File size: 13,936 Bytes
8ef2d83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
//! # Python Bindings
//!
//! PyO3 bindings for ARMS-HAT, enabling Python integration with LLMs.
//!
//! ## Python API
//!
//! ```python
//! from arms_hat import HatIndex, SearchResult
//!
//! # Create index for OpenAI embeddings (1536 dims)
//! index = HatIndex.cosine(1536)
//!
//! # Add embeddings
//! id = index.add([0.1, 0.2, ...])  # Auto-generates ID
//! index.add_with_id("custom_id", [0.1, 0.2, ...])  # Custom ID
//!
//! # Query
//! results = index.near([0.1, 0.2, ...], k=10)
//! for result in results:
//!     print(f"{result.id}: {result.score}")
//!
//! # Session management
//! index.new_session()
//! index.new_document()
//!
//! # Persistence
//! index.save("memory.hat")
//! loaded = HatIndex.load("memory.hat")
//! ```

use pyo3::prelude::*;
use pyo3::exceptions::{PyValueError, PyIOError};

use crate::core::{Id, Point};
use crate::adapters::index::{HatIndex as RustHatIndex, HatConfig, ConsolidationConfig, Consolidate};
use crate::ports::Near;

/// Python wrapper for search results
#[pyclass(name = "SearchResult")]
#[derive(Clone)]
pub struct PySearchResult {
    /// The ID as a hex string
    #[pyo3(get)]
    pub id: String,

    /// The similarity/distance score
    #[pyo3(get)]
    pub score: f32,
}

#[pymethods]
impl PySearchResult {
    fn __repr__(&self) -> String {
        format!("SearchResult(id='{}', score={:.4})", self.id, self.score)
    }

    fn __str__(&self) -> String {
        format!("{}: {:.4}", self.id, self.score)
    }
}

/// Python wrapper for HAT index configuration
#[pyclass(name = "HatConfig")]
#[derive(Clone)]
pub struct PyHatConfig {
    inner: HatConfig,
}

#[pymethods]
impl PyHatConfig {
    #[new]
    fn new() -> Self {
        Self { inner: HatConfig::default() }
    }

    /// Set beam width for search (default: 3)
    fn with_beam_width(mut slf: PyRefMut<'_, Self>, width: usize) -> PyRefMut<'_, Self> {
        slf.inner.beam_width = width;
        slf
    }

    /// Set temporal weight (0.0 = pure semantic, 1.0 = pure temporal)
    fn with_temporal_weight(mut slf: PyRefMut<'_, Self>, weight: f32) -> PyRefMut<'_, Self> {
        slf.inner.temporal_weight = weight;
        slf
    }

    /// Set propagation threshold for sparse updates
    fn with_propagation_threshold(mut slf: PyRefMut<'_, Self>, threshold: f32) -> PyRefMut<'_, Self> {
        slf.inner.propagation_threshold = threshold;
        slf
    }

    fn __repr__(&self) -> String {
        format!(
            "HatConfig(beam_width={}, temporal_weight={:.2}, propagation_threshold={:.3})",
            self.inner.beam_width, self.inner.temporal_weight, self.inner.propagation_threshold
        )
    }
}

/// Session summary for coarse-grained retrieval
#[pyclass(name = "SessionSummary")]
#[derive(Clone)]
pub struct PySessionSummary {
    #[pyo3(get)]
    pub id: String,

    #[pyo3(get)]
    pub score: f32,

    #[pyo3(get)]
    pub chunk_count: usize,

    #[pyo3(get)]
    pub timestamp_ms: u64,
}

#[pymethods]
impl PySessionSummary {
    fn __repr__(&self) -> String {
        format!(
            "SessionSummary(id='{}', score={:.4}, chunks={})",
            self.id, self.score, self.chunk_count
        )
    }
}

/// Document summary for mid-level retrieval
#[pyclass(name = "DocumentSummary")]
#[derive(Clone)]
pub struct PyDocumentSummary {
    #[pyo3(get)]
    pub id: String,

    #[pyo3(get)]
    pub score: f32,

    #[pyo3(get)]
    pub chunk_count: usize,
}

#[pymethods]
impl PyDocumentSummary {
    fn __repr__(&self) -> String {
        format!(
            "DocumentSummary(id='{}', score={:.4}, chunks={})",
            self.id, self.score, self.chunk_count
        )
    }
}

/// Index statistics
#[pyclass(name = "HatStats")]
#[derive(Clone)]
pub struct PyHatStats {
    #[pyo3(get)]
    pub global_count: usize,

    #[pyo3(get)]
    pub session_count: usize,

    #[pyo3(get)]
    pub document_count: usize,

    #[pyo3(get)]
    pub chunk_count: usize,
}

#[pymethods]
impl PyHatStats {
    /// Total number of indexed points
    #[getter]
    fn total_points(&self) -> usize {
        self.chunk_count
    }

    fn __repr__(&self) -> String {
        format!(
            "HatStats(points={}, sessions={}, documents={}, chunks={})",
            self.chunk_count, self.session_count, self.document_count, self.chunk_count
        )
    }
}

/// Hierarchical Attention Tree Index
///
/// A semantic memory index optimized for conversation history retrieval.
/// Uses hierarchical structure (session -> document -> chunk) to enable
/// O(log n) queries while maintaining high recall.
#[pyclass(name = "HatIndex")]
pub struct PyHatIndex {
    inner: RustHatIndex,
}

#[pymethods]
impl PyHatIndex {
    /// Create a new HAT index with cosine similarity
    ///
    /// Args:
    ///     dimensionality: Number of embedding dimensions (e.g., 1536 for OpenAI)
    #[staticmethod]
    fn cosine(dimensionality: usize) -> Self {
        Self {
            inner: RustHatIndex::cosine(dimensionality),
        }
    }

    /// Create a new HAT index with custom configuration
    ///
    /// Args:
    ///     dimensionality: Number of embedding dimensions
    ///     config: HatConfig instance
    #[staticmethod]
    fn with_config(dimensionality: usize, config: &PyHatConfig) -> Self {
        Self {
            inner: RustHatIndex::cosine(dimensionality).with_config(config.inner.clone()),
        }
    }

    /// Add an embedding to the index
    ///
    /// Args:
    ///     embedding: List of floats (must match dimensionality)
    ///
    /// Returns:
    ///     str: The generated ID as a hex string
    fn add(&mut self, embedding: Vec<f32>) -> PyResult<String> {
        let point = Point::new(embedding);
        let id = Id::now();

        self.inner.add(id, &point)
            .map_err(|e| PyValueError::new_err(format!("{}", e)))?;

        Ok(format!("{}", id))
    }

    /// Add an embedding with a custom ID
    ///
    /// Args:
    ///     id_hex: 32-character hex string for the ID
    ///     embedding: List of floats (must match dimensionality)
    fn add_with_id(&mut self, id_hex: &str, embedding: Vec<f32>) -> PyResult<()> {
        let id = parse_id_hex(id_hex)?;
        let point = Point::new(embedding);

        self.inner.add(id, &point)
            .map_err(|e| PyValueError::new_err(format!("{}", e)))?;

        Ok(())
    }

    /// Find k nearest neighbors to a query embedding
    ///
    /// Args:
    ///     query: Query embedding (list of floats)
    ///     k: Number of results to return
    ///
    /// Returns:
    ///     List[SearchResult]: Results sorted by relevance (best first)
    fn near(&self, query: Vec<f32>, k: usize) -> PyResult<Vec<PySearchResult>> {
        let point = Point::new(query);

        let results = self.inner.near(&point, k)
            .map_err(|e| PyValueError::new_err(format!("{}", e)))?;

        Ok(results.into_iter().map(|r| PySearchResult {
            id: format!("{}", r.id),
            score: r.score,
        }).collect())
    }

    /// Start a new session (conversation boundary)
    ///
    /// Call this when starting a new conversation or context.
    fn new_session(&mut self) {
        self.inner.new_session();
    }

    /// Start a new document within the current session
    ///
    /// Call this for logical groupings within a conversation
    /// (e.g., topic change, user turn).
    fn new_document(&mut self) {
        self.inner.new_document();
    }

    /// Get index statistics
    fn stats(&self) -> PyHatStats {
        let s = self.inner.stats();
        PyHatStats {
            global_count: s.global_count,
            session_count: s.session_count,
            document_count: s.document_count,
            chunk_count: s.chunk_count,
        }
    }

    /// Get the number of indexed points
    fn __len__(&self) -> usize {
        self.inner.len()
    }

    /// Check if the index is empty
    fn is_empty(&self) -> bool {
        self.inner.is_empty()
    }

    /// Remove a point by ID
    ///
    /// Args:
    ///     id_hex: 32-character hex string for the ID
    fn remove(&mut self, id_hex: &str) -> PyResult<()> {
        let id = parse_id_hex(id_hex)?;

        self.inner.remove(id)
            .map_err(|e| PyValueError::new_err(format!("{}", e)))?;

        Ok(())
    }

    /// Find similar sessions (coarse-grained search)
    ///
    /// Args:
    ///     query: Query embedding
    ///     k: Number of sessions to return
    ///
    /// Returns:
    ///     List[SessionSummary]: Most relevant sessions
    fn near_sessions(&self, query: Vec<f32>, k: usize) -> PyResult<Vec<PySessionSummary>> {
        let point = Point::new(query);

        let results = self.inner.near_sessions(&point, k)
            .map_err(|e| PyValueError::new_err(format!("{}", e)))?;

        Ok(results.into_iter().map(|s| PySessionSummary {
            id: format!("{}", s.id),
            score: s.score,
            chunk_count: s.chunk_count,
            timestamp_ms: s.timestamp,
        }).collect())
    }

    /// Find similar documents within a session
    ///
    /// Args:
    ///     session_id: Session ID (hex string)
    ///     query: Query embedding
    ///     k: Number of documents to return
    ///
    /// Returns:
    ///     List[DocumentSummary]: Most relevant documents in the session
    fn near_documents(&self, session_id: &str, query: Vec<f32>, k: usize) -> PyResult<Vec<PyDocumentSummary>> {
        let sid = parse_id_hex(session_id)?;
        let point = Point::new(query);

        let results = self.inner.near_documents(sid, &point, k)
            .map_err(|e| PyValueError::new_err(format!("{}", e)))?;

        Ok(results.into_iter().map(|d| PyDocumentSummary {
            id: format!("{}", d.id),
            score: d.score,
            chunk_count: d.chunk_count,
        }).collect())
    }

    /// Find chunks within a specific document
    ///
    /// Args:
    ///     doc_id: Document ID (hex string)
    ///     query: Query embedding
    ///     k: Number of results to return
    ///
    /// Returns:
    ///     List[SearchResult]: Most relevant chunks in the document
    fn near_in_document(&self, doc_id: &str, query: Vec<f32>, k: usize) -> PyResult<Vec<PySearchResult>> {
        let did = parse_id_hex(doc_id)?;
        let point = Point::new(query);

        let results = self.inner.near_in_document(did, &point, k)
            .map_err(|e| PyValueError::new_err(format!("{}", e)))?;

        Ok(results.into_iter().map(|r| PySearchResult {
            id: format!("{}", r.id),
            score: r.score,
        }).collect())
    }

    /// Run light consolidation (background maintenance)
    ///
    /// This optimizes the index structure. Call periodically
    /// (e.g., after every 100 inserts).
    fn consolidate(&mut self) {
        self.inner.consolidate(ConsolidationConfig::light());
    }

    /// Run full consolidation (more thorough optimization)
    fn consolidate_full(&mut self) {
        self.inner.consolidate(ConsolidationConfig::full());
    }

    /// Save the index to a file
    ///
    /// Args:
    ///     path: File path to save to
    fn save(&self, path: &str) -> PyResult<()> {
        self.inner.save_to_file(std::path::Path::new(path))
            .map_err(|e| PyIOError::new_err(format!("{}", e)))
    }

    /// Load an index from a file
    ///
    /// Args:
    ///     path: File path to load from
    ///
    /// Returns:
    ///     HatIndex: The loaded index
    #[staticmethod]
    fn load(path: &str) -> PyResult<Self> {
        let inner = RustHatIndex::load_from_file(std::path::Path::new(path))
            .map_err(|e| PyIOError::new_err(format!("{}", e)))?;

        Ok(Self { inner })
    }

    /// Serialize the index to bytes
    ///
    /// Returns:
    ///     bytes: Serialized index data
    fn to_bytes<'py>(&self, py: Python<'py>) -> PyResult<Bound<'py, pyo3::types::PyBytes>> {
        let data = self.inner.to_bytes()
            .map_err(|e| PyIOError::new_err(format!("{}", e)))?;
        Ok(pyo3::types::PyBytes::new_bound(py, &data))
    }

    /// Load an index from bytes
    ///
    /// Args:
    ///     data: Serialized index data
    ///
    /// Returns:
    ///     HatIndex: The loaded index
    #[staticmethod]
    fn from_bytes(data: &[u8]) -> PyResult<Self> {
        let inner = RustHatIndex::from_bytes(data)
            .map_err(|e| PyIOError::new_err(format!("{}", e)))?;

        Ok(Self { inner })
    }

    fn __repr__(&self) -> String {
        let stats = self.inner.stats();
        format!(
            "HatIndex(points={}, sessions={})",
            stats.chunk_count, stats.session_count
        )
    }
}

/// Parse a hex string to an Id
fn parse_id_hex(hex: &str) -> PyResult<Id> {
    if hex.len() != 32 {
        return Err(PyValueError::new_err(
            format!("ID must be 32 hex characters, got {}", hex.len())
        ));
    }

    let mut bytes = [0u8; 16];
    for (i, chunk) in hex.as_bytes().chunks(2).enumerate() {
        let high = hex_char_to_nibble(chunk[0])?;
        let low = hex_char_to_nibble(chunk[1])?;
        bytes[i] = (high << 4) | low;
    }

    Ok(Id::from_bytes(bytes))
}

fn hex_char_to_nibble(c: u8) -> PyResult<u8> {
    match c {
        b'0'..=b'9' => Ok(c - b'0'),
        b'a'..=b'f' => Ok(c - b'a' + 10),
        b'A'..=b'F' => Ok(c - b'A' + 10),
        _ => Err(PyValueError::new_err(format!("Invalid hex character: {}", c as char))),
    }
}

/// ARMS-HAT Python module
#[pymodule]
fn arms_hat(m: &Bound<'_, PyModule>) -> PyResult<()> {
    m.add_class::<PyHatIndex>()?;
    m.add_class::<PyHatConfig>()?;
    m.add_class::<PySearchResult>()?;
    m.add_class::<PySessionSummary>()?;
    m.add_class::<PyDocumentSummary>()?;
    m.add_class::<PyHatStats>()?;

    // Add module docstring
    m.add("__doc__", "ARMS-HAT: Hierarchical Attention Tree for AI memory retrieval")?;
    m.add("__version__", env!("CARGO_PKG_VERSION"))?;

    Ok(())
}