MadSBM / src /utils /generate_utils.py
Shrey Goel
initial commit
94c2704
import sys
import torch
import math
import numpy as np
import torch.nn.functional as F
from collections import Counter
from omegaconf import OmegaConf
config = OmegaConf.load("/scratch/pranamlab/sgoel/MeMDLM_v2/src/configs/lm.yaml")
# -------# Masking #-------- #
def mask_for_de_novo(sequence_length):
return "<mask>" * sequence_length
def mask_for_scaffold(sequence, generate_type, mask_token):
if generate_type == "uppercase":
sequence = ''.join([mask_token if residue.isupper() else residue.upper() for residue in sequence])
elif generate_type == "lowercase":
sequence = ''.join([mask_token if residue.islower() else residue for residue in sequence])
return sequence
# -------# Generation #-------- #
def evodiff_infill(motif_seq, tokenizer, model, device, batch_size=1):
"""
Following the given evodiff example
https://github.com/microsoft/evodiff/blob/main/examples/evodiff.ipynb
"""
# Manual masking of infilling sequence
motif_seq = ''.join(["#" if aa.islower() else aa for aa in motif_seq]) # Mask token is "#" in evodiff tokenizer
tkns = tokenizer.tokenize([motif_seq])
sample = torch.as_tensor(tkns).to(device)
# Create input motif + scaffold
loc = torch.arange(0, len(motif_seq)).to(device)[sample==tokenizer.mask_id].cpu().numpy()
np.random.shuffle(loc)
sample = sample.to(device).unsqueeze(0)
# og_sample = sample.clone()
with torch.no_grad():
for i in loc:
timestep = torch.tensor([0] * batch_size).to(device) # placeholder but not called in model
timestep = timestep.to(device)
prediction = model(sample, timestep)
p = prediction[:, i, :len(tokenizer.all_aas) - 6] # only canonical
p = F.softmax(p, dim=1) # softmax over logits
p_sample = torch.multinomial(p, num_samples=1) # sample from categorical distribution
sample[:, i] = p_sample.squeeze()
output = [tokenizer.untokenize(s) for s in sample]
return output[0] #if batch_size==1 else output, og_sample, loc
def dplm_infill(masked_seq, tokenizer, model, device):
from src.lm.dplm.diffusion_module import DPLM
from src.lm.dplm.unconditional_sampler import UnconditionalSampler as DPLMUnconditionalSampler
generator = DPLMUnconditionalSampler(tokenizer, model)
xt = tokenizer(masked_seq, return_tensors='pt')['input_ids'].to(model.device)
denoised_tokens = generator.sample_unconditional(xt, config.sampling.n_steps)[0].squeeze()
generated_sequence = tokenizer.decode(denoised_tokens).replace(" ", "")[5:-5]
return generated_sequence
# -------# Metrics #-------- #
def calc_progen_ppl(model, tokenizer, target, device, fp16=True):
"""Compute causal LM cross-entropy loss for a given sequence."""
with torch.no_grad():
with torch.cuda.amp.autocast(enabled=fp16):
logits = model(
input_ids = target,
attention_mask = torch.ones_like(target)
).logits
# Shift
logits = logits[:-1, ...]
target = target[1:]
loss = torch.nn.functional.cross_entropy(
input=logits,
target=target,
reduction='mean'
)
return torch.exp(loss).item()
def calc_ppl(model, tokenizer, generated_sequence, mask_token_indices, model_type):
total_loss = 0.0
tensor_input = tokenizer.encode(generated_sequence, return_tensors='pt').to(model.device)
for i in mask_token_indices:
masked_input = tensor_input.clone()
masked_input[0, i] = tokenizer.mask_token_id
labels = torch.full(tensor_input.shape, -100).to(model.device)
labels[0, i] = tensor_input[0, i]
with torch.no_grad():
loss = model(masked_input, labels=labels).loss.item()
total_loss += loss
avg_loss = total_loss / len(generated_sequence)
perplexity = math.exp(avg_loss)
return perplexity
def calc_entropy(seq):
counts = Counter(seq)
total_len = len(seq)
entropy = 0.0
for count in counts.values():
prob = count / total_len
entropy -= prob * math.log2(prob)
return entropy