""" ARMS-HAT: Hierarchical Attention Tree for AI memory retrieval. A semantic memory index optimized for LLM conversation history. Example: >>> from arms_hat import HatIndex >>> >>> # Create index for OpenAI embeddings (1536 dims) >>> index = HatIndex.cosine(1536) >>> >>> # Add embeddings >>> id1 = index.add([0.1] * 1536) >>> >>> # Query >>> results = index.near([0.1] * 1536, k=10) >>> for r in results: ... print(f"{r.id}: {r.score}") >>> >>> # Session management >>> index.new_session() >>> >>> # Persistence >>> index.save("memory.hat") >>> loaded = HatIndex.load("memory.hat") """ from .arms_hat import ( HatIndex, HatConfig, SearchResult, SessionSummary, DocumentSummary, HatStats, ) __all__ = [ "HatIndex", "HatConfig", "SearchResult", "SessionSummary", "DocumentSummary", "HatStats", ] __version__ = "0.1.0"