Joblib
File size: 10,092 Bytes
baf3373
 
 
 
 
 
 
470021d
 
 
 
 
 
 
 
baf3373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470021d
 
baf3373
470021d
 
baf3373
470021d
 
 
 
baf3373
 
470021d
 
 
 
 
baf3373
470021d
 
 
 
 
 
 
 
baf3373
470021d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baf3373
470021d
 
baf3373
470021d
 
baf3373
470021d
 
 
 
 
 
baf3373
470021d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baf3373
 
470021d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baf3373
 
470021d
baf3373
 
 
 
470021d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baf3373
 
470021d
 
 
baf3373
470021d
 
 
baf3373
470021d
 
baf3373
470021d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
# non fouling as example
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import os
import pandas as pd
from lightning.pytorch import seed_everything
import torch
from tqdm import tqdm
from datasets import Dataset, DatasetDict, Features, Value, Sequence
from transformers import AutoModelForMaskedLM
import sys
from transformers import AutoTokenizer, EsmModel
from datasets import Dataset, DatasetDict
import tqdm

seed_everything(1986)
# -------------------------
# Process from source
# -------------------------
m1 = [
    '[PAD]','A','R','N','D','C','Q','E','G','H',
    'I','L','K','M','F','P','S','T','W','Y','V'
]
m2 = dict(zip(
    ['[PAD]','[UNK]','[CLS]','[SEP]','[MASK]','L',
    'A','G','V','E','S','I','K','R','D','T','P','N',
    'Q','F','Y','M','H','C','W','X','U','B','Z','O'],
    range(30)
))
# Create reverse mapping
reverse_m2 = {v: k for k, v in m2.items()}
sequences = []
labels = []

# Load and process positive sequences
print("Processing positive sequences...")
with np.load('nf-positive.npz') as pos:
    pos_data = pos['arr_0']
for seq in pos_data:
    sequence = ''.join(reverse_m2[token] for token in seq if token != 0)
    sequences.append(sequence)
    labels.append(1)

# Load and process negative sequences
print("Processing negative sequences...")
with np.load('nf-negative.npz') as neg:
    neg_data = neg['arr_0']
for seq in neg_data:
    sequence = ''.join(reverse_m2[token] for token in seq if token != 0)
    sequences.append(sequence)
    labels.append(0)
    
# Build a DataFrame and add stable IDs
ids = [f"seq_{i:06d}" for i in range(len(sequences))]
df = pd.DataFrame({
    "id": ids,
    "sequence": sequences,
    "label": labels,
})
print("Before dedup:", len(df))

df = (
    df
    .drop_duplicates(subset=["sequence"])   # keep first occurrence
    .reset_index(drop=True)
)

print("After dedup:", len(df))
# Save to CSV
df.to_csv("nf_all.csv", index=False)
print("Saved nf_all.csv")

# Save as FASTA for MMseqs
with open("nf_all.fasta", "w") as f:
    for seq_id, seq in zip(df["id"], df["sequence"]):
        f.write(f">{seq_id}\n{seq}\n")

print("Saved nf_all.fasta")

# -------------------------
# RUN MMSEQS IN TERMINAL
# -------------------------

# -------------------------
"""
mkdir -p mmseqs_tmp

mmseqs createdb nf_all.fasta nfDB

mmseqs cluster nfDB nfDB_clu mmseqs_tmp \
  --min-seq-id 0.3 -c 0.8 --cov-mode 0

mmseqs createtsv nfDB nfDB nfDB_clu clusters-nf.tsv
"""
# -------------------------


# -------------------------
# Split based on clusters
# -------------------------

train_fraction = 0.8
csv_path = "nf_all.csv"
clusters_tsv = "clusters-nf.tsv"
rng = np.random.default_rng()

df = pd.read_csv(csv_path)   # must contain: id, sequence, label

# Map id -> index
id_to_index = {sid: i for i, sid in enumerate(df["id"])}

# Read MMseqs clusters
cluster_map = {}  # member_id -> cluster_id (rep_id)
with open(clusters_tsv) as f:
    for line in f:
        if not line.strip():
            continue
        rep_id, member_id = line.strip().split('\t')
        cluster_map[member_id] = rep_id

# Handle singleton sequences (not clustered)
for sid in df["id"]:
    if sid not in cluster_map:
        cluster_map[sid] = sid

# Invert to cluster_id -> dataset indices
cluster_to_indices = {}
for sid, cid in cluster_map.items():
    idx = id_to_index[sid]
    cluster_to_indices.setdefault(cid, []).append(idx)

# Shuffle clusters
cluster_ids = list(cluster_to_indices.keys())
rng.shuffle(cluster_ids)

# Assign clusters to splits
total_n = len(df)
train_target = int(train_fraction * total_n)

train_indices = []
val_indices = []
current_train = 0

for cid in cluster_ids:
    indices = cluster_to_indices[cid]
    if current_train + len(indices) <= train_target:
        train_indices.extend(indices)
        current_train += len(indices)
    else:
        val_indices.extend(indices)

# Create split column
split = np.full(total_n, "val", dtype=object)
split[train_indices] = "train"

# ===== Master CSV with split =====
df_with_split = df.copy()
df_with_split["split"] = split
df_with_split.to_csv("nf_meta_with_split.csv", index=False)

# ===== Other CSVs =====
df_train = df_with_split[df_with_split["split"] == "train"].reset_index(drop=True)
df_val   = df_with_split[df_with_split["split"] == "val"].reset_index(drop=True)

df_train.to_csv("nf_train.csv", index=False)
df_val.to_csv("nf_val.csv", index=False)

# ===== Quick sanity output =====
print("Split counts:")
print(df_with_split["split"].value_counts())
print()
print(f"Train size: {len(df_train)}")
print(f"Val size:   {len(df_val)}")
print("Wrote:")
print("  - sol_meta_with_split.csv")
print("  - sol_train.csv")
print("  - sol_val.csv")


device = torch.device("cuda:0")
print(f"Using device: {device}")

meta_path = "./Classifier_Weight/training_data_cleaned/nf/nf_meta_with_split.csv"
save_path = "./Classifier_Weight/training_data_cleaned/nf/nf_wt_with_embeddings"

tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")
model = EsmModel.from_pretrained("facebook/esm2_t33_650M_UR50D")
model = model.to(device)
model.eval()


def compute_embeddings(sequences, batch_size=32):
    """Return numpy array of shape (N, hidden_dim)."""
    embeddings = []
    for i in tqdm.trange(0, len(sequences), batch_size):
        batch_sequences = sequences[i:i + batch_size]

        inputs = tokenizer(
            batch_sequences,
            padding=True,
            max_length=1022,
            truncation=True,
            return_tensors="pt"
        )
        inputs = {k: v.to(device) for k, v in inputs.items()}

        with torch.no_grad():
            outputs = model(**inputs)
            last_hidden_states = outputs.last_hidden_state  # (B, L, H)

            attention_mask = inputs["attention_mask"].unsqueeze(-1)
            masked_hidden_states = last_hidden_states * attention_mask
            sum_hidden_states = masked_hidden_states.sum(dim=1)
            seq_lengths = attention_mask.sum(dim=1)
            batch_embeddings = sum_hidden_states / seq_lengths  # (B, H)

        embeddings.append(batch_embeddings.cpu())

    return torch.cat(embeddings, dim=0).numpy()


def create_and_save_datasets():
    # Load sequences + labels + splits
    meta = pd.read_csv(meta_path)
    sequences = meta["sequence"].tolist()
    labels = meta["label"].tolist()
    splits = meta["split"].tolist()

    print(f"Total sequences: {len(sequences)}")
    print("Split counts:", pd.Series(splits).value_counts().to_dict())

    print("Computing ESM embeddings...")
    embeddings = compute_embeddings(sequences)  # shape (N, H)

    full_ds = Dataset.from_dict({
        "sequence": sequences,
        "embedding": embeddings,
        "label": labels,
        "split": splits,
    })

    # Split into train / val, then drop the 'split' column
    train_ds = full_ds.filter(lambda x: x["split"] == "train")
    val_ds   = full_ds.filter(lambda x: x["split"] == "val")

    train_ds = train_ds.remove_columns("split")
    val_ds   = val_ds.remove_columns("split")

    ds_dict = DatasetDict({
        "train": train_ds,
        "val": val_ds,
    })

    ds_dict.save_to_disk(save_path)
    print(f"Saved DatasetDict with train/val to: {save_path}")
    print("Train size:", len(ds_dict["train"]))
    print("Val size:", len(ds_dict["val"]))

    return ds_dict


ds = create_and_save_datasets()

ex = ds["train"][0]
print("\nExample from train:")
print("Sequence:", ex["sequence"])
print("Embedding shape:", np.array(ex["embedding"]).shape)
print("Label:", ex["label"])

torch.cuda.empty_cache()

meta_path = "./Classifier_Weight/training_data_cleaned/nf/nf_meta_with_split.csv"
save_path = "./Classifier_Weight/training_data_cleaned/nf/nf_wt_with_embeddings_unpooled"

tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")
model = EsmModel.from_pretrained("facebook/esm2_t33_650M_UR50D", add_pooling_layer=False).to(device).eval()

cls_id = tokenizer.cls_token_id
eos_id = tokenizer.eos_token_id

@torch.no_grad()
def embed_one(seq, max_length=1022):
    inputs = tokenizer(seq, padding=False, truncation=True, max_length=max_length, return_tensors="pt")
    inputs = {k: v.to(device) for k, v in inputs.items()}
    out = model(**inputs)
    h = out.last_hidden_state[0]                # (L, H)
    attn = inputs["attention_mask"][0].bool()   # (L,)
    ids = inputs["input_ids"][0]

    keep = attn.clone()
    if cls_id is not None:
        keep &= (ids != cls_id)
    if eos_id is not None:
        keep &= (ids != eos_id)

    hb = h[keep].detach().cpu().to(torch.float16).numpy()  # (Li, H)
    return hb

H = 1280
features = Features({
    "sequence": Value("string"),
    "label": Value("int64"),
    "embedding": Sequence(Sequence(Value("float16"), length=H)),  # (Li, H) as nested lists
    "attention_mask": Sequence(Value("int8")),                    # (Li,)
    "length": Value("int64"),
})

def make_generator(df):
    for seq, lab in tqdm.tqdm(zip(df["sequence"].tolist(), df["label"].astype(int).tolist()), total=len(df)):
        emb = embed_one(seq)  # (Li, H) float16
        emb_list = emb.tolist()
        li = len(emb_list)
        yield {
            "sequence": seq,
            "label": int(lab),
            "embedding": emb_list,
            "attention_mask": [1] * li,
            "length": li,
        }

def build_and_save_split(df, out_dir):
    ds = Dataset.from_generator(make_generator, gen_kwargs={"df": df}, features=features)
    # small batches when writing prevents the 2GB offset overflow
    ds.save_to_disk(out_dir, max_shard_size="1GB")
    return ds

meta = pd.read_csv(meta_path)
train_df = meta[meta["split"] == "train"].reset_index(drop=True)
val_df   = meta[meta["split"] == "val"].reset_index(drop=True)

train_dir = os.path.join(save_path, "train")
val_dir   = os.path.join(save_path, "val")
os.makedirs(save_path, exist_ok=True)

train_ds = build_and_save_split(train_df, train_dir)
val_ds   = build_and_save_split(val_df, val_dir)

ds_dict = DatasetDict({"train": train_ds, "val": val_ds})
ds_dict.save_to_disk(save_path)
print(ds_dict)