--- language: - tr - ar - af - az - es - en - el - ro - ru - rm - th - uk - uz - pl - pt - fa - sk - sl - da - de - nl - fr - fi - ka - hi - hu - hy - ja - kk - kn - ko - ku - ky - la - lb - id - is - it - zh - cs - vi - be - bg - bs - ne - mn license: mit tags: - turkish - tΓΌrkiye - english - ai - lamapi - gemma3 - next - next-x1 - efficient - text-generation - open-source - 1b - huggingface - large-language-model - llm - causal - transformer - artificial-intelligence - machine-learning - ai-research - natural-language-processing - nlp - finetuned - lightweight - creative - summarization - question-answering - chat-model - generative-ai - optimized-model - unsloth - trl - sft - chemistry - biology - finance - legal - music - art - code - climate - medical - agent - text-generation-inference pipeline_tag: text-generation datasets: - mlabonne/FineTome-100k - ITCL/FineTomeOs - Gryphe/ChatGPT-4o-Writing-Prompts - dongguanting/ARPO-SFT-54K - GreenerPastures/All-Your-Base-Full - Gryphe/Opus-WritingPrompts - HuggingFaceH4/MATH-500 - mlabonne/smoltalk-flat - mlabonne/natural_reasoning-formatted - OpenSPG/KAG-Thinker-training-dataset - uclanlp/Brief-Pro - CognitiveKernel/CognitiveKernel-Pro-SFT - SuperbEmphasis/Claude-4.0-DeepSeek-R1-RP-SFWish - QuixiAI/dolphin-r1 - mlabonne/lmsys-arena-human-sft-55k library_name: transformers --- # πŸš€ Next-1B (t416) ### *Lightweight, Efficient, and TΓΌrkiye-Focused AI* [![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT) [![Language: English](https://img.shields.io/badge/Language-Multilingual-red.svg)]() [![HuggingFace](https://img.shields.io/badge/πŸ€—-Lamapi/Next--1B-orange.svg)](https://huggingface.co/Lamapi/next-1b) --- ## πŸ“– Overview **Next-1B** is a **1-billion parameter causal language model** based on **Gemma 3**, designed for **efficiency, low-resource deployment, and reasoning-focused natural language understanding**. Key highlights: * Extremely **lightweight** β€” can run on consumer GPUs with low VRAM. * Optimized for **text reasoning, summarization, and creative generation**. * Supports **Turkish natively** while remaining multilingual. * Open-source and transparent for research and applications. Ideal for **developers, students, and organizations** needing **fast, reliable, and low-resource text-generation**. --- # Our Next 1B and Next 4B models are leading to all of the tiny models in benchmarks.
Model MMLU (5-shot) % MMLU-Pro % GSM8K % MATH %
Next 4B preview 84.6 66.9 82.7 70.5
Next 1B Version t327 87.3 69.2 90.5 70.1
Qwen 3 0.6B 52.81 37.6 60.7 20.5
Llama 3.2 1B 49.3 44.4 11.9 30.6
--- # Also, our Next 14b model is leading to state-of-the-art models in some of the Benchmarks.
Model MMLU (5-shot) % MMLU-Pro % GSM8K % MATH %
Next 14B (Thinking) 94.6 93.2 98.8 92.7
Next 12B 92.7 84.4 95.3 87.2
GPT-5 92.5 87.0 98.4 96.0
Claude Opus 4.1 (Thinking) ~92.0 87.8 84.7 95.4
--- ## 🎯 Goals 1. **Lightweight Efficiency:** Run smoothly on low-resource devices. 2. **Reasoning-Focused:** Provide logical and coherent text outputs. 3. **Accessibility:** Fully open-source with clear documentation. 4. **Multilingual Adaptability:** Turkish-focused but supports other languages. --- ## ✨ Key Features | Feature | Description | | --------------------------- | --------------------------------------------------------------------- | | πŸ”‹ Lightweight Architecture | Optimized for low VRAM usage; ideal for small GPUs or CPU deployment. | | πŸ‡ΉπŸ‡· Turkish & Multilingual | Handles complex Turkish prompts accurately. | | 🧠 Reasoning Capabilities | Logical chain-of-thought for question-answering and problem-solving. | | πŸ“Š Consistent Outputs | Reliable and reproducible results across multiple runs. | | 🌍 Open Source | Transparent, research-friendly, and community-driven. | --- ## πŸ“ Model Specifications | Specification | Details | | ------------------ | ---------------------------------------------------------------------- | | Base Model | Gemma 3 | | Parameter Count | 1 Billion | | Architecture | Transformer, causal LLM | | Fine-Tuning Method | Instruction fine-tuning (SFT) with Turkish and multilingual datasets | | Optimizations | Quantization-ready (q8, f16, f32) | | Use Cases | Text generation, summarization, Q&A, creative writing, reasoning tasks | --- ## πŸš€ Installation & Usage ### Use the model: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "Lamapi/next-1b" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) # Chat message messages = [ {"role": "system", "content": "You are Next-X1, a smart and concise AI assistant trained by Lamapi. Always respond in the user's language. Proudly made in Turkey."}, {"role": "user", "content": "Hello, how are you?"} ] # Prepare input with Tokenizer prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = tokenizer(prompt, return_tensors="pt") # Output from the model output = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(output[0], skip_special_tokens=True)) ```
Hello, how are you?
I'm fine, thank you. How are you?
--- ## πŸ“„ License MIT License β€” free to use, modify, and distribute. Attribution appreciated. --- ## πŸ“ž Contact & Support * πŸ“§ **Email:** [lamapicontact@gmail.com](mailto:lamapicontact@gmail.com) * πŸ€— **HuggingFace:** [Lamapi](https://huggingface.co/Lamapi) --- > **Next-1B** β€” Lightweight, **efficient, and reasoning-focused**, bringing **Turkey’s AI forward** on low-resource hardware. [![Follow on HuggingFace](https://img.shields.io/badge/Follow-HuggingFace-yellow?logo=huggingface)](https://huggingface.co/Lamapi)