File size: 7,705 Bytes
baf3373 470021d baf3373 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import os
import pandas as pd
from rdkit import Chem, DataStructs
from rdkit.Chem import AllChem
from rdkit.ML.Cluster import Butina
from lightning.pytorch import seed_everything
import torch
from tqdm import tqdm
from transformers import AutoModelForMaskedLM
from datasets import Dataset, DatasetDict
from tokenizer.my_tokenizers import SMILES_SPE_Tokenizer
seed_everything(1986)
df = pd.read_csv("caco2.csv")
mols = []
canon = []
keep_rows = []
bad = 0
for i, smi in enumerate(df["SMILES"].astype(str)):
m = Chem.MolFromSmiles(smi)
if m is None:
bad += 1
continue
smi_can = Chem.MolToSmiles(m, canonical=True, isomericSmiles=True)
mols.append(m)
canon.append(smi_can)
keep_rows.append(i)
df = df.iloc[keep_rows].reset_index(drop=True)
df["SMILES_CANON"] = canon
print(f"Invalid SMILES dropped: {bad} / {len(df) + bad}")
# Drop exact duplicate molecules (same canonical smiles)
dup_mask = df.duplicated(subset=["SMILES_CANON"], keep="first")
df = df.loc[~dup_mask].reset_index(drop=True)
mols = [m for m, isdup in zip(mols, dup_mask) if not isdup]
# Fingerprints
morgan = AllChem.GetMorganGenerator(radius=2, fpSize=2048, includeChirality=True)
fps = [morgan.GetFingerprint(m) for m in mols]
# Cluster by similarity threshold
sim_thresh = 0.6
dist_thresh = 1.0 - sim_thresh
dists = []
n = len(fps)
for i in range(1, n):
sims = DataStructs.BulkTanimotoSimilarity(fps[i], fps[:i])
dists.extend([1.0 - x for x in sims])
clusters = Butina.ClusterData(dists, nPts=n, distThresh=dist_thresh, isDistData=True)
cluster_ids = np.empty(n, dtype=int)
for cid, idxs in enumerate(clusters):
for idx in idxs:
cluster_ids[idx] = cid
df["cluster_id"] = cluster_ids
# Split by clusters
train_fraction = 0.8
rng = np.random.default_rng()
unique_clusters = df["cluster_id"].unique()
rng.shuffle(unique_clusters)
train_target = int(train_fraction * len(df))
train_clusters = set()
count = 0
for cid in unique_clusters:
csize = (df["cluster_id"] == cid).sum()
if count + csize <= train_target:
train_clusters.add(cid)
count += csize
df["split"] = np.where(df["cluster_id"].isin(train_clusters), "train", "val")
df[df["split"] == "train"].to_csv("caco2_train.csv", index=False)
df[df["split"] == "val"].to_csv("caco2_val.csv", index=False)
df.to_csv("caco2_meta_with_split.csv", index=False)
print(df["split"].value_counts())
# ======================
# Config
# ======================
MAX_LENGTH = 768
BATCH_SIZE = 128
TRAIN_CSV = "caco2_train.csv"
VAL_CSV = "caco2_val.csv"
SMILES_COL = "SMILES"
LABEL_COL = "Caco2"
OUT_PATH = "./Classifier_Weight/training_data_cleaned/permeability_caco2/caco2_smiles_with_embeddings"
# GPU device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# ======================
# Load tokenizer + model
# ======================
print("Loading tokenizer and model...")
tokenizer = SMILES_SPE_Tokenizer(
"./Classifier_Weight/tokenizer/new_vocab.txt",
"./Classifier_Weight/tokenizer/new_splits.txt",
)
embedding_model = AutoModelForMaskedLM.from_pretrained("aaronfeller/PeptideCLM-23M-all").roformer
embedding_model.to(device)
embedding_model.eval()
HIDDEN_KEY = "last_hidden_state"
def get_special_ids(tokenizer):
cand = [
getattr(tokenizer, "pad_token_id", None),
getattr(tokenizer, "cls_token_id", None),
getattr(tokenizer, "sep_token_id", None),
getattr(tokenizer, "bos_token_id", None),
getattr(tokenizer, "eos_token_id", None),
getattr(tokenizer, "mask_token_id", None),
]
special_ids = sorted({x for x in cand if x is not None})
if len(special_ids) == 0:
print("[WARN] No special token ids found on tokenizer; pooling will only exclude padding via attention_mask.")
return special_ids
SPECIAL_IDS = get_special_ids(tokenizer)
SPECIAL_IDS_T = torch.tensor(SPECIAL_IDS, device=device, dtype=torch.long) if len(SPECIAL_IDS) else None
@torch.no_grad()
def embed_batch_return_both(batch_sequences, max_length, device):
tok = tokenizer(
batch_sequences,
return_tensors="pt",
padding=True,
max_length=max_length,
truncation=True,
)
input_ids = tok["input_ids"].to(device) # (B, L)
attention_mask = tok["attention_mask"].to(device) # (B, L)
outputs = embedding_model(input_ids=input_ids, attention_mask=attention_mask)
last_hidden = outputs.last_hidden_state # (B, L, H)
valid = attention_mask.bool()
if SPECIAL_IDS_T is not None and SPECIAL_IDS_T.numel() > 0:
valid = valid & (~torch.isin(input_ids, SPECIAL_IDS_T))
# --- pooled embeddings (exclude specials) ---
valid_f = valid.unsqueeze(-1).float() # (B, L, 1)
summed = torch.sum(last_hidden * valid_f, dim=1) # (B, H)
denom = torch.clamp(valid_f.sum(dim=1), min=1e-9) # (B, 1)
pooled = (summed / denom).detach().cpu().numpy() # (B, H), float32
# --- unpooled per-example token embeddings (exclude specials) ---
token_emb_list = []
mask_list = []
lengths = []
for b in range(last_hidden.shape[0]):
emb = last_hidden[b, valid[b]] # (L_i, H)
token_emb_list.append(emb.detach().cpu().to(torch.float16).numpy()) # float16
L_i = emb.shape[0]
lengths.append(int(L_i))
mask_list.append(np.ones((L_i,), dtype=np.int8))
return pooled, token_emb_list, mask_list, lengths
def generate_embeddings_batched_both(sequences, batch_size, max_length):
pooled_all = []
token_emb_all = []
mask_all = []
lengths_all = []
for i in tqdm(range(0, len(sequences), batch_size), desc="Embedding batches"):
batch = sequences[i:i + batch_size]
pooled, token_list, m_list, lens = embed_batch_return_both(batch, max_length, device)
pooled_all.append(pooled)
token_emb_all.extend(token_list)
mask_all.extend(m_list)
lengths_all.extend(lens)
pooled_all = np.vstack(pooled_all) # (N, H)
return pooled_all, token_emb_all, mask_all, lengths_all
from datasets import Dataset, DatasetDict
def make_split_datasets(csv_path, split_name):
df = pd.read_csv(csv_path)
df = df.dropna(subset=[SMILES_COL, LABEL_COL]).reset_index(drop=True)
df["sequence"] = df[SMILES_COL].astype(str)
labels = pd.to_numeric(df[LABEL_COL], errors="coerce")
df = df.loc[~labels.isna()].reset_index(drop=True)
sequences = df["sequence"].tolist()
labels = pd.to_numeric(df[LABEL_COL], errors="coerce").tolist()
# (pooled_embs: (N,H), token_emb_list: list of (L_i,H), mask_list: list of (L_i,), lengths: list[int])
pooled_embs, token_emb_list, mask_list, lengths = generate_embeddings_batched_both(
sequences, batch_size=BATCH_SIZE, max_length=MAX_LENGTH
)
pooled_ds = Dataset.from_dict({
"sequence": sequences,
"label": labels,
"embedding": pooled_embs, # (N,H)
})
full_ds = Dataset.from_dict({
"sequence": sequences,
"label": labels,
"embedding": token_emb_list, # each (L_i,H) float16
"attention_mask": mask_list, # each (L_i,) int8 ones
"length": lengths,
})
return pooled_ds, full_ds
train_pooled, train_full = make_split_datasets(TRAIN_CSV, "train")
val_pooled, val_full = make_split_datasets(VAL_CSV, "val")
ds_pooled = DatasetDict({"train": train_pooled, "val": val_pooled})
ds_full = DatasetDict({"train": train_full, "val": val_full})
ds_pooled.save_to_disk(OUT_PATH)
ds_full.save_to_disk(OUT_PATH + "_unpooled")
|