|
| 2313 |
+
"step": 329
|
| 2314 |
+
},
|
| 2315 |
+
{
|
| 2316 |
+
"epoch": 4.024390243902439,
|
| 2317 |
+
"grad_norm": 1.6785979270935059,
|
| 2318 |
+
"learning_rate": 6.989994943483136e-06,
|
| 2319 |
+
"loss": 0.053,
|
| 2320 |
+
"step": 330
|
| 2321 |
+
},
|
| 2322 |
+
{
|
| 2323 |
+
"epoch": 4.036585365853658,
|
| 2324 |
+
"grad_norm": 1.0940113067626953,
|
| 2325 |
+
"learning_rate": 6.971480398656488e-06,
|
| 2326 |
+
"loss": 0.0347,
|
| 2327 |
+
"step": 331
|
| 2328 |
+
},
|
| 2329 |
+
{
|
| 2330 |
+
"epoch": 4.048780487804878,
|
| 2331 |
+
"grad_norm": 1.434532880783081,
|
| 2332 |
+
"learning_rate": 6.952933789903299e-06,
|
| 2333 |
+
"loss": 0.0468,
|
| 2334 |
+
"step": 332
|
| 2335 |
+
},
|
| 2336 |
+
{
|
| 2337 |
+
"epoch": 4.060975609756097,
|
| 2338 |
+
"grad_norm": 1.7367973327636719,
|
| 2339 |
+
"learning_rate": 6.93435541886344e-06,
|
| 2340 |
+
"loss": 0.0439,
|
| 2341 |
+
"step": 333
|
| 2342 |
+
},
|
| 2343 |
+
{
|
| 2344 |
+
"epoch": 4.073170731707317,
|
| 2345 |
+
"grad_norm": 1.4013808965682983,
|
| 2346 |
+
"learning_rate": 6.915745587693365e-06,
|
| 2347 |
+
"loss": 0.0341,
|
| 2348 |
+
"step": 334
|
| 2349 |
+
},
|
| 2350 |
+
{
|
| 2351 |
+
"epoch": 4.085365853658536,
|
| 2352 |
+
"grad_norm": 1.7729628086090088,
|
| 2353 |
+
"learning_rate": 6.89710459906119e-06,
|
| 2354 |
+
"loss": 0.0524,
|
| 2355 |
+
"step": 335
|
| 2356 |
+
},
|
| 2357 |
+
{
|
| 2358 |
+
"epoch": 4.097560975609756,
|
| 2359 |
+
"grad_norm": 1.8550630807876587,
|
| 2360 |
+
"learning_rate": 6.878432756141775e-06,
|
| 2361 |
+
"loss": 0.0559,
|
| 2362 |
+
"step": 336
|
| 2363 |
+
},
|
| 2364 |
+
{
|
| 2365 |
+
"epoch": 4.109756097560975,
|
| 2366 |
+
"grad_norm": 1.9048420190811157,
|
| 2367 |
+
"learning_rate": 6.8597303626117886e-06,
|
| 2368 |
+
"loss": 0.0567,
|
| 2369 |
+
"step": 337
|
| 2370 |
+
},
|
| 2371 |
+
{
|
| 2372 |
+
"epoch": 4.121951219512195,
|
| 2373 |
+
"grad_norm": 2.3313469886779785,
|
| 2374 |
+
"learning_rate": 6.8409977226447685e-06,
|
| 2375 |
+
"loss": 0.0589,
|
| 2376 |
+
"step": 338
|
| 2377 |
+
},
|
| 2378 |
+
{
|
| 2379 |
+
"epoch": 4.134146341463414,
|
| 2380 |
+
"grad_norm": 1.5067005157470703,
|
| 2381 |
+
"learning_rate": 6.822235140906183e-06,
|
| 2382 |
+
"loss": 0.0415,
|
| 2383 |
+
"step": 339
|
| 2384 |
+
},
|
| 2385 |
+
{
|
| 2386 |
+
"epoch": 4.146341463414634,
|
| 2387 |
+
"grad_norm": 1.7281876802444458,
|
| 2388 |
+
"learning_rate": 6.803442922548462e-06,
|
| 2389 |
+
"loss": 0.0491,
|
| 2390 |
+
"step": 340
|
| 2391 |
+
},
|
| 2392 |
+
{
|
| 2393 |
+
"epoch": 4.158536585365853,
|
| 2394 |
+
"grad_norm": 1.7764736413955688,
|
| 2395 |
+
"learning_rate": 6.784621373206051e-06,
|
| 2396 |
+
"loss": 0.049,
|
| 2397 |
+
"step": 341
|
| 2398 |
+
},
|
| 2399 |
+
{
|
| 2400 |
+
"epoch": 4.170731707317073,
|
| 2401 |
+
"grad_norm": 2.0232222080230713,
|
| 2402 |
+
"learning_rate": 6.765770798990423e-06,
|
| 2403 |
+
"loss": 0.0524,
|
| 2404 |
+
"step": 342
|
| 2405 |
+
},
|
| 2406 |
+
{
|
| 2407 |
+
"epoch": 4.182926829268292,
|
| 2408 |
+
"grad_norm": 1.9550089836120605,
|
| 2409 |
+
"learning_rate": 6.746891506485112e-06,
|
| 2410 |
+
"loss": 0.0526,
|
| 2411 |
+
"step": 343
|
| 2412 |
+
},
|
| 2413 |
+
{
|
| 2414 |
+
"epoch": 4.195121951219512,
|
| 2415 |
+
"grad_norm": 2.0394773483276367,
|
| 2416 |
+
"learning_rate": 6.727983802740723e-06,
|
| 2417 |
+
"loss": 0.0546,
|
| 2418 |
+
"step": 344
|
| 2419 |
+
},
|
| 2420 |
+
{
|
| 2421 |
+
"epoch": 4.2073170731707314,
|
| 2422 |
+
"grad_norm": 1.6590560674667358,
|
| 2423 |
+
"learning_rate": 6.709047995269939e-06,
|
| 2424 |
+
"loss": 0.0422,
|
| 2425 |
+
"step": 345
|
| 2426 |
+
},
|
| 2427 |
+
{
|
| 2428 |
+
"epoch": 4.219512195121951,
|
| 2429 |
+
"grad_norm": 1.8558006286621094,
|
| 2430 |
+
"learning_rate": 6.690084392042514e-06,
|
| 2431 |
+
"loss": 0.0518,
|
| 2432 |
+
"step": 346
|
| 2433 |
+
},
|
| 2434 |
+
{
|
| 2435 |
+
"epoch": 4.2317073170731705,
|
| 2436 |
+
"grad_norm": 1.2415188550949097,
|
| 2437 |
+
"learning_rate": 6.671093301480276e-06,
|
| 2438 |
+
"loss": 0.0333,
|
| 2439 |
+
"step": 347
|
| 2440 |
+
},
|
| 2441 |
+
{
|
| 2442 |
+
"epoch": 4.2439024390243905,
|
| 2443 |
+
"grad_norm": 1.7380534410476685,
|
| 2444 |
+
"learning_rate": 6.6520750324520965e-06,
|
| 2445 |
+
"loss": 0.0556,
|
| 2446 |
+
"step": 348
|
| 2447 |
+
},
|
| 2448 |
+
{
|
| 2449 |
+
"epoch": 4.2560975609756095,
|
| 2450 |
+
"grad_norm": 1.4161667823791504,
|
| 2451 |
+
"learning_rate": 6.63302989426888e-06,
|
| 2452 |
+
"loss": 0.0414,
|
| 2453 |
+
"step": 349
|
| 2454 |
+
},
|
| 2455 |
+
{
|
| 2456 |
+
"epoch": 4.2682926829268295,
|
| 2457 |
+
"grad_norm": 1.6313724517822266,
|
| 2458 |
+
"learning_rate": 6.613958196678525e-06,
|
| 2459 |
+
"loss": 0.0757,
|
| 2460 |
+
"step": 350
|
| 2461 |
+
},
|
| 2462 |
+
{
|
| 2463 |
+
"epoch": 4.280487804878049,
|
| 2464 |
+
"grad_norm": 1.9501330852508545,
|
| 2465 |
+
"learning_rate": 6.594860249860888e-06,
|
| 2466 |
+
"loss": 0.0675,
|
| 2467 |
+
"step": 351
|
| 2468 |
+
},
|
| 2469 |
+
{
|
| 2470 |
+
"epoch": 4.2926829268292686,
|
| 2471 |
+
"grad_norm": 1.5222731828689575,
|
| 2472 |
+
"learning_rate": 6.575736364422747e-06,
|
| 2473 |
+
"loss": 0.0537,
|
| 2474 |
+
"step": 352
|
| 2475 |
+
},
|
| 2476 |
+
{
|
| 2477 |
+
"epoch": 4.304878048780488,
|
| 2478 |
+
"grad_norm": 1.367255687713623,
|
| 2479 |
+
"learning_rate": 6.55658685139273e-06,
|
| 2480 |
+
"loss": 0.0459,
|
| 2481 |
+
"step": 353
|
| 2482 |
+
},
|
| 2483 |
+
{
|
| 2484 |
+
"epoch": 4.317073170731708,
|
| 2485 |
+
"grad_norm": 1.4813297986984253,
|
| 2486 |
+
"learning_rate": 6.5374120222162815e-06,
|
| 2487 |
+
"loss": 0.06,
|
| 2488 |
+
"step": 354
|
| 2489 |
+
},
|
| 2490 |
+
{
|
| 2491 |
+
"epoch": 4.329268292682927,
|
| 2492 |
+
"grad_norm": 1.5068612098693848,
|
| 2493 |
+
"learning_rate": 6.518212188750579e-06,
|
| 2494 |
+
"loss": 0.0514,
|
| 2495 |
+
"step": 355
|
| 2496 |
+
},
|
| 2497 |
+
{
|
| 2498 |
+
"epoch": 4.341463414634147,
|
| 2499 |
+
"grad_norm": 1.66206955909729,
|
| 2500 |
+
"learning_rate": 6.498987663259467e-06,
|
| 2501 |
+
"loss": 0.0675,
|
| 2502 |
+
"step": 356
|
| 2503 |
+
},
|
| 2504 |
+
{
|
| 2505 |
+
"epoch": 4.353658536585366,
|
| 2506 |
+
"grad_norm": 1.4990217685699463,
|
| 2507 |
+
"learning_rate": 6.479738758408379e-06,
|
| 2508 |
+
"loss": 0.0695,
|
| 2509 |
+
"step": 357
|
| 2510 |
+
},
|
| 2511 |
+
{
|
| 2512 |
+
"epoch": 4.365853658536586,
|
| 2513 |
+
"grad_norm": 1.5749341249465942,
|
| 2514 |
+
"learning_rate": 6.460465787259251e-06,
|
| 2515 |
+
"loss": 0.0508,
|
| 2516 |
+
"step": 358
|
| 2517 |
+
},
|
| 2518 |
+
{
|
| 2519 |
+
"epoch": 4.378048780487805,
|
| 2520 |
+
"grad_norm": 1.499898076057434,
|
| 2521 |
+
"learning_rate": 6.44116906326543e-06,
|
| 2522 |
+
"loss": 0.0591,
|
| 2523 |
+
"step": 359
|
| 2524 |
+
},
|
| 2525 |
+
{
|
| 2526 |
+
"epoch": 4.390243902439025,
|
| 2527 |
+
"grad_norm": 1.46736478805542,
|
| 2528 |
+
"learning_rate": 6.421848900266581e-06,
|
| 2529 |
+
"loss": 0.05,
|
| 2530 |
+
"step": 360
|
| 2531 |
+
},
|
| 2532 |
+
{
|
| 2533 |
+
"epoch": 4.402439024390244,
|
| 2534 |
+
"grad_norm": 1.4807460308074951,
|
| 2535 |
+
"learning_rate": 6.402505612483569e-06,
|
| 2536 |
+
"loss": 0.0523,
|
| 2537 |
+
"step": 361
|
| 2538 |
+
},
|
| 2539 |
+
{
|
| 2540 |
+
"epoch": 4.414634146341464,
|
| 2541 |
+
"grad_norm": 1.4587833881378174,
|
| 2542 |
+
"learning_rate": 6.383139514513368e-06,
|
| 2543 |
+
"loss": 0.0576,
|
| 2544 |
+
"step": 362
|
| 2545 |
+
},
|
| 2546 |
+
{
|
| 2547 |
+
"epoch": 4.426829268292683,
|
| 2548 |
+
"grad_norm": 1.4291479587554932,
|
| 2549 |
+
"learning_rate": 6.363750921323929e-06,
|
| 2550 |
+
"loss": 0.0479,
|
| 2551 |
+
"step": 363
|
| 2552 |
+
},
|
| 2553 |
+
{
|
| 2554 |
+
"epoch": 4.439024390243903,
|
| 2555 |
+
"grad_norm": 1.364157795906067,
|
| 2556 |
+
"learning_rate": 6.3443401482490615e-06,
|
| 2557 |
+
"loss": 0.0528,
|
| 2558 |
+
"step": 364
|
| 2559 |
+
},
|
| 2560 |
+
{
|
| 2561 |
+
"epoch": 4.451219512195122,
|
| 2562 |
+
"grad_norm": 2.088580369949341,
|
| 2563 |
+
"learning_rate": 6.32490751098331e-06,
|
| 2564 |
+
"loss": 0.0605,
|
| 2565 |
+
"step": 365
|
| 2566 |
+
},
|
| 2567 |
+
{
|
| 2568 |
+
"epoch": 4.463414634146342,
|
| 2569 |
+
"grad_norm": 1.5994398593902588,
|
| 2570 |
+
"learning_rate": 6.30545332557681e-06,
|
| 2571 |
+
"loss": 0.0525,
|
| 2572 |
+
"step": 366
|
| 2573 |
+
},
|
| 2574 |
+
{
|
| 2575 |
+
"epoch": 4.475609756097561,
|
| 2576 |
+
"grad_norm": 1.7937228679656982,
|
| 2577 |
+
"learning_rate": 6.2859779084301584e-06,
|
| 2578 |
+
"loss": 0.0517,
|
| 2579 |
+
"step": 367
|
| 2580 |
+
},
|
| 2581 |
+
{
|
| 2582 |
+
"epoch": 4.487804878048781,
|
| 2583 |
+
"grad_norm": 1.3765718936920166,
|
| 2584 |
+
"learning_rate": 6.266481576289263e-06,
|
| 2585 |
+
"loss": 0.041,
|
| 2586 |
+
"step": 368
|
| 2587 |
+
},
|
| 2588 |
+
{
|
| 2589 |
+
"epoch": 4.5,
|
| 2590 |
+
"grad_norm": 1.7616742849349976,
|
| 2591 |
+
"learning_rate": 6.246964646240186e-06,
|
| 2592 |
+
"loss": 0.0715,
|
| 2593 |
+
"step": 369
|
| 2594 |
+
},
|
| 2595 |
+
{
|
| 2596 |
+
"epoch": 4.512195121951219,
|
| 2597 |
+
"grad_norm": 1.496747374534607,
|
| 2598 |
+
"learning_rate": 6.227427435703997e-06,
|
| 2599 |
+
"loss": 0.0633,
|
| 2600 |
+
"step": 370
|
| 2601 |
+
},
|
| 2602 |
+
{
|
| 2603 |
+
"epoch": 4.524390243902439,
|
| 2604 |
+
"grad_norm": 1.53587007522583,
|
| 2605 |
+
"learning_rate": 6.207870262431599e-06,
|
| 2606 |
+
"loss": 0.0557,
|
| 2607 |
+
"step": 371
|
| 2608 |
+
},
|
| 2609 |
+
{
|
| 2610 |
+
"epoch": 4.536585365853659,
|
| 2611 |
+
"grad_norm": 1.664995789527893,
|
| 2612 |
+
"learning_rate": 6.188293444498573e-06,
|
| 2613 |
+
"loss": 0.0599,
|
| 2614 |
+
"step": 372
|
| 2615 |
+
},
|
| 2616 |
+
{
|
| 2617 |
+
"epoch": 4.548780487804878,
|
| 2618 |
+
"grad_norm": 1.8567813634872437,
|
| 2619 |
+
"learning_rate": 6.1686973002999935e-06,
|
| 2620 |
+
"loss": 0.0643,
|
| 2621 |
+
"step": 373
|
| 2622 |
+
},
|
| 2623 |
+
{
|
| 2624 |
+
"epoch": 4.560975609756097,
|
| 2625 |
+
"grad_norm": 2.01507568359375,
|
| 2626 |
+
"learning_rate": 6.149082148545258e-06,
|
| 2627 |
+
"loss": 0.0637,
|
| 2628 |
+
"step": 374
|
| 2629 |
+
},
|
| 2630 |
+
{
|
| 2631 |
+
"epoch": 4.573170731707317,
|
| 2632 |
+
"grad_norm": 1.800641417503357,
|
| 2633 |
+
"learning_rate": 6.129448308252899e-06,
|
| 2634 |
+
"loss": 0.0587,
|
| 2635 |
+
"step": 375
|
| 2636 |
+
},
|
| 2637 |
+
{
|
| 2638 |
+
"epoch": 4.585365853658536,
|
| 2639 |
+
"grad_norm": 2.0126662254333496,
|
| 2640 |
+
"learning_rate": 6.109796098745398e-06,
|
| 2641 |
+
"loss": 0.0669,
|
| 2642 |
+
"step": 376
|
| 2643 |
+
},
|
| 2644 |
+
{
|
| 2645 |
+
"epoch": 4.597560975609756,
|
| 2646 |
+
"grad_norm": 1.8245577812194824,
|
| 2647 |
+
"learning_rate": 6.090125839643991e-06,
|
| 2648 |
+
"loss": 0.0541,
|
| 2649 |
+
"step": 377
|
| 2650 |
+
},
|
| 2651 |
+
{
|
| 2652 |
+
"epoch": 4.609756097560975,
|
| 2653 |
+
"grad_norm": 1.3531700372695923,
|
| 2654 |
+
"learning_rate": 6.070437850863472e-06,
|
| 2655 |
+
"loss": 0.0445,
|
| 2656 |
+
"step": 378
|
| 2657 |
+
},
|
| 2658 |
+
{
|
| 2659 |
+
"epoch": 4.621951219512195,
|
| 2660 |
+
"grad_norm": 1.9308772087097168,
|
| 2661 |
+
"learning_rate": 6.0507324526069854e-06,
|
| 2662 |
+
"loss": 0.0608,
|
| 2663 |
+
"step": 379
|
| 2664 |
+
},
|
| 2665 |
+
{
|
| 2666 |
+
"epoch": 4.634146341463414,
|
| 2667 |
+
"grad_norm": 1.5027072429656982,
|
| 2668 |
+
"learning_rate": 6.031009965360824e-06,
|
| 2669 |
+
"loss": 0.0634,
|
| 2670 |
+
"step": 380
|
| 2671 |
+
},
|
| 2672 |
+
{
|
| 2673 |
+
"epoch": 4.646341463414634,
|
| 2674 |
+
"grad_norm": 1.3451308012008667,
|
| 2675 |
+
"learning_rate": 6.011270709889213e-06,
|
| 2676 |
+
"loss": 0.0411,
|
| 2677 |
+
"step": 381
|
| 2678 |
+
},
|
| 2679 |
+
{
|
| 2680 |
+
"epoch": 4.658536585365853,
|
| 2681 |
+
"grad_norm": 1.618082046508789,
|
| 2682 |
+
"learning_rate": 5.991515007229093e-06,
|
| 2683 |
+
"loss": 0.0575,
|
| 2684 |
+
"step": 382
|
| 2685 |
+
},
|
| 2686 |
+
{
|
| 2687 |
+
"epoch": 4.670731707317073,
|
| 2688 |
+
"grad_norm": 1.6030172109603882,
|
| 2689 |
+
"learning_rate": 5.971743178684901e-06,
|
| 2690 |
+
"loss": 0.0575,
|
| 2691 |
+
"step": 383
|
| 2692 |
+
},
|
| 2693 |
+
{
|
| 2694 |
+
"epoch": 4.682926829268292,
|
| 2695 |
+
"grad_norm": 1.582740306854248,
|
| 2696 |
+
"learning_rate": 5.951955545823342e-06,
|
| 2697 |
+
"loss": 0.0613,
|
| 2698 |
+
"step": 384
|
| 2699 |
+
},
|
| 2700 |
+
{
|
| 2701 |
+
"epoch": 4.695121951219512,
|
| 2702 |
+
"grad_norm": 1.7536263465881348,
|
| 2703 |
+
"learning_rate": 5.932152430468165e-06,
|
| 2704 |
+
"loss": 0.052,
|
| 2705 |
+
"step": 385
|
| 2706 |
+
},
|
| 2707 |
+
{
|
| 2708 |
+
"epoch": 4.7073170731707314,
|
| 2709 |
+
"grad_norm": 2.1995296478271484,
|
| 2710 |
+
"learning_rate": 5.912334154694919e-06,
|
| 2711 |
+
"loss": 0.0629,
|
| 2712 |
+
"step": 386
|
| 2713 |
+
},
|
| 2714 |
+
{
|
| 2715 |
+
"epoch": 4.719512195121951,
|
| 2716 |
+
"grad_norm": 1.8581688404083252,
|
| 2717 |
+
"learning_rate": 5.892501040825721e-06,
|
| 2718 |
+
"loss": 0.041,
|
| 2719 |
+
"step": 387
|
| 2720 |
+
},
|
| 2721 |
+
{
|
| 2722 |
+
"epoch": 4.7317073170731705,
|
| 2723 |
+
"grad_norm": 1.8024824857711792,
|
| 2724 |
+
"learning_rate": 5.872653411424017e-06,
|
| 2725 |
+
"loss": 0.0708,
|
| 2726 |
+
"step": 388
|
| 2727 |
+
},
|
| 2728 |
+
{
|
| 2729 |
+
"epoch": 4.7439024390243905,
|
| 2730 |
+
"grad_norm": 1.7822990417480469,
|
| 2731 |
+
"learning_rate": 5.85279158928933e-06,
|
| 2732 |
+
"loss": 0.0528,
|
| 2733 |
+
"step": 389
|
| 2734 |
+
},
|
| 2735 |
+
{
|
| 2736 |
+
"epoch": 4.7560975609756095,
|
| 2737 |
+
"grad_norm": 1.9106731414794922,
|
| 2738 |
+
"learning_rate": 5.832915897452008e-06,
|
| 2739 |
+
"loss": 0.0643,
|
| 2740 |
+
"step": 390
|
| 2741 |
+
},
|
| 2742 |
+
{
|
| 2743 |
+
"epoch": 4.7682926829268295,
|
| 2744 |
+
"grad_norm": 1.593004584312439,
|
| 2745 |
+
"learning_rate": 5.813026659167982e-06,
|
| 2746 |
+
"loss": 0.054,
|
| 2747 |
+
"step": 391
|
| 2748 |
+
},
|
| 2749 |
+
{
|
| 2750 |
+
"epoch": 4.780487804878049,
|
| 2751 |
+
"grad_norm": 1.8973208665847778,
|
| 2752 |
+
"learning_rate": 5.793124197913492e-06,
|
| 2753 |
+
"loss": 0.0737,
|
| 2754 |
+
"step": 392
|
| 2755 |
+
},
|
| 2756 |
+
{
|
| 2757 |
+
"epoch": 4.7926829268292686,
|
| 2758 |
+
"grad_norm": 1.9966886043548584,
|
| 2759 |
+
"learning_rate": 5.773208837379843e-06,
|
| 2760 |
+
"loss": 0.0634,
|
| 2761 |
+
"step": 393
|
| 2762 |
+
},
|
| 2763 |
+
{
|
| 2764 |
+
"epoch": 4.804878048780488,
|
| 2765 |
+
"grad_norm": 1.5227646827697754,
|
| 2766 |
+
"learning_rate": 5.753280901468126e-06,
|
| 2767 |
+
"loss": 0.0496,
|
| 2768 |
+
"step": 394
|
| 2769 |
+
},
|
| 2770 |
+
{
|
| 2771 |
+
"epoch": 4.817073170731708,
|
| 2772 |
+
"grad_norm": 1.6435083150863647,
|
| 2773 |
+
"learning_rate": 5.733340714283959e-06,
|
| 2774 |
+
"loss": 0.0664,
|
| 2775 |
+
"step": 395
|
| 2776 |
+
},
|
| 2777 |
+
{
|
| 2778 |
+
"epoch": 4.829268292682927,
|
| 2779 |
+
"grad_norm": 1.3312773704528809,
|
| 2780 |
+
"learning_rate": 5.713388600132217e-06,
|
| 2781 |
+
"loss": 0.0534,
|
| 2782 |
+
"step": 396
|
| 2783 |
+
},
|
| 2784 |
+
{
|
| 2785 |
+
"epoch": 4.841463414634147,
|
| 2786 |
+
"grad_norm": 1.868194580078125,
|
| 2787 |
+
"learning_rate": 5.693424883511748e-06,
|
| 2788 |
+
"loss": 0.0565,
|
| 2789 |
+
"step": 397
|
| 2790 |
+
},
|
| 2791 |
+
{
|
| 2792 |
+
"epoch": 4.853658536585366,
|
| 2793 |
+
"grad_norm": 1.5551823377609253,
|
| 2794 |
+
"learning_rate": 5.6734498891101005e-06,
|
| 2795 |
+
"loss": 0.0604,
|
| 2796 |
+
"step": 398
|
| 2797 |
+
},
|
| 2798 |
+
{
|
| 2799 |
+
"epoch": 4.865853658536586,
|
| 2800 |
+
"grad_norm": 1.8578870296478271,
|
| 2801 |
+
"learning_rate": 5.653463941798252e-06,
|
| 2802 |
+
"loss": 0.0728,
|
| 2803 |
+
"step": 399
|
| 2804 |
+
},
|
| 2805 |
+
{
|
| 2806 |
+
"epoch": 4.878048780487805,
|
| 2807 |
+
"grad_norm": 1.5294170379638672,
|
| 2808 |
+
"learning_rate": 5.633467366625306e-06,
|
| 2809 |
+
"loss": 0.0637,
|
| 2810 |
+
"step": 400
|
| 2811 |
+
},
|
| 2812 |
+
{
|
| 2813 |
+
"epoch": 4.890243902439025,
|
| 2814 |
+
"grad_norm": 1.2593622207641602,
|
| 2815 |
+
"learning_rate": 5.613460488813225e-06,
|
| 2816 |
+
"loss": 0.0512,
|
| 2817 |
+
"step": 401
|
| 2818 |
+
},
|
| 2819 |
+
{
|
| 2820 |
+
"epoch": 4.902439024390244,
|
| 2821 |
+
"grad_norm": 1.7771371603012085,
|
| 2822 |
+
"learning_rate": 5.593443633751527e-06,
|
| 2823 |
+
"loss": 0.0658,
|
| 2824 |
+
"step": 402
|
| 2825 |
+
},
|
| 2826 |
+
{
|
| 2827 |
+
"epoch": 4.914634146341464,
|
| 2828 |
+
"grad_norm": 1.5825587511062622,
|
| 2829 |
+
"learning_rate": 5.573417126992004e-06,
|
| 2830 |
+
"loss": 0.0671,
|
| 2831 |
+
"step": 403
|
| 2832 |
+
},
|
| 2833 |
+
{
|
| 2834 |
+
"epoch": 4.926829268292683,
|
| 2835 |
+
"grad_norm": 1.6244094371795654,
|
| 2836 |
+
"learning_rate": 5.553381294243413e-06,
|
| 2837 |
+
"loss": 0.0585,
|
| 2838 |
+
"step": 404
|
| 2839 |
+
},
|
| 2840 |
+
{
|
| 2841 |
+
"epoch": 4.939024390243903,
|
| 2842 |
+
"grad_norm": 1.501323938369751,
|
| 2843 |
+
"learning_rate": 5.5333364613662e-06,
|
| 2844 |
+
"loss": 0.0578,
|
| 2845 |
+
"step": 405
|
| 2846 |
+
},
|
| 2847 |
+
{
|
| 2848 |
+
"epoch": 4.951219512195122,
|
| 2849 |
+
"grad_norm": 1.5930196046829224,
|
| 2850 |
+
"learning_rate": 5.513282954367179e-06,
|
| 2851 |
+
"loss": 0.064,
|
| 2852 |
+
"step": 406
|
| 2853 |
+
},
|
| 2854 |
+
{
|
| 2855 |
+
"epoch": 4.963414634146341,
|
| 2856 |
+
"grad_norm": 1.4195719957351685,
|
| 2857 |
+
"learning_rate": 5.493221099394239e-06,
|
| 2858 |
+
"loss": 0.0443,
|
| 2859 |
+
"step": 407
|
| 2860 |
+
},
|
| 2861 |
+
{
|
| 2862 |
+
"epoch": 4.975609756097561,
|
| 2863 |
+
"grad_norm": 1.3484866619110107,
|
| 2864 |
+
"learning_rate": 5.473151222731044e-06,
|
| 2865 |
+
"loss": 0.0577,
|
| 2866 |
+
"step": 408
|
| 2867 |
+
},
|
| 2868 |
+
{
|
| 2869 |
+
"epoch": 4.987804878048781,
|
| 2870 |
+
"grad_norm": 1.677027940750122,
|
| 2871 |
+
"learning_rate": 5.453073650791724e-06,
|
| 2872 |
+
"loss": 0.0604,
|
| 2873 |
+
"step": 409
|
| 2874 |
+
},
|
| 2875 |
+
{
|
| 2876 |
+
"epoch": 5.0,
|
| 2877 |
+
"grad_norm": 1.7022733688354492,
|
| 2878 |
+
"learning_rate": 5.432988710115553e-06,
|
| 2879 |
+
"loss": 0.0674,
|
| 2880 |
+
"step": 410
|
| 2881 |
+
}
|
| 2882 |
+
],
|
| 2883 |
+
"logging_steps": 1,
|
| 2884 |
+
"max_steps": 820,
|
| 2885 |
+
"num_input_tokens_seen": 0,
|
| 2886 |
+
"num_train_epochs": 10,
|
| 2887 |
+
"save_steps": 1,
|
| 2888 |
+
"stateful_callbacks": {
|
| 2889 |
+
"TrainerControl": {
|
| 2890 |
+
"args": {
|
| 2891 |
+
"should_epoch_stop": false,
|
| 2892 |
+
"should_evaluate": false,
|
| 2893 |
+
"should_log": false,
|
| 2894 |
+
"should_save": true,
|
| 2895 |
+
"should_training_stop": false
|
| 2896 |
+
},
|
| 2897 |
+
"attributes": {}
|
| 2898 |
+
}
|
| 2899 |
+
},
|
| 2900 |
+
"total_flos": 7614453848064.0,
|
| 2901 |
+
"train_batch_size": 1,
|
| 2902 |
+
"trial_name": null,
|
| 2903 |
+
"trial_params": null
|
| 2904 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5a595d3161ad6180acfe508fd460f880f6fd758b583ca0051c82b8999e011ac9
|
| 3 |
+
size 7313
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import json
|
| 25 |
+
from tqdm import tqdm
|
| 26 |
+
from collections import OrderedDict
|
| 27 |
+
from dataclasses import dataclass
|
| 28 |
+
|
| 29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 31 |
+
from deepspeed.utils import logger
|
| 32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@dataclass
|
| 38 |
+
class zero_model_state:
|
| 39 |
+
buffers: dict()
|
| 40 |
+
param_shapes: dict()
|
| 41 |
+
shared_params: list
|
| 42 |
+
ds_version: int
|
| 43 |
+
frozen_param_shapes: dict()
|
| 44 |
+
frozen_param_fragments: dict()
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
debug = 0
|
| 48 |
+
|
| 49 |
+
# load to cpu
|
| 50 |
+
device = torch.device('cpu')
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def atoi(text):
|
| 54 |
+
return int(text) if text.isdigit() else text
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def natural_keys(text):
|
| 58 |
+
'''
|
| 59 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 61 |
+
(See Toothy's implementation in the comments)
|
| 62 |
+
'''
|
| 63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 67 |
+
if not os.path.isdir(checkpoint_dir):
|
| 68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 69 |
+
|
| 70 |
+
# there should be only one file
|
| 71 |
+
if zero_stage <= 2:
|
| 72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 73 |
+
elif zero_stage == 3:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 75 |
+
|
| 76 |
+
if not os.path.exists(file):
|
| 77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 78 |
+
|
| 79 |
+
return file
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 85 |
+
|
| 86 |
+
if len(ckpt_files) == 0:
|
| 87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 88 |
+
|
| 89 |
+
return ckpt_files
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def get_optim_files(checkpoint_dir):
|
| 93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def get_model_state_files(checkpoint_dir):
|
| 97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def parse_model_states(files):
|
| 101 |
+
zero_model_states = []
|
| 102 |
+
for file in files:
|
| 103 |
+
state_dict = torch.load(file, map_location=device)
|
| 104 |
+
|
| 105 |
+
if BUFFER_NAMES not in state_dict:
|
| 106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 108 |
+
if debug:
|
| 109 |
+
print("Found buffers:", buffer_names)
|
| 110 |
+
|
| 111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 114 |
+
|
| 115 |
+
# collect parameters that are included in param_shapes
|
| 116 |
+
param_names = []
|
| 117 |
+
for s in param_shapes:
|
| 118 |
+
for name in s.keys():
|
| 119 |
+
param_names.append(name)
|
| 120 |
+
|
| 121 |
+
# update with frozen parameters
|
| 122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 123 |
+
if frozen_param_shapes is not None:
|
| 124 |
+
if debug:
|
| 125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 126 |
+
param_names += list(frozen_param_shapes.keys())
|
| 127 |
+
|
| 128 |
+
# handle shared params
|
| 129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 130 |
+
|
| 131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 132 |
+
|
| 133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 134 |
+
|
| 135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 136 |
+
param_shapes=param_shapes,
|
| 137 |
+
shared_params=shared_params,
|
| 138 |
+
ds_version=ds_version,
|
| 139 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 140 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 141 |
+
zero_model_states.append(z_model_state)
|
| 142 |
+
|
| 143 |
+
return zero_model_states
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 147 |
+
total_files = len(files)
|
| 148 |
+
state_dicts = []
|
| 149 |
+
for f in files:
|
| 150 |
+
state_dict = torch.load(f, map_location=device)
|
| 151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 152 |
+
# and also handle the case where it was already removed by another helper script
|
| 153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 154 |
+
state_dicts.append(state_dict)
|
| 155 |
+
|
| 156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 160 |
+
|
| 161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 163 |
+
# use the max of the partition_count to get the dp world_size.
|
| 164 |
+
|
| 165 |
+
if type(world_size) is list:
|
| 166 |
+
world_size = max(world_size)
|
| 167 |
+
|
| 168 |
+
if world_size != total_files:
|
| 169 |
+
raise ValueError(
|
| 170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# the groups are named differently in each stage
|
| 175 |
+
if zero_stage <= 2:
|
| 176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 177 |
+
elif zero_stage == 3:
|
| 178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 179 |
+
else:
|
| 180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 181 |
+
|
| 182 |
+
if zero_stage <= 2:
|
| 183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 184 |
+
elif zero_stage == 3:
|
| 185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 187 |
+
#
|
| 188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 190 |
+
|
| 191 |
+
fp32_flat_groups = [
|
| 192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 193 |
+
]
|
| 194 |
+
|
| 195 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 199 |
+
"""
|
| 200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 204 |
+
|
| 205 |
+
"""
|
| 206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 207 |
+
|
| 208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 211 |
+
|
| 212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 213 |
+
|
| 214 |
+
zero_model_states = parse_model_states(model_files)
|
| 215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 216 |
+
|
| 217 |
+
if zero_stage <= 2:
|
| 218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 219 |
+
exclude_frozen_parameters)
|
| 220 |
+
elif zero_stage == 3:
|
| 221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 222 |
+
exclude_frozen_parameters)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 227 |
+
return
|
| 228 |
+
|
| 229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 231 |
+
|
| 232 |
+
if debug:
|
| 233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 235 |
+
|
| 236 |
+
wanted_params = len(frozen_param_shapes)
|
| 237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 241 |
+
|
| 242 |
+
total_params = 0
|
| 243 |
+
total_numel = 0
|
| 244 |
+
for name, shape in frozen_param_shapes.items():
|
| 245 |
+
total_params += 1
|
| 246 |
+
unpartitioned_numel = shape.numel()
|
| 247 |
+
total_numel += unpartitioned_numel
|
| 248 |
+
|
| 249 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 250 |
+
|
| 251 |
+
if debug:
|
| 252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 253 |
+
|
| 254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def _has_callable(obj, fn):
|
| 258 |
+
attr = getattr(obj, fn, None)
|
| 259 |
+
return callable(attr)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 263 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 264 |
+
|
| 265 |
+
# Reconstruction protocol:
|
| 266 |
+
#
|
| 267 |
+
# XXX: document this
|
| 268 |
+
|
| 269 |
+
if debug:
|
| 270 |
+
for i in range(world_size):
|
| 271 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 273 |
+
|
| 274 |
+
# XXX: memory usage doubles here (zero2)
|
| 275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 276 |
+
merged_single_partition_of_fp32_groups = []
|
| 277 |
+
for i in range(num_param_groups):
|
| 278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 281 |
+
avail_numel = sum(
|
| 282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 283 |
+
|
| 284 |
+
if debug:
|
| 285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 287 |
+
# not asserting if there is a mismatch due to possible padding
|
| 288 |
+
print(f"Have {avail_numel} numels to process.")
|
| 289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 290 |
+
|
| 291 |
+
# params
|
| 292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 293 |
+
# out-of-core computing solution
|
| 294 |
+
total_numel = 0
|
| 295 |
+
total_params = 0
|
| 296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 297 |
+
offset = 0
|
| 298 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 299 |
+
for name, shape in shapes.items():
|
| 300 |
+
|
| 301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 302 |
+
total_numel += unpartitioned_numel
|
| 303 |
+
total_params += 1
|
| 304 |
+
|
| 305 |
+
if debug:
|
| 306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 308 |
+
offset += unpartitioned_numel
|
| 309 |
+
|
| 310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 314 |
+
align_to = 2 * world_size
|
| 315 |
+
|
| 316 |
+
def zero2_align(x):
|
| 317 |
+
return align_to * math.ceil(x / align_to)
|
| 318 |
+
|
| 319 |
+
if debug:
|
| 320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 321 |
+
|
| 322 |
+
offset = zero2_align(offset)
|
| 323 |
+
avail_numel = zero2_align(avail_numel)
|
| 324 |
+
|
| 325 |
+
if debug:
|
| 326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 327 |
+
|
| 328 |
+
# Sanity check
|
| 329 |
+
if offset != avail_numel:
|
| 330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 331 |
+
|
| 332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 336 |
+
exclude_frozen_parameters):
|
| 337 |
+
state_dict = OrderedDict()
|
| 338 |
+
|
| 339 |
+
# buffers
|
| 340 |
+
buffers = zero_model_states[0].buffers
|
| 341 |
+
state_dict.update(buffers)
|
| 342 |
+
if debug:
|
| 343 |
+
print(f"added {len(buffers)} buffers")
|
| 344 |
+
|
| 345 |
+
if not exclude_frozen_parameters:
|
| 346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 347 |
+
|
| 348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 349 |
+
|
| 350 |
+
# recover shared parameters
|
| 351 |
+
for pair in zero_model_states[0].shared_params:
|
| 352 |
+
if pair[1] in state_dict:
|
| 353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 354 |
+
|
| 355 |
+
return state_dict
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 359 |
+
remainder = unpartitioned_numel % world_size
|
| 360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 362 |
+
return partitioned_numel, padding_numel
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 367 |
+
return
|
| 368 |
+
|
| 369 |
+
if debug:
|
| 370 |
+
for i in range(world_size):
|
| 371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 373 |
+
|
| 374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 375 |
+
wanted_params = len(frozen_param_shapes)
|
| 376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 380 |
+
|
| 381 |
+
total_params = 0
|
| 382 |
+
total_numel = 0
|
| 383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 384 |
+
total_params += 1
|
| 385 |
+
unpartitioned_numel = shape.numel()
|
| 386 |
+
total_numel += unpartitioned_numel
|
| 387 |
+
|
| 388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 390 |
+
|
| 391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 392 |
+
|
| 393 |
+
if debug:
|
| 394 |
+
print(
|
| 395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 402 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 406 |
+
|
| 407 |
+
# merge list of dicts, preserving order
|
| 408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 409 |
+
|
| 410 |
+
if debug:
|
| 411 |
+
for i in range(world_size):
|
| 412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 413 |
+
|
| 414 |
+
wanted_params = len(param_shapes)
|
| 415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 416 |
+
# not asserting if there is a mismatch due to possible padding
|
| 417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 420 |
+
|
| 421 |
+
# params
|
| 422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 423 |
+
# out-of-core computing solution
|
| 424 |
+
offset = 0
|
| 425 |
+
total_numel = 0
|
| 426 |
+
total_params = 0
|
| 427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
| 428 |
+
unpartitioned_numel = shape.numel()
|
| 429 |
+
total_numel += unpartitioned_numel
|
| 430 |
+
total_params += 1
|
| 431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 432 |
+
|
| 433 |
+
if debug:
|
| 434 |
+
print(
|
| 435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
# XXX: memory usage doubles here
|
| 439 |
+
state_dict[name] = torch.cat(
|
| 440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 442 |
+
offset += partitioned_numel
|
| 443 |
+
|
| 444 |
+
offset *= world_size
|
| 445 |
+
|
| 446 |
+
# Sanity check
|
| 447 |
+
if offset != avail_numel:
|
| 448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 449 |
+
|
| 450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 454 |
+
exclude_frozen_parameters):
|
| 455 |
+
state_dict = OrderedDict()
|
| 456 |
+
|
| 457 |
+
# buffers
|
| 458 |
+
buffers = zero_model_states[0].buffers
|
| 459 |
+
state_dict.update(buffers)
|
| 460 |
+
if debug:
|
| 461 |
+
print(f"added {len(buffers)} buffers")
|
| 462 |
+
|
| 463 |
+
if not exclude_frozen_parameters:
|
| 464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 465 |
+
|
| 466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 467 |
+
|
| 468 |
+
# recover shared parameters
|
| 469 |
+
for pair in zero_model_states[0].shared_params:
|
| 470 |
+
if pair[1] in state_dict:
|
| 471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 472 |
+
|
| 473 |
+
return state_dict
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 477 |
+
"""
|
| 478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 480 |
+
via a model hub.
|
| 481 |
+
|
| 482 |
+
Args:
|
| 483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 486 |
+
|
| 487 |
+
Returns:
|
| 488 |
+
- pytorch ``state_dict``
|
| 489 |
+
|
| 490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 492 |
+
the checkpoint.
|
| 493 |
+
|
| 494 |
+
A typical usage might be ::
|
| 495 |
+
|
| 496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 497 |
+
# do the training and checkpoint saving
|
| 498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 499 |
+
model = model.cpu() # move to cpu
|
| 500 |
+
model.load_state_dict(state_dict)
|
| 501 |
+
# submit to model hub or save the model to share with others
|
| 502 |
+
|
| 503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 506 |
+
|
| 507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 508 |
+
|
| 509 |
+
"""
|
| 510 |
+
if tag is None:
|
| 511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 512 |
+
if os.path.isfile(latest_path):
|
| 513 |
+
with open(latest_path, 'r') as fd:
|
| 514 |
+
tag = fd.read().strip()
|
| 515 |
+
else:
|
| 516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 517 |
+
|
| 518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 519 |
+
|
| 520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 522 |
+
|
| 523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 527 |
+
output_dir,
|
| 528 |
+
max_shard_size="5GB",
|
| 529 |
+
safe_serialization=False,
|
| 530 |
+
tag=None,
|
| 531 |
+
exclude_frozen_parameters=False):
|
| 532 |
+
"""
|
| 533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 535 |
+
|
| 536 |
+
Args:
|
| 537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 543 |
+
"""
|
| 544 |
+
# Dependency pre-check
|
| 545 |
+
if safe_serialization:
|
| 546 |
+
try:
|
| 547 |
+
from safetensors.torch import save_file
|
| 548 |
+
except ImportError:
|
| 549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 550 |
+
raise
|
| 551 |
+
if max_shard_size is not None:
|
| 552 |
+
try:
|
| 553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 554 |
+
except ImportError:
|
| 555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 556 |
+
raise
|
| 557 |
+
|
| 558 |
+
# Convert zero checkpoint to state_dict
|
| 559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 560 |
+
|
| 561 |
+
# Shard the model if it is too big.
|
| 562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 563 |
+
if max_shard_size is not None:
|
| 564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
| 566 |
+
filename_pattern=filename_pattern,
|
| 567 |
+
max_shard_size=max_shard_size)
|
| 568 |
+
else:
|
| 569 |
+
from collections import namedtuple
|
| 570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 573 |
+
|
| 574 |
+
# Save the model
|
| 575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
| 578 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 579 |
+
if safe_serialization:
|
| 580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
| 581 |
+
else:
|
| 582 |
+
torch.save(shard, output_path)
|
| 583 |
+
|
| 584 |
+
# Save index if sharded
|
| 585 |
+
if state_dict_split.is_sharded:
|
| 586 |
+
index = {
|
| 587 |
+
"metadata": state_dict_split.metadata,
|
| 588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 589 |
+
}
|
| 590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 594 |
+
f.write(content)
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 598 |
+
"""
|
| 599 |
+
1. Put the provided model to cpu
|
| 600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 601 |
+
3. Load it into the provided model
|
| 602 |
+
|
| 603 |
+
Args:
|
| 604 |
+
- ``model``: the model object to update
|
| 605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 607 |
+
|
| 608 |
+
Returns:
|
| 609 |
+
- ``model`: modified model
|
| 610 |
+
|
| 611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 613 |
+
conveniently placed for you in the checkpoint folder.
|
| 614 |
+
|
| 615 |
+
A typical usage might be ::
|
| 616 |
+
|
| 617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 619 |
+
# submit to model hub or save the model to share with others
|
| 620 |
+
|
| 621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 624 |
+
|
| 625 |
+
"""
|
| 626 |
+
logger.info(f"Extracting fp32 weights")
|
| 627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 628 |
+
|
| 629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 630 |
+
model = model.cpu()
|
| 631 |
+
model.load_state_dict(state_dict, strict=False)
|
| 632 |
+
|
| 633 |
+
return model
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
if __name__ == "__main__":
|
| 637 |
+
parser = argparse.ArgumentParser()
|
| 638 |
+
parser.add_argument("checkpoint_dir",
|
| 639 |
+
type=str,
|
| 640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 641 |
+
parser.add_argument("output_dir",
|
| 642 |
+
type=str,
|
| 643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 644 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 645 |
+
parser.add_argument(
|
| 646 |
+
"--max_shard_size",
|
| 647 |
+
type=str,
|
| 648 |
+
default="5GB",
|
| 649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 652 |
+
"without CPU OOM issues.")
|
| 653 |
+
parser.add_argument(
|
| 654 |
+
"--safe_serialization",
|
| 655 |
+
default=False,
|
| 656 |
+
action='store_true',
|
| 657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 658 |
+
parser.add_argument("-t",
|
| 659 |
+
"--tag",
|
| 660 |
+
type=str,
|
| 661 |
+
default=None,
|
| 662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 665 |
+
args = parser.parse_args()
|
| 666 |
+
|
| 667 |
+
debug = args.debug
|
| 668 |
+
|
| 669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 670 |
+
args.output_dir,
|
| 671 |
+
max_shard_size=args.max_shard_size,
|
| 672 |
+
safe_serialization=args.safe_serialization,
|
| 673 |
+
tag=args.tag,
|
| 674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|