Joblib
File size: 7,705 Bytes
baf3373
 
 
 
 
 
 
 
 
470021d
 
 
 
 
baf3373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import os
import pandas as pd
from rdkit import Chem, DataStructs
from rdkit.Chem import AllChem
from rdkit.ML.Cluster import Butina
from lightning.pytorch import seed_everything
import torch
from tqdm import tqdm
from transformers import AutoModelForMaskedLM
from datasets import Dataset, DatasetDict
from tokenizer.my_tokenizers import SMILES_SPE_Tokenizer

seed_everything(1986)

df = pd.read_csv("caco2.csv")

mols = []
canon = []
keep_rows = []
bad = 0

for i, smi in enumerate(df["SMILES"].astype(str)):
    m = Chem.MolFromSmiles(smi)
    if m is None:
        bad += 1
        continue
    smi_can = Chem.MolToSmiles(m, canonical=True, isomericSmiles=True)
    mols.append(m)
    canon.append(smi_can)
    keep_rows.append(i)

df = df.iloc[keep_rows].reset_index(drop=True)
df["SMILES_CANON"] = canon

print(f"Invalid SMILES dropped: {bad} / {len(df) + bad}")

# Drop exact duplicate molecules (same canonical smiles)
dup_mask = df.duplicated(subset=["SMILES_CANON"], keep="first")
df = df.loc[~dup_mask].reset_index(drop=True)
mols = [m for m, isdup in zip(mols, dup_mask) if not isdup]

# Fingerprints
morgan = AllChem.GetMorganGenerator(radius=2, fpSize=2048, includeChirality=True)
fps = [morgan.GetFingerprint(m) for m in mols]

# Cluster by similarity threshold
sim_thresh = 0.6
dist_thresh = 1.0 - sim_thresh

dists = []
n = len(fps)
for i in range(1, n):
    sims = DataStructs.BulkTanimotoSimilarity(fps[i], fps[:i])
    dists.extend([1.0 - x for x in sims])

clusters = Butina.ClusterData(dists, nPts=n, distThresh=dist_thresh, isDistData=True)

cluster_ids = np.empty(n, dtype=int)
for cid, idxs in enumerate(clusters):
    for idx in idxs:
        cluster_ids[idx] = cid

df["cluster_id"] = cluster_ids

# Split by clusters
train_fraction = 0.8
rng = np.random.default_rng()

unique_clusters = df["cluster_id"].unique()
rng.shuffle(unique_clusters)

train_target = int(train_fraction * len(df))
train_clusters = set()
count = 0
for cid in unique_clusters:
    csize = (df["cluster_id"] == cid).sum()
    if count + csize <= train_target:
        train_clusters.add(cid)
        count += csize

df["split"] = np.where(df["cluster_id"].isin(train_clusters), "train", "val")

df[df["split"] == "train"].to_csv("caco2_train.csv", index=False)
df[df["split"] == "val"].to_csv("caco2_val.csv", index=False)
df.to_csv("caco2_meta_with_split.csv", index=False)

print(df["split"].value_counts())

# ======================
# Config
# ======================
MAX_LENGTH = 768
BATCH_SIZE = 128

TRAIN_CSV = "caco2_train.csv"
VAL_CSV   = "caco2_val.csv"

SMILES_COL = "SMILES"
LABEL_COL  = "Caco2" 

OUT_PATH = "./Classifier_Weight/training_data_cleaned/permeability_caco2/caco2_smiles_with_embeddings"

# GPU device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# ======================
# Load tokenizer + model
# ======================
print("Loading tokenizer and model...")
tokenizer = SMILES_SPE_Tokenizer(
    "./Classifier_Weight/tokenizer/new_vocab.txt",
    "./Classifier_Weight/tokenizer/new_splits.txt",
)

embedding_model = AutoModelForMaskedLM.from_pretrained("aaronfeller/PeptideCLM-23M-all").roformer
embedding_model.to(device)
embedding_model.eval()

HIDDEN_KEY = "last_hidden_state"

def get_special_ids(tokenizer):
    cand = [
        getattr(tokenizer, "pad_token_id", None),
        getattr(tokenizer, "cls_token_id", None),
        getattr(tokenizer, "sep_token_id", None),
        getattr(tokenizer, "bos_token_id", None),
        getattr(tokenizer, "eos_token_id", None),
        getattr(tokenizer, "mask_token_id", None),
    ]
    special_ids = sorted({x for x in cand if x is not None})
    if len(special_ids) == 0:
        print("[WARN] No special token ids found on tokenizer; pooling will only exclude padding via attention_mask.")
    return special_ids

SPECIAL_IDS = get_special_ids(tokenizer)
SPECIAL_IDS_T = torch.tensor(SPECIAL_IDS, device=device, dtype=torch.long) if len(SPECIAL_IDS) else None

@torch.no_grad()
def embed_batch_return_both(batch_sequences, max_length, device):
    tok = tokenizer(
        batch_sequences,
        return_tensors="pt",
        padding=True,
        max_length=max_length,
        truncation=True,
    )
    input_ids = tok["input_ids"].to(device)           # (B, L)
    attention_mask = tok["attention_mask"].to(device) # (B, L)

    outputs = embedding_model(input_ids=input_ids, attention_mask=attention_mask)
    last_hidden = outputs.last_hidden_state           # (B, L, H)

    valid = attention_mask.bool()
    if SPECIAL_IDS_T is not None and SPECIAL_IDS_T.numel() > 0:
        valid = valid & (~torch.isin(input_ids, SPECIAL_IDS_T))

    # --- pooled embeddings (exclude specials) ---
    valid_f = valid.unsqueeze(-1).float()             # (B, L, 1)
    summed = torch.sum(last_hidden * valid_f, dim=1)  # (B, H)
    denom = torch.clamp(valid_f.sum(dim=1), min=1e-9) # (B, 1)
    pooled = (summed / denom).detach().cpu().numpy()  # (B, H), float32

    # --- unpooled per-example token embeddings (exclude specials) ---
    token_emb_list = []
    mask_list = []
    lengths = []
    for b in range(last_hidden.shape[0]):
        emb = last_hidden[b, valid[b]]               # (L_i, H)
        token_emb_list.append(emb.detach().cpu().to(torch.float16).numpy())  # float16
        L_i = emb.shape[0]
        lengths.append(int(L_i))
        mask_list.append(np.ones((L_i,), dtype=np.int8))

    return pooled, token_emb_list, mask_list, lengths

def generate_embeddings_batched_both(sequences, batch_size, max_length):
    pooled_all = []
    token_emb_all = []
    mask_all = []
    lengths_all = []

    for i in tqdm(range(0, len(sequences), batch_size), desc="Embedding batches"):
        batch = sequences[i:i + batch_size]
        pooled, token_list, m_list, lens = embed_batch_return_both(batch, max_length, device)
        pooled_all.append(pooled)
        token_emb_all.extend(token_list)
        mask_all.extend(m_list)
        lengths_all.extend(lens)

    pooled_all = np.vstack(pooled_all)  # (N, H)
    return pooled_all, token_emb_all, mask_all, lengths_all

from datasets import Dataset, DatasetDict

def make_split_datasets(csv_path, split_name):
    df = pd.read_csv(csv_path)
    df = df.dropna(subset=[SMILES_COL, LABEL_COL]).reset_index(drop=True)
    df["sequence"] = df[SMILES_COL].astype(str)

    labels = pd.to_numeric(df[LABEL_COL], errors="coerce")
    df = df.loc[~labels.isna()].reset_index(drop=True)
    sequences = df["sequence"].tolist()
    labels = pd.to_numeric(df[LABEL_COL], errors="coerce").tolist()

    # (pooled_embs: (N,H), token_emb_list: list of (L_i,H), mask_list: list of (L_i,), lengths: list[int])
    pooled_embs, token_emb_list, mask_list, lengths = generate_embeddings_batched_both(
        sequences, batch_size=BATCH_SIZE, max_length=MAX_LENGTH
    )

    pooled_ds = Dataset.from_dict({
        "sequence": sequences,
        "label": labels,
        "embedding": pooled_embs,   # (N,H)
    })

    full_ds = Dataset.from_dict({
        "sequence": sequences,
        "label": labels,
        "embedding": token_emb_list,     # each (L_i,H) float16
        "attention_mask": mask_list,     # each (L_i,) int8 ones
        "length": lengths,
    })

    return pooled_ds, full_ds

train_pooled, train_full = make_split_datasets(TRAIN_CSV, "train")
val_pooled,   val_full   = make_split_datasets(VAL_CSV, "val")

ds_pooled = DatasetDict({"train": train_pooled, "val": val_pooled})
ds_full   = DatasetDict({"train": train_full,   "val": val_full})

ds_pooled.save_to_disk(OUT_PATH)
ds_full.save_to_disk(OUT_PATH + "_unpooled")