ernestum commited on
Commit
43238cc
·
1 Parent(s): 2db6e2e

Initial commit

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 3714.75 +/- 374.44
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
@@ -37,15 +37,21 @@ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
 
38
  ```
39
  # Download model and save it into the logs/ folder
40
- python -m utils.load_from_hub --algo ppo --env seals/Walker2d-v0 -orga HumanCompatibleAI -f logs/
41
  python enjoy.py --algo ppo --env seals/Walker2d-v0 -f logs/
42
  ```
43
 
 
 
 
 
 
 
44
  ## Training (with the RL Zoo)
45
  ```
46
  python train.py --algo ppo --env seals/Walker2d-v0 -f logs/
47
  # Upload the model and generate video (when possible)
48
- python -m utils.push_to_hub --algo ppo --env seals/Walker2d-v0 -f logs/ -orga HumanCompatibleAI
49
  ```
50
 
51
  ## Hyperparameters
@@ -61,11 +67,17 @@ OrderedDict([('batch_size', 8),
61
  ('n_epochs', 5),
62
  ('n_steps', 2048),
63
  ('n_timesteps', 1000000.0),
64
- ('normalize', True),
 
65
  ('policy', 'MlpPolicy'),
66
  ('policy_kwargs',
67
- 'dict(activation_fn=nn.ReLU, net_arch=[dict(pi=[256, 256], '
68
- 'vf=[256, 256])])'),
 
69
  ('vf_coef', 0.6167177795726859),
70
- ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
 
 
 
 
71
  ```
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 2035.70 +/- 609.93
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
37
 
38
  ```
39
  # Download model and save it into the logs/ folder
40
+ python -m rl_zoo3.load_from_hub --algo ppo --env seals/Walker2d-v0 -orga HumanCompatibleAI -f logs/
41
  python enjoy.py --algo ppo --env seals/Walker2d-v0 -f logs/
42
  ```
43
 
44
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
45
+ ```
46
+ python -m rl_zoo3.load_from_hub --algo ppo --env seals/Walker2d-v0 -orga HumanCompatibleAI -f logs/
47
+ rl_zoo3 enjoy --algo ppo --env seals/Walker2d-v0 -f logs/
48
+ ```
49
+
50
  ## Training (with the RL Zoo)
51
  ```
52
  python train.py --algo ppo --env seals/Walker2d-v0 -f logs/
53
  # Upload the model and generate video (when possible)
54
+ python -m rl_zoo3.push_to_hub --algo ppo --env seals/Walker2d-v0 -f logs/ -orga HumanCompatibleAI
55
  ```
56
 
57
  ## Hyperparameters
 
67
  ('n_epochs', 5),
68
  ('n_steps', 2048),
69
  ('n_timesteps', 1000000.0),
70
+ ('normalize',
71
+ {'gamma': 0.98, 'norm_obs': False, 'norm_reward': True}),
72
  ('policy', 'MlpPolicy'),
73
  ('policy_kwargs',
74
+ {'activation_fn': <class 'torch.nn.modules.activation.ReLU'>,
75
+ 'features_extractor_class': <class 'imitation.policies.base.NormalizeFeaturesExtractor'>,
76
+ 'net_arch': [{'pi': [256, 256], 'vf': [256, 256]}]}),
77
  ('vf_coef', 0.6167177795726859),
78
+ ('normalize_kwargs',
79
+ {'norm_obs': {'gamma': 0.98,
80
+ 'norm_obs': False,
81
+ 'norm_reward': True},
82
+ 'norm_reward': False})])
83
  ```
args.yml CHANGED
@@ -1,6 +1,8 @@
1
  !!python/object/apply:collections.OrderedDict
2
  - - - algo
3
  - ppo
 
 
4
  - - device
5
  - cpu
6
  - - env
@@ -16,7 +18,7 @@
16
  - - hyperparams
17
  - null
18
  - - log_folder
19
- - seals_experts_wandb_oldpickle/seed_5/
20
  - - log_interval
21
  - -1
22
  - - max_total_trials
@@ -41,6 +43,8 @@
41
  - null
42
  - - optimize_hyperparameters
43
  - false
 
 
44
  - - pruner
45
  - median
46
  - - sampler
@@ -50,13 +54,13 @@
50
  - - save_replay_buffer
51
  - false
52
  - - seed
53
- - 5
54
  - - storage
55
  - null
56
  - - study_name
57
  - null
58
  - - tensorboard_log
59
- - runs/seals/Walker2d-v0__ppo__5__1658860231
60
  - - track
61
  - true
62
  - - trained_agent
@@ -70,6 +74,8 @@
70
  - - verbose
71
  - 1
72
  - - wandb_entity
73
- - null
74
  - - wandb_project_name
75
- - seals-experts-oldpickle
 
 
 
1
  !!python/object/apply:collections.OrderedDict
2
  - - - algo
3
  - ppo
4
+ - - conf_file
5
+ - hyperparams/python/ppo.py
6
  - - device
7
  - cpu
8
  - - env
 
18
  - - hyperparams
19
  - null
20
  - - log_folder
21
+ - logs
22
  - - log_interval
23
  - -1
24
  - - max_total_trials
 
43
  - null
44
  - - optimize_hyperparameters
45
  - false
46
+ - - progress
47
+ - false
48
  - - pruner
49
  - median
50
  - - sampler
 
54
  - - save_replay_buffer
55
  - false
56
  - - seed
57
+ - 1
58
  - - storage
59
  - null
60
  - - study_name
61
  - null
62
  - - tensorboard_log
63
+ - runs/seals/Walker2d-v0__ppo__1__1672507712
64
  - - track
65
  - true
66
  - - trained_agent
 
74
  - - verbose
75
  - 1
76
  - - wandb_entity
77
+ - ernestum
78
  - - wandb_project_name
79
+ - seals-experts-normalized
80
+ - - yaml_file
81
+ - null
config.yml CHANGED
@@ -22,10 +22,20 @@
22
  - - n_timesteps
23
  - 1000000.0
24
  - - normalize
25
- - true
 
 
26
  - - policy
27
  - MlpPolicy
28
  - - policy_kwargs
29
- - dict(activation_fn=nn.ReLU, net_arch=[dict(pi=[256, 256], vf=[256, 256])])
 
 
 
 
 
 
 
 
30
  - - vf_coef
31
  - 0.6167177795726859
 
22
  - - n_timesteps
23
  - 1000000.0
24
  - - normalize
25
+ - gamma: 0.98
26
+ norm_obs: false
27
+ norm_reward: true
28
  - - policy
29
  - MlpPolicy
30
  - - policy_kwargs
31
+ - activation_fn: !!python/name:torch.nn.modules.activation.ReLU ''
32
+ features_extractor_class: !!python/name:imitation.policies.base.NormalizeFeaturesExtractor ''
33
+ net_arch:
34
+ - pi:
35
+ - 256
36
+ - 256
37
+ vf:
38
+ - 256
39
+ - 256
40
  - - vf_coef
41
  - 0.6167177795726859
ppo-seals-Walker2d-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c7126e9492694f5f1dd19c77aa24c55f7f74cb9034da6e5713fd6d10eff4f38c
3
- size 170994
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02b7d06a9afa5bf92e3c26ca300baa93e68421e209151a3de8ff8cf8b7f4c43d
3
+ size 1754646
ppo-seals-Walker2d-v0/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.6.0
 
1
+ 1.6.2
ppo-seals-Walker2d-v0/data CHANGED
@@ -4,24 +4,24 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc395b428b0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc395b42940>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc395b429d0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc395b42a60>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fc395b42af0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fc395b42b80>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc395b42c10>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7fc395b42ca0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc395b42d30>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc395b42dc0>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc395b42e50>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7fc395b36e70>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {
23
  ":type:": "<class 'dict'>",
24
- ":serialized:": "gAWVbAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoTQABTQABZYwCdmaUXZQoTQABTQABZXVhdS4=",
25
  "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
26
  "net_arch": [
27
  {
@@ -34,7 +34,8 @@
34
  256
35
  ]
36
  }
37
- ]
 
38
  },
39
  "observation_space": {
40
  ":type:": "<class 'gym.spaces.box.Box'>",
@@ -51,7 +52,7 @@
51
  },
52
  "action_space": {
53
  ":type:": "<class 'gym.spaces.box.Box'>",
54
- ":serialized:": "gAWVEwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
55
  "dtype": "float32",
56
  "_shape": [
57
  6
@@ -66,17 +67,17 @@
66
  "num_timesteps": 1001472,
67
  "_total_timesteps": 1000000,
68
  "_num_timesteps_at_start": 0,
69
- "seed": 0,
70
  "action_noise": null,
71
- "start_time": 1658860236.103207,
72
  "learning_rate": {
73
  ":type:": "<class 'function'>",
74
- ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFUvaG9tZS9tYXhpbWlsaWFuLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPwPhJN9QJE+FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
75
  },
76
- "tensorboard_log": "runs/seals/Walker2d-v0__ppo__5__1658860231/seals-Walker2d-v0",
77
  "lr_schedule": {
78
  ":type:": "<class 'function'>",
79
- ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFUvaG9tZS9tYXhpbWlsaWFuLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPwPhJN9QJE+FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
80
  },
81
  "_last_obs": null,
82
  "_last_episode_starts": {
@@ -85,7 +86,7 @@
85
  },
86
  "_last_original_obs": {
87
  ":type:": "<class 'numpy.ndarray'>",
88
- ":serialized:": "gAWVBQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaQAAAAAAAAAMpQrzNFqW6/fsqygYL28z/gsC2ghFdYP9aoACG5QGg/9olJlB3JZL9qrj1rBppiP5qy6R4YV2s/iGccvEIPY79oUIz9RSBCP9pWWZ3siGI/gEEj5WI1ND8Bp7ZONXZzvwLanKUE/20/4BEWtBmqSr+A2YnLwAVvv9qaaLrU+2A/z4XIYe6VYr9wDjMmzC1CP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsShpSMAUOUdJRSlC4="
89
  },
90
  "_episode_num": 0,
91
  "use_sde": false,
@@ -93,7 +94,7 @@
93
  "_current_progress_remaining": -0.0014719999999999178,
94
  "ep_info_buffer": {
95
  ":type:": "<class 'collections.deque'>",
96
- ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7idjfCDwqUCUhpRSlIwBbJRN6AOMAXSUR0C7S5/NJOFhdX2UKGgGaAloD0MIvko+dhdjrkCUhpRSlGgVTegDaBZHQLtN+ZvkzXV1fZQoaAZoCWgPQwiH3XcM39mqQJSGlFKUaBVN6ANoFkdAu1rN9hJAdHV9lChoBmgJaA9DCFqCjIBqCKlAlIaUUpRoFU3oA2gWR0C7XQNtygf2dX2UKGgGaAloD0MIqmIq/cxgp0CUhpRSlGgVTegDaBZHQLtqFfjjrAx1fZQoaAZoCWgPQwhMbhRZ2yKuQJSGlFKUaBVN6ANoFkdAu2yFWV/tpnV9lChoBmgJaA9DCACrI0cSVKtAlIaUUpRoFU3oA2gWR0C7eUOZG8VYdX2UKGgGaAloD0MIpYKKqg+DrECUhpRSlGgVTegDaBZHQLt7wgJTl1d1fZQoaAZoCWgPQwgu46YG2vWmQJSGlFKUaBVN6ANoFkdAu4jssxwhn3V9lChoBmgJaA9DCHJSmPcgUqxAlIaUUpRoFU3oA2gWR0C7ix+R9w3pdX2UKGgGaAloD0MIYTdsW9QZgMCUhpRSlGgVTegDaBZHQLuX1Ur08Nh1fZQoaAZoCWgPQwhcqtIWz5ynQJSGlFKUaBVN6ANoFkdAu5ouKiwjdHV9lChoBmgJaA9DCBi0kICZV6VAlIaUUpRoFU3oA2gWR0C7ptD9n9NvdX2UKGgGaAloD0MIQUXVr8xzpkCUhpRSlGgVTegDaBZHQLupFErXlKd1fZQoaAZoCWgPQwgo0v2cMuarQJSGlFKUaBVN6ANoFkdAu7WjaakRBnV9lChoBmgJaA9DCBjrG5jsEq1AlIaUUpRoFU3oA2gWR0C7uCDyz5XVdX2UKGgGaAloD0MIb7n6sWHprECUhpRSlGgVTegDaBZHQLvE+fsNUfh1fZQoaAZoCWgPQwgW3XpNj26JwJSGlFKUaBVN6ANoFkdAu8dOEBbOeXV9lChoBmgJaA9DCNdnzvosbqxAlIaUUpRoFU3oA2gWR0C71LWtp22YdX2UKGgGaAloD0MI7C5QUnirqUCUhpRSlGgVTegDaBZHQLvW+d56dDp1fZQoaAZoCWgPQwjXw5eJUkarQJSGlFKUaBVN6ANoFkdAu+RLS4OMEXV9lChoBmgJaA9DCG2rWWcsYqlAlIaUUpRoFU3oA2gWR0C75tvwmVqvdX2UKGgGaAloD0MIzuLFwqiWqUCUhpRSlGgVTegDaBZHQLvz+gbZOBV1fZQoaAZoCWgPQwhvhEVFTAytQJSGlFKUaBVN6ANoFkdAu/ZIidJ8OXV9lChoBmgJaA9DCJBnl289xK9AlIaUUpRoFU3oA2gWR0C8DRhfa6BidX2UKGgGaAloD0MItMpMaS1Wq0CUhpRSlGgVTegDaBZHQLwPSC/XXiB1fZQoaAZoCWgPQwgRx7q4XTKmQJSGlFKUaBVN6ANoFkdAvBzegezUqnV9lChoBmgJaA9DCMLdWbuV+KpAlIaUUpRoFU3oA2gWR0C8H6olhPTHdX2UKGgGaAloD0MImBO0yUEqgsCUhpRSlGgVTegDaBZHQLwsu6I3zc11fZQoaAZoCWgPQwg/OnXlu/itQJSGlFKUaBVN6ANoFkdAvC7Qb4rSVnV9lChoBmgJaA9DCKeWrfWdvqhAlIaUUpRoFU3oA2gWR0C8O/AWBSUDdX2UKGgGaAloD0MItvXTf9YeUsCUhpRSlGgVTegDaBZHQLw+nZamoBJ1fZQoaAZoCWgPQwgxCRfybHuwQJSGlFKUaBVN6ANoFkdAvEusenyd4HV9lChoBmgJaA9DCGCUoL+w2atAlIaUUpRoFU3oA2gWR0C8Tehm9QGfdX2UKGgGaAloD0MI3xYs1cVHpkCUhpRSlGgVTegDaBZHQLxaWyjpLVZ1fZQoaAZoCWgPQwh5lEp4atmqQJSGlFKUaBVN6ANoFkdAvFzxg3Lmp3V9lChoBmgJaA9DCLyuX7CbQ6pAlIaUUpRoFU3oA2gWR0C8aZVLOAy3dX2UKGgGaAloD0MIC9C2mv3KqkCUhpRSlGgVTegDaBZHQLxrs26kIop1fZQoaAZoCWgPQwj11sBWoVqvQJSGlFKUaBVN6ANoFkdAvG3gfHPu5XV9lChoBmgJaA9DCAVQjCxZznzAlIaUUpRoFU3oA2gWR0C8eqjmSyMUdX2UKGgGaAloD0MI6tDpeUfLqECUhpRSlGgVTegDaBZHQLx9TUY8+zN1fZQoaAZoCWgPQwiiKTv9WNOrQJSGlFKUaBVN6ANoFkdAvIpJPpIMB3V9lChoBmgJaA9DCGPwMO3Lzq1AlIaUUpRoFU3oA2gWR0C8jLcs+V1PdX2UKGgGaAloD0MIL204LBXupUCUhpRSlGgVTegDaBZHQLyZU7dznzR1fZQoaAZoCWgPQwg7GRwll6uoQJSGlFKUaBVN6ANoFkdAvJt2ubI91XV9lChoBmgJaA9DCGJNZVGQUq1AlIaUUpRoFU3oA2gWR0C8qLeSOinHdX2UKGgGaAloD0MIgGJkyXyPrUCUhpRSlGgVTegDaBZHQLyrMrVOKwZ1fZQoaAZoCWgPQwgZ5ZmXMwqlQJSGlFKUaBVN6ANoFkdAvLip43WFvnV9lChoBmgJaA9DCF392CS3Jq1AlIaUUpRoFU3oA2gWR0C8uspIlMRIdX2UKGgGaAloD0MIwJKrWNSxqkCUhpRSlGgVTegDaBZHQLzRn17Y02t1fZQoaAZoCWgPQwhAUG7bd7erQJSGlFKUaBVN6ANoFkdAvNQiCz1K5HV9lChoBmgJaA9DCJRpNLkwUK5AlIaUUpRoFU3oA2gWR0C84Qtcv/R3dX2UKGgGaAloD0MIwZDVrXYuqECUhpRSlGgVTegDaBZHQLzjjAkLQX11fZQoaAZoCWgPQwitS43QL/KvQJSGlFKUaBVN6ANoFkdAvPB5oZhrnHV9lChoBmgJaA9DCPXyO032sq1AlIaUUpRoFU3oA2gWR0C88svGEPDpdX2UKGgGaAloD0MIvviiPe7npkCUhpRSlGgVTegDaBZHQL0AGn2Iwdt1fZQoaAZoCWgPQwiOW8zP1ZGsQJSGlFKUaBVN6ANoFkdAvQK8pYs/ZHV9lChoBmgJaA9DCGAgCJDhs6pAlIaUUpRoFU3oA2gWR0C9D5FFUhmodX2UKGgGaAloD0MIg02dR821rECUhpRSlGgVTegDaBZHQL0SDC2c8T11fZQoaAZoCWgPQwh6GjBIOq+tQJSGlFKUaBVN6ANoFkdAvR41NWU8m3V9lChoBmgJaA9DCHdOs0AzDK9AlIaUUpRoFU3oA2gWR0C9IFcJY1YRdX2UKGgGaAloD0MI0ZFc/sO+q0CUhpRSlGgVTegDaBZHQL0tfwHZ9NN1fZQoaAZoCWgPQwhzvW2meiawQJSGlFKUaBVN6ANoFkdAvS/Mw1zhgnV9lChoBmgJaA9DCFVNEHWH8KpAlIaUUpRoFU3oA2gWR0C9PPpGvwEydX2UKGgGaAloD0MIDyvc8uGdrECUhpRSlGgVTegDaBZHQL0/idgOSW91fZQoaAZoCWgPQwiJQsu670atQJSGlFKUaBVN6ANoFkdAvUyvlV94NnV9lChoBmgJaA9DCFvR5jgfDqpAlIaUUpRoFU3oA2gWR0C9Tyuv6j33dX2UKGgGaAloD0MI4UbKFmFzqECUhpRSlGgVTegDaBZHQL1b+Lfk3jx1fZQoaAZoCWgPQwj2lnK+yCyrQJSGlFKUaBVN6ANoFkdAvV5NXxOLznV9lChoBmgJaA9DCPhVuVDRWqtAlIaUUpRoFU3oA2gWR0C9azUqlP8AdX2UKGgGaAloD0MI7bd2oszHp0CUhpRSlGgVTegDaBZHQL1tgJgb6xh1fZQoaAZoCWgPQwguG53zWxWpQJSGlFKUaBVN6ANoFkdAvXpTIcR15nV9lChoBmgJaA9DCLq9pDGS0KlAlIaUUpRoFU3oA2gWR0C9fN00BOpLdX2UKGgGaAloD0MIGqN1VE1xqkCUhpRSlGgVTegDaBZHQL2J2UUfxMF1fZQoaAZoCWgPQwiXH7jK24yuQJSGlFKUaBVN6ANoFkdAvZYvm3fAK3V9lChoBmgJaA9DCAM/qmE/uKtAlIaUUpRoFU3oA2gWR0C9o7ckleF+dX2UKGgGaAloD0MIs/D1td7wqkCUhpRSlGgVTegDaBZHQL2mry0rsjV1fZQoaAZoCWgPQwjAJmvU0xmnQJSGlFKUaBVN6ANoFkdAvbObfvWpZXV9lChoBmgJaA9DCKBrX0AHl6hAlIaUUpRoFU3oA2gWR0C9tfLTx5LRdX2UKGgGaAloD0MIU67wLv8SrECUhpRSlGgVTegDaBZHQL3C2ZlnRLN1fZQoaAZoCWgPQwjQfM7dRuirQJSGlFKUaBVN6ANoFkdAvcVmshgVoHV9lChoBmgJaA9DCGIwf4W8eK5AlIaUUpRoFU3oA2gWR0C9yDpMg2ZRdX2UKGgGaAloD0MIfzDw3LPIr0CUhpRSlGgVTegDaBZHQL3VzI9TxXp1fZQoaAZoCWgPQwj7lc6HhwmtQJSGlFKUaBVN6ANoFkdAvdg8c0cfeXV9lChoBmgJaA9DCN8WLNXFfqdAlIaUUpRoFU3oA2gWR0C95SFNQCSzdX2UKGgGaAloD0MIBmNEotAeqkCUhpRSlGgVTegDaBZHQL3nj5eZ5Rl1fZQoaAZoCWgPQwhMp3UbRN+pQJSGlFKUaBVN6ANoFkdAvfTriMo+fXV9lChoBmgJaA9DCOIhjJ8ub6pAlIaUUpRoFU3oA2gWR0C994tY8uBddX2UKGgGaAloD0MIVP1K5wtLp0CUhpRSlGgVTegDaBZHQL4EnDWK/Eh1fZQoaAZoCWgPQwgQO1PoZOOjQJSGlFKUaBVN6ANoFkdAvgcBy+6AfHV9lChoBmgJaA9DCHpvDAHQEatAlIaUUpRoFU3oA2gWR0C+E/9SuQp4dX2UKGgGaAloD0MI5dTOMMWcrkCUhpRSlGgVTegDaBZHQL4WUPwNLDh1fZQoaAZoCWgPQwhDxw4qoZmrQJSGlFKUaBVN6ANoFkdAviM4QXhwVHV9lChoBmgJaA9DCB7iH7asZ6ZAlIaUUpRoFU3oA2gWR0C+JXSJoCdSdX2UKGgGaAloD0MIFqQZi34ZrkCUhpRSlGgVTegDaBZHQL4yYeV9nbt1fZQoaAZoCWgPQwi6aMh41P2qQJSGlFKUaBVN6ANoFkdAvjTY1LrX2HV9lChoBmgJaA9DCFdgyOo2569AlIaUUpRoFU3oA2gWR0C+QkzEvTPTdX2UKGgGaAloD0MIU0Da/9BvrECUhpRSlGgVTegDaBZHQL5EhqD9Oyp1fZQoaAZoCWgPQwhmguFc+/qnQJSGlFKUaBVN6ANoFkdAvlE46xPfsXV9lChoBmgJaA9DCFhYcD+Qc6lAlIaUUpRoFU3oA2gWR0C+XaAjps42dWUu"
97
  },
98
  "ep_success_buffer": {
99
  ":type:": "<class 'collections.deque'>",
@@ -110,7 +111,7 @@
110
  "n_epochs": 5,
111
  "clip_range": {
112
  ":type:": "<class 'function'>",
113
- ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFUvaG9tZS9tYXhpbWlsaWFuLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP9mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
114
  },
115
  "clip_range_vf": null,
116
  "normalize_advantage": true,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff28b95f790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff28b95f820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff28b95f8b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff28b95f940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff28b95f9d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff28b95fa60>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff28b95faf0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff28b95fb80>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff28b95fc10>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff28b95fca0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff28b95fd30>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7ff28b957c00>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {
23
  ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVwAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoTQABTQABZYwCdmaUXZQoTQABTQABZXVhjBhmZWF0dXJlc19leHRyYWN0b3JfY2xhc3OUjBdpbWl0YXRpb24ucG9saWNpZXMuYmFzZZSMGk5vcm1hbGl6ZUZlYXR1cmVzRXh0cmFjdG9ylJOUdS4=",
25
  "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
26
  "net_arch": [
27
  {
 
34
  256
35
  ]
36
  }
37
+ ],
38
+ "features_extractor_class": "<class 'imitation.policies.base.NormalizeFeaturesExtractor'>"
39
  },
40
  "observation_space": {
41
  ":type:": "<class 'gym.spaces.box.Box'>",
 
52
  },
53
  "action_space": {
54
  ":type:": "<class 'gym.spaces.box.Box'>",
55
+ ":serialized:": "gAWVEwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAKp/53N+sZVX0pRgcLKPp+/M+CwiQxP7pa1pzRIX6B05Owj+LZjpjM+PwHrKxgoXiUXfCb1WJVwEA0UOIbqDRfYIyerQhCw/NqiB3T4pLKq1F8aevTCGz7emcl4kGIKaUiL8fRLkSJGozA70ZYN23+TpEBRbORWvrBwdorrgqhEJlkUCNhwhibWZhkteklhIJATtLiJO2SaW1WlGb79H9EFaHn/EiQ2W3PjI9Bsuxv2AkSDfZvh1miot0i+ceqbkpLJ5qqmLWD2NnTOrilFIxC6cA/rF8pc94SQWLLbBcSxjVK2sH/o9FaYd9fiQ3dsDZPP8mHAYGgK2aDZ+H42jj6k6GP77TDiQclwHEX9gNyR06q+dH25GAZ8Pi+u8NRKpS9sRsuZsYAalQ18MY2jSgb61d1o1bcKRdZwLvgALc/OsLSCxaV3XKvovrmqE2gucwcSRB1hz7NcG7SMp12+Z1tLqxq2hzmEfJW3fCFiJ7KKtSzzWrsMKpReuJUPqeFlfcOyqH6Yh0Zzb+ztO8TDdY9VpyLCiYYJiLeZtU5k3q7iZC53wakfV88iVYlNDhVHCKsPobIstjtP8favMT+Q5FqseOWm1sb9J6kqskOOW7m+iVM43wGqpkRl3Txijy/AT6QtFZjvEMaDnIvrvkf7GlL+AwnLGCAeJJp7xVPXe9VJJeEfi6aPDQPcSFCZe5t4x3knZPGUnKzOox031y9irZAieDgQ9QcSg6hg/6zdxKX9ATIIf2zX2u2ZERNtNIdD2oco6By6bnWP1Qa4nu6iGAxw26wkqmLPknZ/6ibe8k/pQYJKvjYvj62f6AWj0k6VF7FkoRYS3Rn5kPXm/UDajMDIq4tCxXVliB27SsuoKz3DRJuDuV3Za388+Jfir+cOt8HmHJ4iGxdJV6gd00NTXqzebtbkusfl0fc9402u1XHA45PlO4iK0kFPEUfSPRzvjNS8tiD9gOjDW38osWJB4AO3O+v30YoRnSfh7NknHlHmF7ra3OfSgOkfv8/e1giRynoVNm0qe3oOJ9tdrMJxyJvlL7cEgvjXkvidoJQbsMOCOKhH+6goQitQE34yqiUeSOb6zC7bnXbBCJxAcD3VdUZoBQPZHIf6E8mCk8nJmjMtp3JtD+O3L3YuD5FRoU3bnDF1zX647JMj6rarTf7wYeG5sGf5SzsDBh6IwThqiXiK2L8HsKEfdN+6BMH+UgiyfvIBHEeDSXXzn6NNycMqgBAsKi1pmawdcvWB5DHgHeNtDhvYgPvdUHpcl6VU8RMJ8NIo5pWw7IZpAN1PK6UzZTggguzjG9YSDbIjVRCwFqkD5GxxqKW7cpBjhLDTuadP227JgrJUxZNTWCApt0DVCYe9ZwTnRm8iuU4/+2lkP4URrkfrVt9mPSsM9k7fq9OfG55eSsTVI1VSUD4CcUIBLypTUWYr9G+J9MWWMn3XtwMvc9LI4LN+dkAkwnJ5HKe3IZT8QWviTKdwoGxNCgQhIxSDbF7xi37PxffLhwzlzMLvINqXk/sl4fuWxPCb2/Ei+KSoZ43rsOKGs0XvNMvTEhPXQFXQtpV7SPNfjkWC6Utx0lC9rYypI1FAAspLnVRgz8EuFTHwCw2OTTULl3UcpelXwPr7hz7q3fTIDaqsfQqEGQNuitqDB1D+ItpkdBIDH8mdmBPfuqENyv6003xvDMS0BXV+hKVJRzy2e5RgZEPj5TNZDuTIfDX5mR/ORIVPDWQDhdwTxDsNOJFwIXoITheh9pMq4w5DIvfPZoVpBPfrqJ1/Gp/8+nosUN6iGaIUn9v0bM0A/eTPCHC/g/Z5l4Eci+CpuJIogcA4v2DpQvenL/eyglon+vkGvr79lqhTL4b1t2KTpjx37MG3aY3kv4oqzl64fgZWJV6xf1dCJ5yBFSbWhos+/Ax1IfmaqeKgg5F4tUzhcY55isiri+NbRKwgH/A1ICiVazpha0+Yg2Nwb8PpIt+ESvFcptY83Pc3CpQZ2qS5KxNYpAyiT5ykZHOy8b7uyUclVrcqp9nzJDg3TK+p98xwzl2uBfZMGzn5RycsyV2oiakVCwHF2524iQg0VW7VjvSV5aBpttk/m4DTa43UoWxxpeZe691QlRzRa7pu7WBD4fvoTOUTLT8bvmL4LHlKTmrs9lsMMeKDcUCCZeH4iGM1+WfiCQjkyneADf2CqC61VIt+pJvbRwFv5cgaaFuUy+r1px5mVh6jlsBa2JlLEYYAgxejXusd+3/YtTgjcRVhfyZIq8NPPdu5R5a4MElf570pK9PKMq/Sawznu/g0m/MfzSl6NnUqXSiTiZF3udbi3CBFhMq30DP65LhgM2g+hFWgyWn1HaAhhrrUOuJK6TxX39/2eCNhBxjAMxiyiWqID9LYKwpiqsXzR++l32UEBnzb1tzuww4F3D0x4QRu2RMC8hYD4oPfOe3LknhYZho7sjHJ4zsxXa/SPoKjHGHWhQSem+gozPXHB1zDzgUjfK7sVtMX8zFFKO0KN5ONEkgG/Yxef4rM+bjzmEUNlygWYOp9FyOmePe30jiHwmPLExZ1HisfAPMuF4uxZTMaRKB1vTCrBMiljNr1cKy7UFH17GP5zDEWklSVQLIXMyEO+QJC8Mj/jp9WOKE0txUFpffehGHcw85KgOcHmKtuciGXOD4wPqWK2ELN+APoQxWxnHYqv9Y8jv+iA/zMZC1eucL98vxZ04TuFglu1GveiGarRC3oqtBl4bbh7ewndNQSiFUiAZd8aVTMQhqbqTlp7dnPrkLeMfzOVwtFAaQVImpCUkbvw1sZBJiukoT35sfHLA9HQtk7j4lsuFC2tIuwp9PLySm3lUMZmfKyzQIY+Y3lBhHEZauvGtL9diRlyoiEHZytsPQnlenaTf6OI2BgIB1HM9OtSkhYtiI0+nJr5iBZ0HGEaxoihKCu1BFKFkhHtgF3evkMb54uz/pBmQRbYSv3R8kgqk7Klj00s3C7t/TdTXk1Ur8MMzDK/oVlGtmUqrVM4/U1iq164mYEp8hbtxFRMnQurzsbYrDp42LitPrVCtOtkin+YT00/DSCBgwlloYPVZNkMKjNNHMACc6OjPFtWkXy3YYqOOpeiNnc2CggVX6u7T80c1vECenWlfgJVvI7Fs3ifLoG7dezN7+u26t13pmelhohojnd8cydcga1NfauyLhDKZoggA5GDT3L87ag0eyLVkQ2GKPS7M7QUcH9QQMcU5bfou5etVO9gFkbgF63yeBkwolOrAz++RyDBlvlcJgeQDC/7V9xe+6lt6IcQoiGi+nkXfWjKcMx2HUC+Zr9A7AEsGk3FDdEuelBVdE0W/T9v8NuuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
56
  "dtype": "float32",
57
  "_shape": [
58
  6
 
67
  "num_timesteps": 1001472,
68
  "_total_timesteps": 1000000,
69
  "_num_timesteps_at_start": 0,
70
+ "seed": 2,
71
  "action_noise": null,
72
+ "start_time": 1672507718999928225,
73
  "learning_rate": {
74
  ":type:": "<class 'function'>",
75
+ ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL21heGltaWxpYW4vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPwPhJN9QJE+FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
76
  },
77
+ "tensorboard_log": "runs/seals/Walker2d-v0__ppo__1__1672507712/seals-Walker2d-v0",
78
  "lr_schedule": {
79
  ":type:": "<class 'function'>",
80
+ ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL21heGltaWxpYW4vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPwPhJN9QJE+FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
81
  },
82
  "_last_obs": null,
83
  "_last_episode_starts": {
 
86
  },
87
  "_last_original_obs": {
88
  ":type:": "<class 'numpy.ndarray'>",
89
+ ":serialized:": "gAWVBQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaQAAAAAAAAAMJV8NVxLmk/V5hVC5gA9D+SMYTMuE1pv5dpCTe2pmm/OBYZZTFTZj8wkQHYbFtyv3Ak0UjYoXG/oAXRDO3jIz9crOH7F+RePyCRoR9IdTq/5ZujsWR3cD/QIT3CxoxmPz6/M0Rr+Wq/d/blBTpNc78WM+BZtehvP3h0M9I4Pky/0JMPGK+uMr+AdkmpkrEWP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsShpSMAUOUdJRSlC4="
90
  },
91
  "_episode_num": 0,
92
  "use_sde": false,
 
94
  "_current_progress_remaining": -0.0014719999999999178,
95
  "ep_info_buffer": {
96
  ":type:": "<class 'collections.deque'>",
97
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqIsUyuKiokCUhpRSlIwBbJRN6AOMAXSUR0DBB4uD3/PxdX2UKGgGaAloD0MI9MXei6dNoECUhpRSlGgVTegDaBZHQMEJKhLoOhF1fZQoaAZoCWgPQwhRhqqYehGkQJSGlFKUaBVN6ANoFkdAwRGAWSEDhnV9lChoBmgJaA9DCP9byY69waBAlIaUUpRoFU3oA2gWR0DBEplfReC1dX2UKGgGaAloD0MIvoQKDpdAokCUhpRSlGgVTegDaBZHQMEaKbXg9/11fZQoaAZoCWgPQwjTTWIQaGKeQJSGlFKUaBVN6ANoFkdAwRuDJpWV/3V9lChoBmgJaA9DCET4F0GDaIJAlIaUUpRoFU3oA2gWR0DBIpMzVMEidX2UKGgGaAloD0MI4NVyZ3YhnECUhpRSlGgVTegDaBZHQMEjoNCiRGN1fZQoaAZoCWgPQwihn6nXncOdQJSGlFKUaBVN6ANoFkdAwStPCzkZJnV9lChoBmgJaA9DCJAty9et/qBAlIaUUpRoFU3oA2gWR0DBLK28ujASdX2UKGgGaAloD0MI09wKYSXYnkCUhpRSlGgVTegDaBZHQME0JQpWmxd1fZQoaAZoCWgPQwjCE3r9+cKfQJSGlFKUaBVN6ANoFkdAwTVREG7jDXV9lChoBmgJaA9DCKYKRiV132tAlIaUUpRoFU3oA2gWR0DBPSvq7iAEdX2UKGgGaAloD0MImpMXmVAYoUCUhpRSlGgVTegDaBZHQME+dzjebd91fZQoaAZoCWgPQwjboswGMZagQJSGlFKUaBVN6ANoFkdAwUcZamoBJnV9lChoBmgJaA9DCP91btqMz2zAlIaUUpRoFU3oA2gWR0DBSB93Y+SsdX2UKGgGaAloD0MI1GTG2+qkoECUhpRSlGgVTegDaBZHQMFPNCZ4Oc51fZQoaAZoCWgPQwhbBpyl9OOcQJSGlFKUaBVN6ANoFkdAwVBjTsIE83V9lChoBmgJaA9DCOF86ljdgKJAlIaUUpRoFU3oA2gWR0DBV8ilgtvodX2UKGgGaAloD0MIgc8PI3QqokCUhpRSlGgVTegDaBZHQMFZB3fAKv51fZQoaAZoCWgPQwjNO07RgV6bQJSGlFKUaBVN6ANoFkdAwWDjqHGjsXV9lChoBmgJaA9DCIqvdhTPCKFAlIaUUpRoFU3oA2gWR0DBYi7FwT/RdX2UKGgGaAloD0MINUOqKF7hRcCUhpRSlGgVTegDaBZHQMFqeliz9jx1fZQoaAZoCWgPQwghzsMJ3KOiQJSGlFKUaBVN6ANoFkdAwWvGD4gzQHV9lChoBmgJaA9DCDgR/dr6GJlAlIaUUpRoFU3oA2gWR0DBeFMjmjj8dX2UKGgGaAloD0MILC0j9V5SeECUhpRSlGgVTegDaBZHQMF5e9EkSmJ1fZQoaAZoCWgPQwh0l8RZMa6dQJSGlFKUaBVN6ANoFkdAwYBlOQhfSnV9lChoBmgJaA9DCCBfQgXHQqFAlIaUUpRoFU3oA2gWR0DBgXtp/PPcdX2UKGgGaAloD0MIniPyXSrwnUCUhpRSlGgVTegDaBZHQMGI6CWNWEN1fZQoaAZoCWgPQwi30muzsaGhQJSGlFKUaBVN6ANoFkdAwYnu9Iwud3V9lChoBmgJaA9DCES/tn5iwKJAlIaUUpRoFU3oA2gWR0DBkTxLIxQBdX2UKGgGaAloD0MI/5YA/FM7Y8CUhpRSlGgVTegDaBZHQMGSXcer+5x1fZQoaAZoCWgPQwjFILBy2FOdQJSGlFKUaBVN6ANoFkdAwZkIJBPbf3V9lChoBmgJaA9DCJATJox+vaBAlIaUUpRoFU3oA2gWR0DBmnx1cMVldX2UKGgGaAloD0MIBkzg1s2uoECUhpRSlGgVTegDaBZHQMGivfqHGjt1fZQoaAZoCWgPQwg8akyIme6aQJSGlFKUaBVN6ANoFkdAwaQrSgoPTXV9lChoBmgJaA9DCKLUXkRjn6FAlIaUUpRoFU3oA2gWR0DBq1Z2GIsRdX2UKGgGaAloD0MIlpf8T1apoECUhpRSlGgVTegDaBZHQMGsqJmmLtN1fZQoaAZoCWgPQwhIpdjRCP2fQJSGlFKUaBVN6ANoFkdAwa4RxRVIZ3V9lChoBmgJaA9DCC6qRUSBbaNAlIaUUpRoFU3oA2gWR0DBtnMTDfm+dX2UKGgGaAloD0MILxhcc7fMokCUhpRSlGgVTegDaBZHQMG4ABvJiiJ1fZQoaAZoCWgPQwj1KjI6sNyfQJSGlFKUaBVN6ANoFkdAwb+wJoCdSXV9lChoBmgJaA9DCOiFOxdm66JAlIaUUpRoFU3oA2gWR0DBwUDasZHedX2UKGgGaAloD0MIFakwtsgVoECUhpRSlGgVTegDaBZHQMHKEUh3aBZ1fZQoaAZoCWgPQwhOCvMe/zyhQJSGlFKUaBVN6ANoFkdAwctmWxhUi3V9lChoBmgJaA9DCMi2DDibvp5AlIaUUpRoFU3oA2gWR0DB1QYIMSbpdX2UKGgGaAloD0MIdxGmKH+moUCUhpRSlGgVTegDaBZHQMHV8+J53Tx1fZQoaAZoCWgPQwhYrrfNXJGhQJSGlFKUaBVN6ANoFkdAwd2mtxuKoHV9lChoBmgJaA9DCDRlpx/kgplAlIaUUpRoFU3oA2gWR0DB3yI0qH45dX2UKGgGaAloD0MIkzoBTWxvoECUhpRSlGgVTegDaBZHQMHqR5aFEiN1fZQoaAZoCWgPQwiHb2Hd8BugQJSGlFKUaBVN6ANoFkdAweusv0RODnV9lChoBmgJaA9DCHu+Zrl0JaJAlIaUUpRoFU3oA2gWR0DB8l9WuHN5dX2UKGgGaAloD0MIPITx06j4okCUhpRSlGgVTegDaBZHQMHzjp/PPcB1fZQoaAZoCWgPQwhMN4lBEOifQJSGlFKUaBVN6ANoFkdAwfyah2W6b3V9lChoBmgJaA9DCLrzxHM2WpxAlIaUUpRoFU3oA2gWR0DB/dU6BAfMdX2UKGgGaAloD0MIqkNuhlNOoUCUhpRSlGgVTegDaBZHQMIGCXQla8p1fZQoaAZoCWgPQwjYEYdsMCCfQJSGlFKUaBVN6ANoFkdAwgdwHB1s+HV9lChoBmgJaA9DCKyNsRPWJKJAlIaUUpRoFU3oA2gWR0DCDqkJjUd8dX2UKGgGaAloD0MI6DBfXlA6oUCUhpRSlGgVTegDaBZHQMIQI0Gu9vl1fZQoaAZoCWgPQwhpq5LIbvueQJSGlFKUaBVN6ANoFkdAwhjqyN4qw3V9lChoBmgJaA9DCG/ZIf4xK6VAlIaUUpRoFU3oA2gWR0DCGnho9LYgdX2UKGgGaAloD0MIPJ8B9R7soECUhpRSlGgVTegDaBZHQMIjD1vES/V1fZQoaAZoCWgPQwgtz4O7qyCgQJSGlFKUaBVN6ANoFkdAwiRkILPUrnV9lChoBmgJaA9DCIi5pGo7EaBAlIaUUpRoFU3oA2gWR0DCLCXB+F10dX2UKGgGaAloD0MI2CjrNxPom0CUhpRSlGgVTegDaBZHQMItcX4sVcl1fZQoaAZoCWgPQwg17s1vyNGhQJSGlFKUaBVN6ANoFkdAwjSg1jy4F3V9lChoBmgJaA9DCNI0KJp3sJ9AlIaUUpRoFU3oA2gWR0DCNbLV2A5JdX2UKGgGaAloD0MISKMCJ1vpoECUhpRSlGgVTegDaBZHQMI9tq4YrJ91fZQoaAZoCWgPQwgcCp+te0ajQJSGlFKUaBVN6ANoFkdAwj70F1SwW3V9lChoBmgJaA9DCBGLGHaofZ5AlIaUUpRoFU3oA2gWR0DCRxlm4AjqdX2UKGgGaAloD0MI61T5nrGDoUCUhpRSlGgVTegDaBZHQMJIXGOMl1N1fZQoaAZoCWgPQwgnF2NgVdKhQJSGlFKUaBVN6ANoFkdAwlBfHo5ggHV9lChoBmgJaA9DCEIj2Lg2V6JAlIaUUpRoFU3oA2gWR0DCUYVSKm8/dX2UKGgGaAloD0MI1Xsqpz06m0CUhpRSlGgVTegDaBZHQMJaKAqVhTh1fZQoaAZoCWgPQwj9EYYBCyWiQJSGlFKUaBVN6ANoFkdAwl/6mplz2nV9lChoBmgJaA9DCFnfwORGS4lAlIaUUpRoFU3oA2gWR0DCZ3xKaodddX2UKGgGaAloD0MIRFGgT+SFTECUhpRSlGgVTegDaBZHQMJotDq4YrJ1fZQoaAZoCWgPQwiazHhbSduJQJSGlFKUaBVN6ANoFkdAwnA+/3WWhXV9lChoBmgJaA9DCHBBtizPa55AlIaUUpRoFU3oA2gWR0DCcb0lPacqdX2UKGgGaAloD0MImbfqOsQfn0CUhpRSlGgVTegDaBZHQMJ6RpeE7GN1fZQoaAZoCWgPQwiQ+BVrAGOjQJSGlFKUaBVN6ANoFkdAwntyFxn3+XV9lChoBmgJaA9DCNhhTPpbg51AlIaUUpRoFU3oA2gWR0DCfG2VPepGdX2UKGgGaAloD0MIcuFASP7HoUCUhpRSlGgVTegDaBZHQMKDrt2s7uF1fZQoaAZoCWgPQwgCgjl65BijQJSGlFKUaBVN6ANoFkdAwoS6+xGDtnV9lChoBmgJaA9DCAMIH0q0fFlAlIaUUpRoFU3oA2gWR0DCi+9H+ZPVdX2UKGgGaAloD0MI5/7qcR/Ro0CUhpRSlGgVTegDaBZHQMKNQ3+dbxF1fZQoaAZoCWgPQwi/Khcq31mVQJSGlFKUaBVN6ANoFkdAwpPNofSx7nV9lChoBmgJaA9DCEzfawimQaJAlIaUUpRoFU3oA2gWR0DClR5F/hESdX2UKGgGaAloD0MIvXMoQ/VmnkCUhpRSlGgVTegDaBZHQMKbzXp4bCJ1fZQoaAZoCWgPQwiLw5lfdfSkQJSGlFKUaBVN6ANoFkdAwpziW6bvw3V9lChoBmgJaA9DCAvsMZEy1Z1AlIaUUpRoFU3oA2gWR0DCpQJ9oexOdX2UKGgGaAloD0MI9iUbD3ZOo0CUhpRSlGgVTegDaBZHQMKmU0fgaWJ1fZQoaAZoCWgPQwhtOCwNFMOhQJSGlFKUaBVN6ANoFkdAwq2cb+98JHV9lChoBmgJaA9DCIOJP4papqJAlIaUUpRoFU3oA2gWR0DCrvqbx3FDdX2UKGgGaAloD0MIH7k16e4qo0CUhpRSlGgVTegDaBZHQMK2HxCpm291fZQoaAZoCWgPQwgHCryTn22fQJSGlFKUaBVN6ANoFkdAwreayAQQMHV9lChoBmgJaA9DCC9rYoHfF5VAlIaUUpRoFU3oA2gWR0DCvr6SV4X5dX2UKGgGaAloD0MIBWnGovnoo0CUhpRSlGgVTegDaBZHQMK/zRZlnRN1fZQoaAZoCWgPQwjwTGiSYDyiQJSGlFKUaBVN6ANoFkdAwseGuV5a/3V9lChoBmgJaA9DCO27IvifFHlAlIaUUpRoFU3oA2gWR0DCzC6BqbjMdWUu"
98
  },
99
  "ep_success_buffer": {
100
  ":type:": "<class 'collections.deque'>",
 
111
  "n_epochs": 5,
112
  "clip_range": {
113
  ":type:": "<class 'function'>",
114
+ ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL21heGltaWxpYW4vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP9mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
115
  },
116
  "clip_range_vf": null,
117
  "normalize_advantage": true,
ppo-seals-Walker2d-v0/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fadb0087514ccc0423856852bd8e50b4caa94cc1436d0d95d2ad53be340b8739
3
- size 1154800
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa5e6a1f16b0d7cc2ff891260ddd0552a331d53ae21835d35de12f45e5369cb8
3
+ size 1154864
ppo-seals-Walker2d-v0/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9c5bc9c78855cc1d2fccf3a600a92cb8a062b4d5ecea447e16732b0ddb01eb4e
3
- size 576702
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3efb2b538b32b0ce436d2ab23ea8860e176596ec293b44bf09f4165f58c1a5c
3
+ size 577845
ppo-seals-Walker2d-v0/system_info.txt CHANGED
@@ -1,6 +1,6 @@
1
- OS: Linux-5.4.0-122-generic-x86_64-with-glibc2.29 #138-Ubuntu SMP Wed Jun 22 15:00:31 UTC 2022
2
  Python: 3.8.10
3
- Stable-Baselines3: 1.6.0
4
  PyTorch: 1.11.0+cu102
5
  GPU Enabled: False
6
  Numpy: 1.22.3
 
1
+ OS: Linux-5.4.0-125-generic-x86_64-with-glibc2.29 #141-Ubuntu SMP Wed Aug 10 13:42:03 UTC 2022
2
  Python: 3.8.10
3
+ Stable-Baselines3: 1.6.2
4
  PyTorch: 1.11.0+cu102
5
  GPU Enabled: False
6
  Numpy: 1.22.3
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f9313bc359a4b7a17176fb681c5a47476dc200555e420eee8fc9c0d601b13ad8
3
- size 1352338
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19cd57dc68469c5ba6c82becf473acbe7ef6a8aa3df0e00c34a96a2f39978559
3
+ size 1340992
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 3714.7483351, "std_reward": 374.4360849549338, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-27T16:57:00.038185"}
 
1
+ {"mean_reward": 2035.7033287999998, "std_reward": 609.9346344210147, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-02T10:59:17.205660"}
train_eval_metrics.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e7016779610d98e5a5a4b51f7d522f5945a72ffbeab7fc0b4e16778bfe1c11de
3
- size 34055
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:acf0c8b60438212b8cd30e65bddd118f005c07db6f033252483f789779043a8e
3
+ size 33978
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbea803ab3f52aaaffc55d54c3f315db158d8319a56aae77278a062847d98c3a
3
+ size 4373