File size: 13,386 Bytes
94391f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import pandas as pd
import numpy as np
import subprocess
import os
from pathlib import Path
import random
import argparse
import json
import subprocess
from concurrent.futures import ThreadPoolExecutor, wait
def parse_arguments():
parser = argparse.ArgumentParser(description='Active Learning Cycle for Ligand Prediction')
# Input/Output arguments
parser.add_argument('--input_file', type=str, required=True,
help='Input CSV file containing ligand data (e.g., tyk2_fep.csv)')
parser.add_argument('--results_dir_1', type=str, required=True,
help='Results directory for first model')
parser.add_argument('--results_dir_2', type=str, required=True,
help='Results directory for second model')
parser.add_argument('--al_batch_size', type=int, required=True,
help='Number of samples for each active learning batch')
# Experiment configuration
parser.add_argument('--num_repeats', type=int, default=5,
help='Number of repeated experiments (default: 5)')
parser.add_argument('--num_cycles', type=int, required=True,
help='Number of active learning cycles')
# Model configuration
parser.add_argument('--arch_1', type=str, required=True,
help='First model architecture')
parser.add_argument('--arch_2', type=str, required=True,
help='Second model architecture')
parser.add_argument('--weight_path_1', type=str, required=True,
help='Path to first model pretrained weights')
parser.add_argument('--weight_path_2', type=str, required=True,
help='Path to second model pretrained weights')
parser.add_argument('--lr', type=float, default=0.001,
help='Learning rate (default: 0.001)')
parser.add_argument('--master_port', type=int, default=29500,
help='Master port for distributed training (default: 29500)')
parser.add_argument('--device', type=int, default=0,
help='Base device to run the models on (default: 0)')
parser.add_argument('--begin_greedy', type=int, default=0,
help='iter of begin to be pure greedy, using half greedy before')
# Random seed
parser.add_argument('--base_seed', type=int, default=42,
help='Base random seed (default: 42)')
return parser.parse_args()
def _run(cmd):
import os
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
subprocess.run(cmd, check=True, cwd=project_root)
def run_model(arch_1, arch_2, weight_path_1, weight_path_2, results_path_1, results_path_2, result_file, lr,
master_port, train_ligf, test_ligf, device):
cmd1 = [
"bash", "./active_learning_scripts/run_model.sh",
arch_1,
weight_path_1,
results_path_1,
result_file,
str(lr),
str(master_port),
train_ligf,
test_ligf,
str(device)
]
cmd2 = [
"bash", "./active_learning_scripts/run_model.sh",
arch_2,
weight_path_2,
results_path_2,
result_file,
str(lr),
str(master_port + 1),
train_ligf,
test_ligf,
str(device + 1)
]
with ThreadPoolExecutor(max_workers=2) as executor:
task1 = executor.submit(_run, cmd=cmd1)
task2 = executor.submit(_run, cmd=cmd2)
wait([task1, task2])
def read_predictions(results_path, result_file):
"""
Read predictions from a single model
"""
predictions = {}
jsonl_path = os.path.join(results_path, result_file)
with open(jsonl_path, 'r') as f:
first_line = json.loads(f.readline().strip())
smiles_list = first_line["tyk2"]["smiles"]
all_predictions = []
for line in f:
pred_line = json.loads(line.strip())
all_predictions.append(pred_line["tyk2"]["pred"])
# Convert to numpy array and calculate mean predictions
pred_array = np.array(all_predictions)
mean_predictions = np.mean(pred_array, axis=0)
# Create dictionary mapping SMILES to predictions
for smile, pred in zip(smiles_list, mean_predictions):
predictions[smile] = float(pred)
return predictions
def prepare_initial_split(input_file, results_dir_1, results_dir_2, al_batch_size, repeat_idx, cycle_idx, base_seed):
# Read all ligands
df = pd.read_csv(input_file)
# Set random seed for reproducibility
random.seed(base_seed + repeat_idx)
# Randomly select ligands for training and testing
all_indices = list(range(len(df)))
train_indices = random.sample(all_indices, al_batch_size)
test_indices = [i for i in all_indices if i not in train_indices]
# Create train and test files
train_df = df.iloc[train_indices]
test_df = df.iloc[test_indices]
# Create file names for both directories
train_file_1 = os.path.join(results_dir_1, f"repeat_{repeat_idx}_cycle_{cycle_idx}_train.csv")
test_file_1 = os.path.join(results_dir_1, f"repeat_{repeat_idx}_cycle_{cycle_idx}_test.csv")
train_file_2 = os.path.join(results_dir_2, f"repeat_{repeat_idx}_cycle_{cycle_idx}_train.csv")
test_file_2 = os.path.join(results_dir_2, f"repeat_{repeat_idx}_cycle_{cycle_idx}_test.csv")
# Create directories if they don't exist
os.makedirs(os.path.dirname(train_file_1), exist_ok=True)
os.makedirs(os.path.dirname(train_file_2), exist_ok=True)
# Save files to both directories
train_df.to_csv(train_file_1, index=False)
test_df.to_csv(test_file_1, index=False)
train_df.to_csv(train_file_2, index=False)
test_df.to_csv(test_file_2, index=False)
return train_file_1, test_file_1, train_file_2, test_file_2
def read_and_combine_predictions(results_path_1, results_path_2, result_file):
"""
Read predictions from both models and calculate average predictions
"""
predictions = {}
# Read predictions from model 1
jsonl_path_1 = os.path.join(results_path_1, result_file)
with open(jsonl_path_1, 'r') as f:
first_line = json.loads(f.readline().strip())
smiles_list = first_line["tyk2"]["smiles"]
all_predictions_1 = []
for line in f:
pred_line = json.loads(line.strip())
all_predictions_1.append(pred_line["tyk2"]["pred"])
# Read predictions from model 2
jsonl_path_2 = os.path.join(results_path_2, result_file)
with open(jsonl_path_2, 'r') as f:
f.readline() # skip first line as we already have smiles_list
all_predictions_2 = []
for line in f:
pred_line = json.loads(line.strip())
all_predictions_2.append(pred_line["tyk2"]["pred"])
# Convert to numpy arrays
pred_array_1 = np.array(all_predictions_1)
pred_array_2 = np.array(all_predictions_2)
# Calculate mean predictions across both models
mean_predictions = (np.mean(pred_array_1, axis=0) + np.mean(pred_array_2, axis=0)) / 2
# Create dictionary mapping SMILES to average predictions
for smile, pred in zip(smiles_list, mean_predictions):
predictions[smile] = float(pred)
return predictions
def update_splits(results_dir_1, results_dir_2, predictions_1, predictions_2,
prev_train_file_1, prev_test_file_1,
prev_train_file_2, prev_test_file_2,
repeat_idx, cycle_idx, al_batch_size, begin_greedy):
# Read previous test files
test_df_1 = pd.read_csv(prev_test_file_1)
test_df_2 = pd.read_csv(prev_test_file_2)
# Add predictions to test_df
test_df_1['prediction_1'] = test_df_1['Smiles'].map(predictions_1)
test_df_1['prediction_2'] = test_df_1['Smiles'].map(predictions_2)
test_df_1['prediction'] = (test_df_1['prediction_1'] + test_df_1['prediction_2']) / 2
# Sort by average predictions (high to low)
test_df_sorted = test_df_1.sort_values('prediction', ascending=False)
# Read previous train files
train_df_1 = pd.read_csv(prev_train_file_1)
train_df_2 = pd.read_csv(prev_train_file_2)
# Create new file names for both directories
new_train_file_1 = os.path.join(results_dir_1, f"repeat_{repeat_idx}_cycle_{cycle_idx}_train.csv")
new_test_file_1 = os.path.join(results_dir_1, f"repeat_{repeat_idx}_cycle_{cycle_idx}_test.csv")
new_train_file_2 = os.path.join(results_dir_2, f"repeat_{repeat_idx}_cycle_{cycle_idx}_train.csv")
new_test_file_2 = os.path.join(results_dir_2, f"repeat_{repeat_idx}_cycle_{cycle_idx}_test.csv")
# Create directories if they don't exist
os.makedirs(os.path.dirname(new_train_file_1), exist_ok=True)
os.makedirs(os.path.dirname(new_train_file_2), exist_ok=True)
if cycle_idx >= begin_greedy:
# Take top al_batch_size compounds for training
new_train_compounds = test_df_sorted.head(al_batch_size)
remaining_test_compounds = test_df_sorted.iloc[al_batch_size:]
else:
# use half greedy approach
new_train_compounds_tmp_1 = test_df_sorted.head(al_batch_size//2)
remaining_test_compounds_tmp = test_df_sorted.iloc[al_batch_size//2:]
all_indices = list(range(len(remaining_test_compounds_tmp)))
train_indices = random.sample(all_indices, al_batch_size - al_batch_size//2)
test_indices = [i for i in all_indices if i not in train_indices]
remaining_test_compounds = remaining_test_compounds_tmp.iloc[test_indices]
new_train_compounds_tmp_2 = remaining_test_compounds_tmp.iloc[train_indices]
new_train_compounds = pd.concat([new_train_compounds_tmp_1, new_train_compounds_tmp_2])
# Combine with previous training data
combined_train_df = pd.concat([train_df_1, new_train_compounds])
for _ in range(3):
print("########################################")
print("Cycling: ", cycle_idx)
print("top_1p: {}/100".format(combined_train_df['top_1p'].sum()))
print("top_2p: {}/200".format(combined_train_df['top_2p'].sum()))
print("top_5p: {}/500".format(combined_train_df['top_5p'].sum()))
# Save files for both models (same content, different directories)
combined_train_df.to_csv(new_train_file_1, index=False)
remaining_test_compounds.to_csv(new_test_file_1, index=False)
combined_train_df.to_csv(new_train_file_2, index=False)
remaining_test_compounds.to_csv(new_test_file_2, index=False)
return (new_train_file_1, new_test_file_1,
new_train_file_2, new_test_file_2)
def run_active_learning(args):
# Create base results directories
os.system(f"rm -rf {args.results_dir_1}")
os.system(f"rm -rf {args.results_dir_2}")
os.makedirs(args.results_dir_1, exist_ok=True)
os.makedirs(args.results_dir_2, exist_ok=True)
for repeat_idx in range(args.num_repeats):
print(f"Starting repeat {repeat_idx}")
# Initial split for this repeat
train_file_1, test_file_1, train_file_2, test_file_2 = prepare_initial_split(
args.input_file,
args.results_dir_1,
args.results_dir_2,
args.al_batch_size,
repeat_idx,
0, # First cycle
args.base_seed
)
for cycle_idx in range(args.num_cycles):
print(f"Running cycle {cycle_idx} for repeat {repeat_idx}")
# Result file name
result_file = f"repeat_{repeat_idx}_cycle_{cycle_idx}_results.jsonl"
if os.path.exists(f"{args.results_dir_1}/{result_file}"):
os.remove(f"{args.results_dir_1}/{result_file}")
if os.path.exists(f"{args.results_dir_2}/{result_file}"):
os.remove(f"{args.results_dir_2}/{result_file}")
# Run both models
run_model(
arch_1=args.arch_1,
arch_2=args.arch_2,
weight_path_1=args.weight_path_1,
weight_path_2=args.weight_path_2,
results_path_1=args.results_dir_1,
results_path_2=args.results_dir_2,
result_file=result_file,
lr=args.lr,
master_port=args.master_port,
train_ligf=train_file_1,
test_ligf=test_file_1,
device=args.device
)
# Update splits for next cycle
if cycle_idx < args.num_cycles - 1:
# Read predictions from both models separately
predictions_1 = read_predictions(args.results_dir_1, result_file)
predictions_2 = read_predictions(args.results_dir_2, result_file)
# Update splits for both models
train_file_1, test_file_1, train_file_2, test_file_2 = update_splits(
args.results_dir_1,
args.results_dir_2,
predictions_1,
predictions_2,
train_file_1,
test_file_1,
train_file_2,
test_file_2,
repeat_idx,
cycle_idx + 1,
args.al_batch_size,
args.begin_greedy
)
if __name__ == "__main__":
args = parse_arguments()
run_active_learning(args) |