moondream3-preview-hf / configuration_moondream3.py
NyxKrage's picture
Upload folder using huggingface_hub
c466d58 verified
raw
history blame
12.8 kB
# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, List
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_rope_utils import rope_config_validation
class Moondream3TextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Moondream3TextModel`]. It is used to instantiate a
Moondream3 model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PreTrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PreTrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 51200):
Vocabulary size of the Moondream3 model.
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 8192):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 32):
This is the number of key_value heads that should be used to implement Grouped Query Attention.
max_position_embeddings (`int`, *optional*, defaults to 4096):
The maximum sequence length that this model might ever be used with.
num_experts (`int`, *optional*, defaults to 64):
Number of experts for MoE layers.
num_experts_per_tok (`int`, *optional*, defaults to 8):
Number of selected experts per token.
moe_intermediate_size (`int`, *optional*, defaults to 1024):
Intermediate size of the routed expert.
moe_start_layer (`int`, *optional*, defaults to 4):
The layer index where MoE layers start.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer.
rms_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers.
head_dim (`int`, *optional*):
The dimension of the head. If not specified, will default to `hidden_size // num_attention_heads`.
"""
model_type = "moondream3_text"
base_config_key = "text_config"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size: int = 51200,
hidden_size: int = 2048,
intermediate_size: int = 8192,
num_hidden_layers: int = 24,
num_attention_heads: int = 32,
num_key_value_heads: int = 32,
max_position_embeddings: int = 4096,
num_experts: int = 64,
num_experts_per_tok: int = 8,
moe_intermediate_size: int = 1024,
moe_start_layer: int = 4,
bos_id: int = 0,
hidden_act: str = "silu",
initializer_range: float = 0.02,
rms_norm_eps: float = 1e-5,
use_cache: bool = False,
tie_word_embeddings: bool = False,
attention_bias: bool = True,
rope_parameters: Optional[dict] = None,
head_dim: Optional[int] = None,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.attention_bias = attention_bias
self.head_dim = head_dim or hidden_size // num_attention_heads
self.bos_id = bos_id
# MoE parameters (merged from TextMoeConfig)
self.num_experts = num_experts
self.num_experts_per_tok = num_experts_per_tok
self.moe_intermediate_size = moe_intermediate_size
self.moe_start_layer = moe_start_layer
# Try to set `rope_scaling` if available, otherwise use `rope_parameters`
rope_scaling = kwargs.pop("rope_scaling", None)
self.rope_parameters = rope_scaling or rope_parameters
# Validate the correctness of rotary position embeddings parameters
rope_theta = kwargs.get("rope_theta", 1500000.0)
rope_config_validation(self)
# HF compatibility attributes
self.output_router_logits = False
self.output_attentions = False
self.output_hidden_states = False
self.attention_dropout = 0.0
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
class Moondream3VisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of the Moondream3 vision encoder.
Args:
hidden_size (`int`, *optional*, defaults to 1152):
Dimension of the encoder's hidden states.
intermediate_size (`int`, *optional*, defaults to 4304):
Dimension of the encoder's MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 27):
Number of hidden layers in the vision encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads in the vision encoder.
patch_size (`int`, *optional*, defaults to 14):
The size of each patch in the vision encoder.
in_channels (`int`, *optional*, defaults to 3):
Number of input channels.
proj_out_dim (`int`, *optional*, defaults to 2048):
Output dimension of the projection layer.
crop_size (`int`, *optional*, defaults to 378):
Size of image crops.
max_crops (`int`, *optional*, defaults to 12):
Maximum number of crops.
overlap_margin (`int`, *optional*, defaults to 4):
Overlap margin for crops.
proj_inner_dim (`int`, *optional*, defaults to 8192):
Inner dimension of the projection MLP.
hidden_act (`str`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer.
"""
model_type = "moondream3_vision"
base_config_key = "vision_config"
def __init__(
self,
hidden_size: int = 1152,
intermediate_size: int = 4304,
num_hidden_layers: int = 27,
num_attention_heads: int = 16,
patch_size: int = 14,
in_channels: int = 3,
proj_out_dim: int = 2048,
crop_size: int = 378,
max_crops: int = 12,
overlap_margin: int = 4,
proj_inner_dim: int = 8192,
prefix_len: int = 730,
hidden_act: str = "gelu_pytorch_tanh",
initializer_range: float = 0.02,
attention_bias: bool = True,
**kwargs,
):
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.patch_size = patch_size
self.in_channels = in_channels
self.proj_out_dim = proj_out_dim
self.crop_size = crop_size
self.max_crops = max_crops
self.prefix_len = prefix_len
self.overlap_margin = overlap_margin
self.proj_inner_dim = proj_inner_dim
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.attention_dropout = 0.0
self.attention_bias = attention_bias
super().__init__(**kwargs)
class Moondream3RegionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of the Moondream3 region encoder for object detection and grounding.
Args:
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations for region features.
coord_feat_dim (`int`, *optional*, defaults to 256):
Dimension of coordinate feature embeddings.
coord_out_dim (`int`, *optional*, defaults to 1024):
Output dimension for coordinate features.
size_feat_dim (`int`, *optional*, defaults to 512):
Dimension of size feature embeddings.
size_out_dim (`int`, *optional*, defaults to 2048):
Output dimension for size features.
"""
model_type = "moondream3_region"
base_config_key = "region_config"
def __init__(
self,
hidden_size: int = 2048,
coord_feat_dim: int = 256,
coord_out_dim: int = 1024,
size_feat_dim: int = 512,
size_out_dim: int = 2048,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.coord_feat_dim = coord_feat_dim
self.coord_out_dim = coord_out_dim
self.size_feat_dim = size_feat_dim
self.size_out_dim = size_out_dim
class Moondream3Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Moondream3Model`].
Args:
text_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `Moondream3TextConfig`):
The config object or dictionary of the text backbone.
vision_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `Moondream3VisionConfig`):
The config object or dictionary of the vision backbone.
region_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `Moondream3RegionConfig`):
The config object or dictionary of the region backbone for object detection and grounding.
image_token_id (`int`, *optional*, defaults to 151655):
The image token index to encode the image prompt.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie the word embeddings.
"""
model_type = "moondream3"
sub_configs = {
"vision_config": Moondream3VisionConfig,
"text_config": Moondream3TextConfig,
"region_config": Moondream3RegionConfig,
}
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
text_config=None,
vision_config=None,
region_config=None,
bos_token_id=0,
tie_word_embeddings: bool = False,
**kwargs,
):
if isinstance(vision_config, dict):
self.vision_config = self.sub_configs["vision_config"](**vision_config)
elif vision_config is None:
self.vision_config = self.sub_configs["vision_config"]()
if isinstance(text_config, dict):
self.text_config = self.sub_configs["text_config"](**text_config)
elif text_config is None:
self.text_config = self.sub_configs["text_config"]()
if isinstance(region_config, dict):
self.region_config = self.sub_configs["region_config"](**region_config)
elif region_config is None:
self.region_config = self.sub_configs["region_config"]()
super().__init__(**kwargs, tie_word_embeddings=tie_word_embeddings)
__all__ = ["Moondream3Config", "Moondream3TextConfig", "Moondream3VisionConfig", "Moondream3RegionConfig"]