Initial commit
Browse files- README.md +19 -7
- args.yml +11 -5
- config.yml +12 -2
- ppo-seals-Walker2d-v0.zip +2 -2
- ppo-seals-Walker2d-v0/_stable_baselines3_version +1 -1
- ppo-seals-Walker2d-v0/data +24 -23
- ppo-seals-Walker2d-v0/policy.optimizer.pth +2 -2
- ppo-seals-Walker2d-v0/policy.pth +2 -2
- ppo-seals-Walker2d-v0/system_info.txt +2 -2
- replay.mp4 +2 -2
- results.json +1 -1
- train_eval_metrics.zip +2 -2
- vec_normalize.pkl +3 -0
README.md
CHANGED
|
@@ -10,7 +10,7 @@ model-index:
|
|
| 10 |
results:
|
| 11 |
- metrics:
|
| 12 |
- type: mean_reward
|
| 13 |
-
value:
|
| 14 |
name: mean_reward
|
| 15 |
task:
|
| 16 |
type: reinforcement-learning
|
|
@@ -37,15 +37,21 @@ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
|
| 37 |
|
| 38 |
```
|
| 39 |
# Download model and save it into the logs/ folder
|
| 40 |
-
python -m
|
| 41 |
python enjoy.py --algo ppo --env seals/Walker2d-v0 -f logs/
|
| 42 |
```
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
## Training (with the RL Zoo)
|
| 45 |
```
|
| 46 |
python train.py --algo ppo --env seals/Walker2d-v0 -f logs/
|
| 47 |
# Upload the model and generate video (when possible)
|
| 48 |
-
python -m
|
| 49 |
```
|
| 50 |
|
| 51 |
## Hyperparameters
|
|
@@ -61,11 +67,17 @@ OrderedDict([('batch_size', 8),
|
|
| 61 |
('n_epochs', 5),
|
| 62 |
('n_steps', 2048),
|
| 63 |
('n_timesteps', 1000000.0),
|
| 64 |
-
('normalize',
|
|
|
|
| 65 |
('policy', 'MlpPolicy'),
|
| 66 |
('policy_kwargs',
|
| 67 |
-
'
|
| 68 |
-
|
|
|
|
| 69 |
('vf_coef', 0.6167177795726859),
|
| 70 |
-
('normalize_kwargs',
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
```
|
|
|
|
| 10 |
results:
|
| 11 |
- metrics:
|
| 12 |
- type: mean_reward
|
| 13 |
+
value: 2035.70 +/- 609.93
|
| 14 |
name: mean_reward
|
| 15 |
task:
|
| 16 |
type: reinforcement-learning
|
|
|
|
| 37 |
|
| 38 |
```
|
| 39 |
# Download model and save it into the logs/ folder
|
| 40 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env seals/Walker2d-v0 -orga HumanCompatibleAI -f logs/
|
| 41 |
python enjoy.py --algo ppo --env seals/Walker2d-v0 -f logs/
|
| 42 |
```
|
| 43 |
|
| 44 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
| 45 |
+
```
|
| 46 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env seals/Walker2d-v0 -orga HumanCompatibleAI -f logs/
|
| 47 |
+
rl_zoo3 enjoy --algo ppo --env seals/Walker2d-v0 -f logs/
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
## Training (with the RL Zoo)
|
| 51 |
```
|
| 52 |
python train.py --algo ppo --env seals/Walker2d-v0 -f logs/
|
| 53 |
# Upload the model and generate video (when possible)
|
| 54 |
+
python -m rl_zoo3.push_to_hub --algo ppo --env seals/Walker2d-v0 -f logs/ -orga HumanCompatibleAI
|
| 55 |
```
|
| 56 |
|
| 57 |
## Hyperparameters
|
|
|
|
| 67 |
('n_epochs', 5),
|
| 68 |
('n_steps', 2048),
|
| 69 |
('n_timesteps', 1000000.0),
|
| 70 |
+
('normalize',
|
| 71 |
+
{'gamma': 0.98, 'norm_obs': False, 'norm_reward': True}),
|
| 72 |
('policy', 'MlpPolicy'),
|
| 73 |
('policy_kwargs',
|
| 74 |
+
{'activation_fn': <class 'torch.nn.modules.activation.ReLU'>,
|
| 75 |
+
'features_extractor_class': <class 'imitation.policies.base.NormalizeFeaturesExtractor'>,
|
| 76 |
+
'net_arch': [{'pi': [256, 256], 'vf': [256, 256]}]}),
|
| 77 |
('vf_coef', 0.6167177795726859),
|
| 78 |
+
('normalize_kwargs',
|
| 79 |
+
{'norm_obs': {'gamma': 0.98,
|
| 80 |
+
'norm_obs': False,
|
| 81 |
+
'norm_reward': True},
|
| 82 |
+
'norm_reward': False})])
|
| 83 |
```
|
args.yml
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
!!python/object/apply:collections.OrderedDict
|
| 2 |
- - - algo
|
| 3 |
- ppo
|
|
|
|
|
|
|
| 4 |
- - device
|
| 5 |
- cpu
|
| 6 |
- - env
|
|
@@ -16,7 +18,7 @@
|
|
| 16 |
- - hyperparams
|
| 17 |
- null
|
| 18 |
- - log_folder
|
| 19 |
-
-
|
| 20 |
- - log_interval
|
| 21 |
- -1
|
| 22 |
- - max_total_trials
|
|
@@ -41,6 +43,8 @@
|
|
| 41 |
- null
|
| 42 |
- - optimize_hyperparameters
|
| 43 |
- false
|
|
|
|
|
|
|
| 44 |
- - pruner
|
| 45 |
- median
|
| 46 |
- - sampler
|
|
@@ -50,13 +54,13 @@
|
|
| 50 |
- - save_replay_buffer
|
| 51 |
- false
|
| 52 |
- - seed
|
| 53 |
-
-
|
| 54 |
- - storage
|
| 55 |
- null
|
| 56 |
- - study_name
|
| 57 |
- null
|
| 58 |
- - tensorboard_log
|
| 59 |
-
- runs/seals/Walker2d-
|
| 60 |
- - track
|
| 61 |
- true
|
| 62 |
- - trained_agent
|
|
@@ -70,6 +74,8 @@
|
|
| 70 |
- - verbose
|
| 71 |
- 1
|
| 72 |
- - wandb_entity
|
| 73 |
-
-
|
| 74 |
- - wandb_project_name
|
| 75 |
-
- seals-experts-
|
|
|
|
|
|
|
|
|
| 1 |
!!python/object/apply:collections.OrderedDict
|
| 2 |
- - - algo
|
| 3 |
- ppo
|
| 4 |
+
- - conf_file
|
| 5 |
+
- hyperparams/python/ppo.py
|
| 6 |
- - device
|
| 7 |
- cpu
|
| 8 |
- - env
|
|
|
|
| 18 |
- - hyperparams
|
| 19 |
- null
|
| 20 |
- - log_folder
|
| 21 |
+
- logs
|
| 22 |
- - log_interval
|
| 23 |
- -1
|
| 24 |
- - max_total_trials
|
|
|
|
| 43 |
- null
|
| 44 |
- - optimize_hyperparameters
|
| 45 |
- false
|
| 46 |
+
- - progress
|
| 47 |
+
- false
|
| 48 |
- - pruner
|
| 49 |
- median
|
| 50 |
- - sampler
|
|
|
|
| 54 |
- - save_replay_buffer
|
| 55 |
- false
|
| 56 |
- - seed
|
| 57 |
+
- 1
|
| 58 |
- - storage
|
| 59 |
- null
|
| 60 |
- - study_name
|
| 61 |
- null
|
| 62 |
- - tensorboard_log
|
| 63 |
+
- runs/seals/Walker2d-v0__ppo__1__1672507712
|
| 64 |
- - track
|
| 65 |
- true
|
| 66 |
- - trained_agent
|
|
|
|
| 74 |
- - verbose
|
| 75 |
- 1
|
| 76 |
- - wandb_entity
|
| 77 |
+
- ernestum
|
| 78 |
- - wandb_project_name
|
| 79 |
+
- seals-experts-normalized
|
| 80 |
+
- - yaml_file
|
| 81 |
+
- null
|
config.yml
CHANGED
|
@@ -22,10 +22,20 @@
|
|
| 22 |
- - n_timesteps
|
| 23 |
- 1000000.0
|
| 24 |
- - normalize
|
| 25 |
-
-
|
|
|
|
|
|
|
| 26 |
- - policy
|
| 27 |
- MlpPolicy
|
| 28 |
- - policy_kwargs
|
| 29 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
- - vf_coef
|
| 31 |
- 0.6167177795726859
|
|
|
|
| 22 |
- - n_timesteps
|
| 23 |
- 1000000.0
|
| 24 |
- - normalize
|
| 25 |
+
- gamma: 0.98
|
| 26 |
+
norm_obs: false
|
| 27 |
+
norm_reward: true
|
| 28 |
- - policy
|
| 29 |
- MlpPolicy
|
| 30 |
- - policy_kwargs
|
| 31 |
+
- activation_fn: !!python/name:torch.nn.modules.activation.ReLU ''
|
| 32 |
+
features_extractor_class: !!python/name:imitation.policies.base.NormalizeFeaturesExtractor ''
|
| 33 |
+
net_arch:
|
| 34 |
+
- pi:
|
| 35 |
+
- 256
|
| 36 |
+
- 256
|
| 37 |
+
vf:
|
| 38 |
+
- 256
|
| 39 |
+
- 256
|
| 40 |
- - vf_coef
|
| 41 |
- 0.6167177795726859
|
ppo-seals-Walker2d-v0.zip
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:02b7d06a9afa5bf92e3c26ca300baa93e68421e209151a3de8ff8cf8b7f4c43d
|
| 3 |
+
size 1754646
|
ppo-seals-Walker2d-v0/_stable_baselines3_version
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
1.6.
|
|
|
|
| 1 |
+
1.6.2
|
ppo-seals-Walker2d-v0/data
CHANGED
|
@@ -4,24 +4,24 @@
|
|
| 4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
"__module__": "stable_baselines3.common.policies",
|
| 6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
| 8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
| 9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
| 10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
| 11 |
-
"_build": "<function ActorCriticPolicy._build at
|
| 12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
| 13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
| 14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
| 15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
| 16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
| 17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
| 18 |
"__abstractmethods__": "frozenset()",
|
| 19 |
-
"_abc_impl": "<_abc_data object at
|
| 20 |
},
|
| 21 |
"verbose": 1,
|
| 22 |
"policy_kwargs": {
|
| 23 |
":type:": "<class 'dict'>",
|
| 24 |
-
":serialized:": "
|
| 25 |
"activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
|
| 26 |
"net_arch": [
|
| 27 |
{
|
|
@@ -34,7 +34,8 @@
|
|
| 34 |
256
|
| 35 |
]
|
| 36 |
}
|
| 37 |
-
]
|
|
|
|
| 38 |
},
|
| 39 |
"observation_space": {
|
| 40 |
":type:": "<class 'gym.spaces.box.Box'>",
|
|
@@ -51,7 +52,7 @@
|
|
| 51 |
},
|
| 52 |
"action_space": {
|
| 53 |
":type:": "<class 'gym.spaces.box.Box'>",
|
| 54 |
-
":serialized:": "gAWVEwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////
|
| 55 |
"dtype": "float32",
|
| 56 |
"_shape": [
|
| 57 |
6
|
|
@@ -66,17 +67,17 @@
|
|
| 66 |
"num_timesteps": 1001472,
|
| 67 |
"_total_timesteps": 1000000,
|
| 68 |
"_num_timesteps_at_start": 0,
|
| 69 |
-
"seed":
|
| 70 |
"action_noise": null,
|
| 71 |
-
"start_time":
|
| 72 |
"learning_rate": {
|
| 73 |
":type:": "<class 'function'>",
|
| 74 |
-
":serialized:": "
|
| 75 |
},
|
| 76 |
-
"tensorboard_log": "runs/seals/Walker2d-
|
| 77 |
"lr_schedule": {
|
| 78 |
":type:": "<class 'function'>",
|
| 79 |
-
":serialized:": "
|
| 80 |
},
|
| 81 |
"_last_obs": null,
|
| 82 |
"_last_episode_starts": {
|
|
@@ -85,7 +86,7 @@
|
|
| 85 |
},
|
| 86 |
"_last_original_obs": {
|
| 87 |
":type:": "<class 'numpy.ndarray'>",
|
| 88 |
-
":serialized:": "
|
| 89 |
},
|
| 90 |
"_episode_num": 0,
|
| 91 |
"use_sde": false,
|
|
@@ -93,7 +94,7 @@
|
|
| 93 |
"_current_progress_remaining": -0.0014719999999999178,
|
| 94 |
"ep_info_buffer": {
|
| 95 |
":type:": "<class 'collections.deque'>",
|
| 96 |
-
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
| 97 |
},
|
| 98 |
"ep_success_buffer": {
|
| 99 |
":type:": "<class 'collections.deque'>",
|
|
@@ -110,7 +111,7 @@
|
|
| 110 |
"n_epochs": 5,
|
| 111 |
"clip_range": {
|
| 112 |
":type:": "<class 'function'>",
|
| 113 |
-
":serialized:": "
|
| 114 |
},
|
| 115 |
"clip_range_vf": null,
|
| 116 |
"normalize_advantage": true,
|
|
|
|
| 4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
"__module__": "stable_baselines3.common.policies",
|
| 6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff28b95f790>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff28b95f820>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff28b95f8b0>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff28b95f940>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff28b95f9d0>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff28b95fa60>",
|
| 13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff28b95faf0>",
|
| 14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff28b95fb80>",
|
| 15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff28b95fc10>",
|
| 16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff28b95fca0>",
|
| 17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff28b95fd30>",
|
| 18 |
"__abstractmethods__": "frozenset()",
|
| 19 |
+
"_abc_impl": "<_abc_data object at 0x7ff28b957c00>"
|
| 20 |
},
|
| 21 |
"verbose": 1,
|
| 22 |
"policy_kwargs": {
|
| 23 |
":type:": "<class 'dict'>",
|
| 24 |
+
":serialized:": "gAWVwAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoTQABTQABZYwCdmaUXZQoTQABTQABZXVhjBhmZWF0dXJlc19leHRyYWN0b3JfY2xhc3OUjBdpbWl0YXRpb24ucG9saWNpZXMuYmFzZZSMGk5vcm1hbGl6ZUZlYXR1cmVzRXh0cmFjdG9ylJOUdS4=",
|
| 25 |
"activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
|
| 26 |
"net_arch": [
|
| 27 |
{
|
|
|
|
| 34 |
256
|
| 35 |
]
|
| 36 |
}
|
| 37 |
+
],
|
| 38 |
+
"features_extractor_class": "<class 'imitation.policies.base.NormalizeFeaturesExtractor'>"
|
| 39 |
},
|
| 40 |
"observation_space": {
|
| 41 |
":type:": "<class 'gym.spaces.box.Box'>",
|
|
|
|
| 52 |
},
|
| 53 |
"action_space": {
|
| 54 |
":type:": "<class 'gym.spaces.box.Box'>",
|
| 55 |
+
":serialized:": "gAWVEwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAKp/53N+sZVX0pRgcLKPp+/M+CwiQxP7pa1pzRIX6B05Owj+LZjpjM+PwHrKxgoXiUXfCb1WJVwEA0UOIbqDRfYIyerQhCw/NqiB3T4pLKq1F8aevTCGz7emcl4kGIKaUiL8fRLkSJGozA70ZYN23+TpEBRbORWvrBwdorrgqhEJlkUCNhwhibWZhkteklhIJATtLiJO2SaW1WlGb79H9EFaHn/EiQ2W3PjI9Bsuxv2AkSDfZvh1miot0i+ceqbkpLJ5qqmLWD2NnTOrilFIxC6cA/rF8pc94SQWLLbBcSxjVK2sH/o9FaYd9fiQ3dsDZPP8mHAYGgK2aDZ+H42jj6k6GP77TDiQclwHEX9gNyR06q+dH25GAZ8Pi+u8NRKpS9sRsuZsYAalQ18MY2jSgb61d1o1bcKRdZwLvgALc/OsLSCxaV3XKvovrmqE2gucwcSRB1hz7NcG7SMp12+Z1tLqxq2hzmEfJW3fCFiJ7KKtSzzWrsMKpReuJUPqeFlfcOyqH6Yh0Zzb+ztO8TDdY9VpyLCiYYJiLeZtU5k3q7iZC53wakfV88iVYlNDhVHCKsPobIstjtP8favMT+Q5FqseOWm1sb9J6kqskOOW7m+iVM43wGqpkRl3Txijy/AT6QtFZjvEMaDnIvrvkf7GlL+AwnLGCAeJJp7xVPXe9VJJeEfi6aPDQPcSFCZe5t4x3knZPGUnKzOox031y9irZAieDgQ9QcSg6hg/6zdxKX9ATIIf2zX2u2ZERNtNIdD2oco6By6bnWP1Qa4nu6iGAxw26wkqmLPknZ/6ibe8k/pQYJKvjYvj62f6AWj0k6VF7FkoRYS3Rn5kPXm/UDajMDIq4tCxXVliB27SsuoKz3DRJuDuV3Za388+Jfir+cOt8HmHJ4iGxdJV6gd00NTXqzebtbkusfl0fc9402u1XHA45PlO4iK0kFPEUfSPRzvjNS8tiD9gOjDW38osWJB4AO3O+v30YoRnSfh7NknHlHmF7ra3OfSgOkfv8/e1giRynoVNm0qe3oOJ9tdrMJxyJvlL7cEgvjXkvidoJQbsMOCOKhH+6goQitQE34yqiUeSOb6zC7bnXbBCJxAcD3VdUZoBQPZHIf6E8mCk8nJmjMtp3JtD+O3L3YuD5FRoU3bnDF1zX647JMj6rarTf7wYeG5sGf5SzsDBh6IwThqiXiK2L8HsKEfdN+6BMH+UgiyfvIBHEeDSXXzn6NNycMqgBAsKi1pmawdcvWB5DHgHeNtDhvYgPvdUHpcl6VU8RMJ8NIo5pWw7IZpAN1PK6UzZTggguzjG9YSDbIjVRCwFqkD5GxxqKW7cpBjhLDTuadP227JgrJUxZNTWCApt0DVCYe9ZwTnRm8iuU4/+2lkP4URrkfrVt9mPSsM9k7fq9OfG55eSsTVI1VSUD4CcUIBLypTUWYr9G+J9MWWMn3XtwMvc9LI4LN+dkAkwnJ5HKe3IZT8QWviTKdwoGxNCgQhIxSDbF7xi37PxffLhwzlzMLvINqXk/sl4fuWxPCb2/Ei+KSoZ43rsOKGs0XvNMvTEhPXQFXQtpV7SPNfjkWC6Utx0lC9rYypI1FAAspLnVRgz8EuFTHwCw2OTTULl3UcpelXwPr7hz7q3fTIDaqsfQqEGQNuitqDB1D+ItpkdBIDH8mdmBPfuqENyv6003xvDMS0BXV+hKVJRzy2e5RgZEPj5TNZDuTIfDX5mR/ORIVPDWQDhdwTxDsNOJFwIXoITheh9pMq4w5DIvfPZoVpBPfrqJ1/Gp/8+nosUN6iGaIUn9v0bM0A/eTPCHC/g/Z5l4Eci+CpuJIogcA4v2DpQvenL/eyglon+vkGvr79lqhTL4b1t2KTpjx37MG3aY3kv4oqzl64fgZWJV6xf1dCJ5yBFSbWhos+/Ax1IfmaqeKgg5F4tUzhcY55isiri+NbRKwgH/A1ICiVazpha0+Yg2Nwb8PpIt+ESvFcptY83Pc3CpQZ2qS5KxNYpAyiT5ykZHOy8b7uyUclVrcqp9nzJDg3TK+p98xwzl2uBfZMGzn5RycsyV2oiakVCwHF2524iQg0VW7VjvSV5aBpttk/m4DTa43UoWxxpeZe691QlRzRa7pu7WBD4fvoTOUTLT8bvmL4LHlKTmrs9lsMMeKDcUCCZeH4iGM1+WfiCQjkyneADf2CqC61VIt+pJvbRwFv5cgaaFuUy+r1px5mVh6jlsBa2JlLEYYAgxejXusd+3/YtTgjcRVhfyZIq8NPPdu5R5a4MElf570pK9PKMq/Sawznu/g0m/MfzSl6NnUqXSiTiZF3udbi3CBFhMq30DP65LhgM2g+hFWgyWn1HaAhhrrUOuJK6TxX39/2eCNhBxjAMxiyiWqID9LYKwpiqsXzR++l32UEBnzb1tzuww4F3D0x4QRu2RMC8hYD4oPfOe3LknhYZho7sjHJ4zsxXa/SPoKjHGHWhQSem+gozPXHB1zDzgUjfK7sVtMX8zFFKO0KN5ONEkgG/Yxef4rM+bjzmEUNlygWYOp9FyOmePe30jiHwmPLExZ1HisfAPMuF4uxZTMaRKB1vTCrBMiljNr1cKy7UFH17GP5zDEWklSVQLIXMyEO+QJC8Mj/jp9WOKE0txUFpffehGHcw85KgOcHmKtuciGXOD4wPqWK2ELN+APoQxWxnHYqv9Y8jv+iA/zMZC1eucL98vxZ04TuFglu1GveiGarRC3oqtBl4bbh7ewndNQSiFUiAZd8aVTMQhqbqTlp7dnPrkLeMfzOVwtFAaQVImpCUkbvw1sZBJiukoT35sfHLA9HQtk7j4lsuFC2tIuwp9PLySm3lUMZmfKyzQIY+Y3lBhHEZauvGtL9diRlyoiEHZytsPQnlenaTf6OI2BgIB1HM9OtSkhYtiI0+nJr5iBZ0HGEaxoihKCu1BFKFkhHtgF3evkMb54uz/pBmQRbYSv3R8kgqk7Klj00s3C7t/TdTXk1Ur8MMzDK/oVlGtmUqrVM4/U1iq164mYEp8hbtxFRMnQurzsbYrDp42LitPrVCtOtkin+YT00/DSCBgwlloYPVZNkMKjNNHMACc6OjPFtWkXy3YYqOOpeiNnc2CggVX6u7T80c1vECenWlfgJVvI7Fs3ifLoG7dezN7+u26t13pmelhohojnd8cydcga1NfauyLhDKZoggA5GDT3L87ag0eyLVkQ2GKPS7M7QUcH9QQMcU5bfou5etVO9gFkbgF63yeBkwolOrAz++RyDBlvlcJgeQDC/7V9xe+6lt6IcQoiGi+nkXfWjKcMx2HUC+Zr9A7AEsGk3FDdEuelBVdE0W/T9v8NuuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
| 56 |
"dtype": "float32",
|
| 57 |
"_shape": [
|
| 58 |
6
|
|
|
|
| 67 |
"num_timesteps": 1001472,
|
| 68 |
"_total_timesteps": 1000000,
|
| 69 |
"_num_timesteps_at_start": 0,
|
| 70 |
+
"seed": 2,
|
| 71 |
"action_noise": null,
|
| 72 |
+
"start_time": 1672507718999928225,
|
| 73 |
"learning_rate": {
|
| 74 |
":type:": "<class 'function'>",
|
| 75 |
+
":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL21heGltaWxpYW4vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPwPhJN9QJE+FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
| 76 |
},
|
| 77 |
+
"tensorboard_log": "runs/seals/Walker2d-v0__ppo__1__1672507712/seals-Walker2d-v0",
|
| 78 |
"lr_schedule": {
|
| 79 |
":type:": "<class 'function'>",
|
| 80 |
+
":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL21heGltaWxpYW4vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPwPhJN9QJE+FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
| 81 |
},
|
| 82 |
"_last_obs": null,
|
| 83 |
"_last_episode_starts": {
|
|
|
|
| 86 |
},
|
| 87 |
"_last_original_obs": {
|
| 88 |
":type:": "<class 'numpy.ndarray'>",
|
| 89 |
+
":serialized:": "gAWVBQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaQAAAAAAAAAMJV8NVxLmk/V5hVC5gA9D+SMYTMuE1pv5dpCTe2pmm/OBYZZTFTZj8wkQHYbFtyv3Ak0UjYoXG/oAXRDO3jIz9crOH7F+RePyCRoR9IdTq/5ZujsWR3cD/QIT3CxoxmPz6/M0Rr+Wq/d/blBTpNc78WM+BZtehvP3h0M9I4Pky/0JMPGK+uMr+AdkmpkrEWP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsShpSMAUOUdJRSlC4="
|
| 90 |
},
|
| 91 |
"_episode_num": 0,
|
| 92 |
"use_sde": false,
|
|
|
|
| 94 |
"_current_progress_remaining": -0.0014719999999999178,
|
| 95 |
"ep_info_buffer": {
|
| 96 |
":type:": "<class 'collections.deque'>",
|
| 97 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqIsUyuKiokCUhpRSlIwBbJRN6AOMAXSUR0DBB4uD3/PxdX2UKGgGaAloD0MI9MXei6dNoECUhpRSlGgVTegDaBZHQMEJKhLoOhF1fZQoaAZoCWgPQwhRhqqYehGkQJSGlFKUaBVN6ANoFkdAwRGAWSEDhnV9lChoBmgJaA9DCP9byY69waBAlIaUUpRoFU3oA2gWR0DBEplfReC1dX2UKGgGaAloD0MIvoQKDpdAokCUhpRSlGgVTegDaBZHQMEaKbXg9/11fZQoaAZoCWgPQwjTTWIQaGKeQJSGlFKUaBVN6ANoFkdAwRuDJpWV/3V9lChoBmgJaA9DCET4F0GDaIJAlIaUUpRoFU3oA2gWR0DBIpMzVMEidX2UKGgGaAloD0MI4NVyZ3YhnECUhpRSlGgVTegDaBZHQMEjoNCiRGN1fZQoaAZoCWgPQwihn6nXncOdQJSGlFKUaBVN6ANoFkdAwStPCzkZJnV9lChoBmgJaA9DCJAty9et/qBAlIaUUpRoFU3oA2gWR0DBLK28ujASdX2UKGgGaAloD0MI09wKYSXYnkCUhpRSlGgVTegDaBZHQME0JQpWmxd1fZQoaAZoCWgPQwjCE3r9+cKfQJSGlFKUaBVN6ANoFkdAwTVREG7jDXV9lChoBmgJaA9DCKYKRiV132tAlIaUUpRoFU3oA2gWR0DBPSvq7iAEdX2UKGgGaAloD0MImpMXmVAYoUCUhpRSlGgVTegDaBZHQME+dzjebd91fZQoaAZoCWgPQwjboswGMZagQJSGlFKUaBVN6ANoFkdAwUcZamoBJnV9lChoBmgJaA9DCP91btqMz2zAlIaUUpRoFU3oA2gWR0DBSB93Y+SsdX2UKGgGaAloD0MI1GTG2+qkoECUhpRSlGgVTegDaBZHQMFPNCZ4Oc51fZQoaAZoCWgPQwhbBpyl9OOcQJSGlFKUaBVN6ANoFkdAwVBjTsIE83V9lChoBmgJaA9DCOF86ljdgKJAlIaUUpRoFU3oA2gWR0DBV8ilgtvodX2UKGgGaAloD0MIgc8PI3QqokCUhpRSlGgVTegDaBZHQMFZB3fAKv51fZQoaAZoCWgPQwjNO07RgV6bQJSGlFKUaBVN6ANoFkdAwWDjqHGjsXV9lChoBmgJaA9DCIqvdhTPCKFAlIaUUpRoFU3oA2gWR0DBYi7FwT/RdX2UKGgGaAloD0MINUOqKF7hRcCUhpRSlGgVTegDaBZHQMFqeliz9jx1fZQoaAZoCWgPQwghzsMJ3KOiQJSGlFKUaBVN6ANoFkdAwWvGD4gzQHV9lChoBmgJaA9DCDgR/dr6GJlAlIaUUpRoFU3oA2gWR0DBeFMjmjj8dX2UKGgGaAloD0MILC0j9V5SeECUhpRSlGgVTegDaBZHQMF5e9EkSmJ1fZQoaAZoCWgPQwh0l8RZMa6dQJSGlFKUaBVN6ANoFkdAwYBlOQhfSnV9lChoBmgJaA9DCCBfQgXHQqFAlIaUUpRoFU3oA2gWR0DBgXtp/PPcdX2UKGgGaAloD0MIniPyXSrwnUCUhpRSlGgVTegDaBZHQMGI6CWNWEN1fZQoaAZoCWgPQwi30muzsaGhQJSGlFKUaBVN6ANoFkdAwYnu9Iwud3V9lChoBmgJaA9DCES/tn5iwKJAlIaUUpRoFU3oA2gWR0DBkTxLIxQBdX2UKGgGaAloD0MI/5YA/FM7Y8CUhpRSlGgVTegDaBZHQMGSXcer+5x1fZQoaAZoCWgPQwjFILBy2FOdQJSGlFKUaBVN6ANoFkdAwZkIJBPbf3V9lChoBmgJaA9DCJATJox+vaBAlIaUUpRoFU3oA2gWR0DBmnx1cMVldX2UKGgGaAloD0MIBkzg1s2uoECUhpRSlGgVTegDaBZHQMGivfqHGjt1fZQoaAZoCWgPQwg8akyIme6aQJSGlFKUaBVN6ANoFkdAwaQrSgoPTXV9lChoBmgJaA9DCKLUXkRjn6FAlIaUUpRoFU3oA2gWR0DBq1Z2GIsRdX2UKGgGaAloD0MIlpf8T1apoECUhpRSlGgVTegDaBZHQMGsqJmmLtN1fZQoaAZoCWgPQwhIpdjRCP2fQJSGlFKUaBVN6ANoFkdAwa4RxRVIZ3V9lChoBmgJaA9DCC6qRUSBbaNAlIaUUpRoFU3oA2gWR0DBtnMTDfm+dX2UKGgGaAloD0MILxhcc7fMokCUhpRSlGgVTegDaBZHQMG4ABvJiiJ1fZQoaAZoCWgPQwj1KjI6sNyfQJSGlFKUaBVN6ANoFkdAwb+wJoCdSXV9lChoBmgJaA9DCOiFOxdm66JAlIaUUpRoFU3oA2gWR0DBwUDasZHedX2UKGgGaAloD0MIFakwtsgVoECUhpRSlGgVTegDaBZHQMHKEUh3aBZ1fZQoaAZoCWgPQwhOCvMe/zyhQJSGlFKUaBVN6ANoFkdAwctmWxhUi3V9lChoBmgJaA9DCMi2DDibvp5AlIaUUpRoFU3oA2gWR0DB1QYIMSbpdX2UKGgGaAloD0MIdxGmKH+moUCUhpRSlGgVTegDaBZHQMHV8+J53Tx1fZQoaAZoCWgPQwhYrrfNXJGhQJSGlFKUaBVN6ANoFkdAwd2mtxuKoHV9lChoBmgJaA9DCDRlpx/kgplAlIaUUpRoFU3oA2gWR0DB3yI0qH45dX2UKGgGaAloD0MIkzoBTWxvoECUhpRSlGgVTegDaBZHQMHqR5aFEiN1fZQoaAZoCWgPQwiHb2Hd8BugQJSGlFKUaBVN6ANoFkdAweusv0RODnV9lChoBmgJaA9DCHu+Zrl0JaJAlIaUUpRoFU3oA2gWR0DB8l9WuHN5dX2UKGgGaAloD0MIPITx06j4okCUhpRSlGgVTegDaBZHQMHzjp/PPcB1fZQoaAZoCWgPQwhMN4lBEOifQJSGlFKUaBVN6ANoFkdAwfyah2W6b3V9lChoBmgJaA9DCLrzxHM2WpxAlIaUUpRoFU3oA2gWR0DB/dU6BAfMdX2UKGgGaAloD0MIqkNuhlNOoUCUhpRSlGgVTegDaBZHQMIGCXQla8p1fZQoaAZoCWgPQwjYEYdsMCCfQJSGlFKUaBVN6ANoFkdAwgdwHB1s+HV9lChoBmgJaA9DCKyNsRPWJKJAlIaUUpRoFU3oA2gWR0DCDqkJjUd8dX2UKGgGaAloD0MI6DBfXlA6oUCUhpRSlGgVTegDaBZHQMIQI0Gu9vl1fZQoaAZoCWgPQwhpq5LIbvueQJSGlFKUaBVN6ANoFkdAwhjqyN4qw3V9lChoBmgJaA9DCG/ZIf4xK6VAlIaUUpRoFU3oA2gWR0DCGnho9LYgdX2UKGgGaAloD0MIPJ8B9R7soECUhpRSlGgVTegDaBZHQMIjD1vES/V1fZQoaAZoCWgPQwgtz4O7qyCgQJSGlFKUaBVN6ANoFkdAwiRkILPUrnV9lChoBmgJaA9DCIi5pGo7EaBAlIaUUpRoFU3oA2gWR0DCLCXB+F10dX2UKGgGaAloD0MI2CjrNxPom0CUhpRSlGgVTegDaBZHQMItcX4sVcl1fZQoaAZoCWgPQwg17s1vyNGhQJSGlFKUaBVN6ANoFkdAwjSg1jy4F3V9lChoBmgJaA9DCNI0KJp3sJ9AlIaUUpRoFU3oA2gWR0DCNbLV2A5JdX2UKGgGaAloD0MISKMCJ1vpoECUhpRSlGgVTegDaBZHQMI9tq4YrJ91fZQoaAZoCWgPQwgcCp+te0ajQJSGlFKUaBVN6ANoFkdAwj70F1SwW3V9lChoBmgJaA9DCBGLGHaofZ5AlIaUUpRoFU3oA2gWR0DCRxlm4AjqdX2UKGgGaAloD0MI61T5nrGDoUCUhpRSlGgVTegDaBZHQMJIXGOMl1N1fZQoaAZoCWgPQwgnF2NgVdKhQJSGlFKUaBVN6ANoFkdAwlBfHo5ggHV9lChoBmgJaA9DCEIj2Lg2V6JAlIaUUpRoFU3oA2gWR0DCUYVSKm8/dX2UKGgGaAloD0MI1Xsqpz06m0CUhpRSlGgVTegDaBZHQMJaKAqVhTh1fZQoaAZoCWgPQwj9EYYBCyWiQJSGlFKUaBVN6ANoFkdAwl/6mplz2nV9lChoBmgJaA9DCFnfwORGS4lAlIaUUpRoFU3oA2gWR0DCZ3xKaodddX2UKGgGaAloD0MIRFGgT+SFTECUhpRSlGgVTegDaBZHQMJotDq4YrJ1fZQoaAZoCWgPQwiazHhbSduJQJSGlFKUaBVN6ANoFkdAwnA+/3WWhXV9lChoBmgJaA9DCHBBtizPa55AlIaUUpRoFU3oA2gWR0DCcb0lPacqdX2UKGgGaAloD0MImbfqOsQfn0CUhpRSlGgVTegDaBZHQMJ6RpeE7GN1fZQoaAZoCWgPQwiQ+BVrAGOjQJSGlFKUaBVN6ANoFkdAwntyFxn3+XV9lChoBmgJaA9DCNhhTPpbg51AlIaUUpRoFU3oA2gWR0DCfG2VPepGdX2UKGgGaAloD0MIcuFASP7HoUCUhpRSlGgVTegDaBZHQMKDrt2s7uF1fZQoaAZoCWgPQwgCgjl65BijQJSGlFKUaBVN6ANoFkdAwoS6+xGDtnV9lChoBmgJaA9DCAMIH0q0fFlAlIaUUpRoFU3oA2gWR0DCi+9H+ZPVdX2UKGgGaAloD0MI5/7qcR/Ro0CUhpRSlGgVTegDaBZHQMKNQ3+dbxF1fZQoaAZoCWgPQwi/Khcq31mVQJSGlFKUaBVN6ANoFkdAwpPNofSx7nV9lChoBmgJaA9DCEzfawimQaJAlIaUUpRoFU3oA2gWR0DClR5F/hESdX2UKGgGaAloD0MIvXMoQ/VmnkCUhpRSlGgVTegDaBZHQMKbzXp4bCJ1fZQoaAZoCWgPQwiLw5lfdfSkQJSGlFKUaBVN6ANoFkdAwpziW6bvw3V9lChoBmgJaA9DCAvsMZEy1Z1AlIaUUpRoFU3oA2gWR0DCpQJ9oexOdX2UKGgGaAloD0MI9iUbD3ZOo0CUhpRSlGgVTegDaBZHQMKmU0fgaWJ1fZQoaAZoCWgPQwhtOCwNFMOhQJSGlFKUaBVN6ANoFkdAwq2cb+98JHV9lChoBmgJaA9DCIOJP4papqJAlIaUUpRoFU3oA2gWR0DCrvqbx3FDdX2UKGgGaAloD0MIH7k16e4qo0CUhpRSlGgVTegDaBZHQMK2HxCpm291fZQoaAZoCWgPQwgHCryTn22fQJSGlFKUaBVN6ANoFkdAwreayAQQMHV9lChoBmgJaA9DCC9rYoHfF5VAlIaUUpRoFU3oA2gWR0DCvr6SV4X5dX2UKGgGaAloD0MIBWnGovnoo0CUhpRSlGgVTegDaBZHQMK/zRZlnRN1fZQoaAZoCWgPQwjwTGiSYDyiQJSGlFKUaBVN6ANoFkdAwseGuV5a/3V9lChoBmgJaA9DCO27IvifFHlAlIaUUpRoFU3oA2gWR0DCzC6BqbjMdWUu"
|
| 98 |
},
|
| 99 |
"ep_success_buffer": {
|
| 100 |
":type:": "<class 'collections.deque'>",
|
|
|
|
| 111 |
"n_epochs": 5,
|
| 112 |
"clip_range": {
|
| 113 |
":type:": "<class 'function'>",
|
| 114 |
+
":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL21heGltaWxpYW4vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP9mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
| 115 |
},
|
| 116 |
"clip_range_vf": null,
|
| 117 |
"normalize_advantage": true,
|
ppo-seals-Walker2d-v0/policy.optimizer.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aa5e6a1f16b0d7cc2ff891260ddd0552a331d53ae21835d35de12f45e5369cb8
|
| 3 |
+
size 1154864
|
ppo-seals-Walker2d-v0/policy.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e3efb2b538b32b0ce436d2ab23ea8860e176596ec293b44bf09f4165f58c1a5c
|
| 3 |
+
size 577845
|
ppo-seals-Walker2d-v0/system_info.txt
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
-
OS: Linux-5.4.0-
|
| 2 |
Python: 3.8.10
|
| 3 |
-
Stable-Baselines3: 1.6.
|
| 4 |
PyTorch: 1.11.0+cu102
|
| 5 |
GPU Enabled: False
|
| 6 |
Numpy: 1.22.3
|
|
|
|
| 1 |
+
OS: Linux-5.4.0-125-generic-x86_64-with-glibc2.29 #141-Ubuntu SMP Wed Aug 10 13:42:03 UTC 2022
|
| 2 |
Python: 3.8.10
|
| 3 |
+
Stable-Baselines3: 1.6.2
|
| 4 |
PyTorch: 1.11.0+cu102
|
| 5 |
GPU Enabled: False
|
| 6 |
Numpy: 1.22.3
|
replay.mp4
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:19cd57dc68469c5ba6c82becf473acbe7ef6a8aa3df0e00c34a96a2f39978559
|
| 3 |
+
size 1340992
|
results.json
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"mean_reward":
|
|
|
|
| 1 |
+
{"mean_reward": 2035.7033287999998, "std_reward": 609.9346344210147, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-02T10:59:17.205660"}
|
train_eval_metrics.zip
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:acf0c8b60438212b8cd30e65bddd118f005c07db6f033252483f789779043a8e
|
| 3 |
+
size 33978
|
vec_normalize.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dbea803ab3f52aaaffc55d54c3f315db158d8319a56aae77278a062847d98c3a
|
| 3 |
+
size 4373
|