Upload 11 files
Browse files- 1_Pooling/config.json +10 -0
- README.md +857 -0
- config.json +58 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +55 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,857 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: nomic-ai/nomic-embed-text-v1.5
|
| 3 |
+
datasets: []
|
| 4 |
+
language: []
|
| 5 |
+
library_name: sentence-transformers
|
| 6 |
+
pipeline_tag: sentence-similarity
|
| 7 |
+
tags:
|
| 8 |
+
- sentence-transformers
|
| 9 |
+
- sentence-similarity
|
| 10 |
+
- feature-extraction
|
| 11 |
+
- generated_from_trainer
|
| 12 |
+
- dataset_size:756057
|
| 13 |
+
- loss:MultipleNegativesRankingLoss
|
| 14 |
+
widget:
|
| 15 |
+
- source_sentence: 府君奈何以蓋世之才欲立忠於垂亡之國
|
| 16 |
+
sentences:
|
| 17 |
+
- 將遠方進貢來的奇獸飛禽以及白山雞等物縱還山林比起雍畤的祭祀禮數頗有增加
|
| 18 |
+
- 您為什麼以蓋絕當世的奇才卻打算向這個面臨滅亡的國家盡效忠心呢
|
| 19 |
+
- 大統年間他出任岐州刺史在任不久就因為能力強而聞名
|
| 20 |
+
- source_sentence: 將率既至授單于印紱詔令上故印紱
|
| 21 |
+
sentences:
|
| 22 |
+
- 已經到達的五威將到達後授給單于新印信宣讀詔書要求交回漢朝舊印信
|
| 23 |
+
- 於是拜陶隗為西南面招討使
|
| 24 |
+
- 司馬錯建議秦惠王攻打蜀國張儀說 還不如進攻韓國
|
| 25 |
+
- source_sentence: 行醮禮皇太子詣醴席樂作
|
| 26 |
+
sentences:
|
| 27 |
+
- 閏七月十七日上宣宗廢除皇后胡氏尊諡
|
| 28 |
+
- 等到看見西羌鼠竊狗盜父不父子不子君臣沒有分別四夷之人西羌最為低下
|
| 29 |
+
- 行醮禮皇太子來到酒醴席奏樂
|
| 30 |
+
- source_sentence: 領軍臧盾太府卿沈僧果等並被時遇孝綽尤輕之
|
| 31 |
+
sentences:
|
| 32 |
+
- 過了幾天太宰官又來要國書並且說 我國自太宰府以東上國使臣沒有到過今大朝派使臣來若不見國書何以相信
|
| 33 |
+
- 所以丹陽葛洪解釋說渾天儀注說 天體像雞蛋地就像是雞蛋中的蛋黃獨處於天體之內天是大的而地是小的
|
| 34 |
+
- 領軍臧盾太府卿沈僧果等都是因趕上時機而得到官職的孝綽尤其輕蔑他們每次在朝中集合會面雖然一起做官但從不與他們說話
|
| 35 |
+
- source_sentence: 九月辛未太祖曾孫舒國公從式進封安定郡王
|
| 36 |
+
sentences:
|
| 37 |
+
- 九月初二太祖曾孫舒國公從式進封安定郡王
|
| 38 |
+
- 楊難當在漢中大肆燒殺搶劫然後率眾離開了漢中向西返回仇池留下趙溫據守梁州又派他的魏興太守薛健屯駐黃金山
|
| 39 |
+
- 正統元年普定蠻夷阿遲等反叛非法稱王四處出擊攻打掠奪
|
| 40 |
+
---
|
| 41 |
+
|
| 42 |
+
# SentenceTransformer based on nomic-ai/nomic-embed-text-v1.5
|
| 43 |
+
|
| 44 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 45 |
+
|
| 46 |
+
## Model Details
|
| 47 |
+
|
| 48 |
+
### Model Description
|
| 49 |
+
- **Model Type:** Sentence Transformer
|
| 50 |
+
- **Base model:** [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) <!-- at revision c4f06e01594879a8ccc5c40b0b0a0e2ad46e3a62 -->
|
| 51 |
+
- **Maximum Sequence Length:** 8192 tokens
|
| 52 |
+
- **Output Dimensionality:** 768 tokens
|
| 53 |
+
- **Similarity Function:** Cosine Similarity
|
| 54 |
+
<!-- - **Training Dataset:** Unknown -->
|
| 55 |
+
<!-- - **Language:** Unknown -->
|
| 56 |
+
<!-- - **License:** Unknown -->
|
| 57 |
+
|
| 58 |
+
### Model Sources
|
| 59 |
+
|
| 60 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 61 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 62 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 63 |
+
|
| 64 |
+
### Full Model Architecture
|
| 65 |
+
|
| 66 |
+
```
|
| 67 |
+
SentenceTransformer(
|
| 68 |
+
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
|
| 69 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 70 |
+
)
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
## Usage
|
| 74 |
+
|
| 75 |
+
### Direct Usage (Sentence Transformers)
|
| 76 |
+
|
| 77 |
+
First install the Sentence Transformers library:
|
| 78 |
+
|
| 79 |
+
```bash
|
| 80 |
+
pip install -U sentence-transformers
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
Then you can load this model and run inference.
|
| 84 |
+
```python
|
| 85 |
+
from sentence_transformers import SentenceTransformer
|
| 86 |
+
|
| 87 |
+
# Download from the 🤗 Hub
|
| 88 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
| 89 |
+
# Run inference
|
| 90 |
+
sentences = [
|
| 91 |
+
'九月辛未太祖曾孫舒國公從式進封安定郡王',
|
| 92 |
+
'九月初二太祖曾孫舒國公從式進封安定郡王',
|
| 93 |
+
'楊難當在漢中大肆燒殺搶劫然後率眾離開了漢中向西返回仇池留下趙溫據守梁州又派他的魏興太守薛健屯駐黃金山',
|
| 94 |
+
]
|
| 95 |
+
embeddings = model.encode(sentences)
|
| 96 |
+
print(embeddings.shape)
|
| 97 |
+
# [3, 768]
|
| 98 |
+
|
| 99 |
+
# Get the similarity scores for the embeddings
|
| 100 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 101 |
+
print(similarities.shape)
|
| 102 |
+
# [3, 3]
|
| 103 |
+
```
|
| 104 |
+
|
| 105 |
+
<!--
|
| 106 |
+
### Direct Usage (Transformers)
|
| 107 |
+
|
| 108 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 109 |
+
|
| 110 |
+
</details>
|
| 111 |
+
-->
|
| 112 |
+
|
| 113 |
+
<!--
|
| 114 |
+
### Downstream Usage (Sentence Transformers)
|
| 115 |
+
|
| 116 |
+
You can finetune this model on your own dataset.
|
| 117 |
+
|
| 118 |
+
<details><summary>Click to expand</summary>
|
| 119 |
+
|
| 120 |
+
</details>
|
| 121 |
+
-->
|
| 122 |
+
|
| 123 |
+
<!--
|
| 124 |
+
### Out-of-Scope Use
|
| 125 |
+
|
| 126 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 127 |
+
-->
|
| 128 |
+
|
| 129 |
+
<!--
|
| 130 |
+
## Bias, Risks and Limitations
|
| 131 |
+
|
| 132 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 133 |
+
-->
|
| 134 |
+
|
| 135 |
+
<!--
|
| 136 |
+
### Recommendations
|
| 137 |
+
|
| 138 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 139 |
+
-->
|
| 140 |
+
|
| 141 |
+
## Training Details
|
| 142 |
+
|
| 143 |
+
### Training Dataset
|
| 144 |
+
|
| 145 |
+
#### Unnamed Dataset
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
* Size: 756,057 training samples
|
| 149 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 150 |
+
* Approximate statistics based on the first 1000 samples:
|
| 151 |
+
| | anchor | positive |
|
| 152 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
| 153 |
+
| type | string | string |
|
| 154 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 20.76 tokens</li><li>max: 199 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 31.48 tokens</li><li>max: 602 tokens</li></ul> |
|
| 155 |
+
* Samples:
|
| 156 |
+
| anchor | positive |
|
| 157 |
+
|:------------------------------------------|:------------------------------------------------------------|
|
| 158 |
+
| <code>虜懷兼弱之威挾廣地之計強兵大眾親自凌殄旍鼓彌年矢石不息</code> | <code>魏人懷有兼併弱小的威嚴胸藏拓展土地的計謀強人的軍隊親自出徵侵逼消滅旌旗戰鼓連年出動戰事不停息</code> |
|
| 159 |
+
| <code>孟子曰 以善服人者未有能服人者也以善養人然後能服天下</code> | <code>孟子說 用自己的善良使人們服從的人沒有能使人服從的用善良影響教導人們才能使天下的人們都信服</code> |
|
| 160 |
+
| <code>開慶初大元兵渡江理宗議遷都平江慶元后諫不可恐搖動民心乃止</code> | <code>開慶初年大元朝部隊渡過長江理宗打算遷都到平江慶元皇后勸諫不可遷都深恐動搖民心理宗才作罷</code> |
|
| 161 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 162 |
+
```json
|
| 163 |
+
{
|
| 164 |
+
"scale": 20.0,
|
| 165 |
+
"similarity_fct": "cos_sim"
|
| 166 |
+
}
|
| 167 |
+
```
|
| 168 |
+
|
| 169 |
+
### Evaluation Dataset
|
| 170 |
+
|
| 171 |
+
#### Unnamed Dataset
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
* Size: 84,007 evaluation samples
|
| 175 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 176 |
+
* Approximate statistics based on the first 1000 samples:
|
| 177 |
+
| | anchor | positive |
|
| 178 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
| 179 |
+
| type | string | string |
|
| 180 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 20.23 tokens</li><li>max: 138 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 31.45 tokens</li><li>max: 415 tokens</li></ul> |
|
| 181 |
+
* Samples:
|
| 182 |
+
| anchor | positive |
|
| 183 |
+
|:--------------------------------------------------|:------------------------------------------------------------------|
|
| 184 |
+
| <code>雒陽戶五萬二千八百三十九</code> | <code>雒陽有五萬二千八百三十九戶</code> |
|
| 185 |
+
| <code>拜南青州刺史在任有政績</code> | <code>任南青州刺史很有政績</code> |
|
| 186 |
+
| <code>第六品以下加不得服金釒奠綾錦錦繡七緣綺貂豽裘金叉環鉺及以金校飾器物張絳帳</code> | <code>官位在第六品以下的官員再增加不得穿用金鈿綾錦錦繡七緣綺貂鈉皮衣金叉繯餌以及用金裝飾的器物張絳帳等衣服物品</code> |
|
| 187 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 188 |
+
```json
|
| 189 |
+
{
|
| 190 |
+
"scale": 20.0,
|
| 191 |
+
"similarity_fct": "cos_sim"
|
| 192 |
+
}
|
| 193 |
+
```
|
| 194 |
+
|
| 195 |
+
### Training Hyperparameters
|
| 196 |
+
#### Non-Default Hyperparameters
|
| 197 |
+
|
| 198 |
+
- `eval_strategy`: steps
|
| 199 |
+
- `per_device_train_batch_size`: 16
|
| 200 |
+
- `per_device_eval_batch_size`: 16
|
| 201 |
+
- `num_train_epochs`: 1
|
| 202 |
+
- `warmup_ratio`: 0.1
|
| 203 |
+
- `fp16`: True
|
| 204 |
+
- `load_best_model_at_end`: True
|
| 205 |
+
- `batch_sampler`: no_duplicates
|
| 206 |
+
|
| 207 |
+
#### All Hyperparameters
|
| 208 |
+
<details><summary>Click to expand</summary>
|
| 209 |
+
|
| 210 |
+
- `overwrite_output_dir`: False
|
| 211 |
+
- `do_predict`: False
|
| 212 |
+
- `eval_strategy`: steps
|
| 213 |
+
- `prediction_loss_only`: True
|
| 214 |
+
- `per_device_train_batch_size`: 16
|
| 215 |
+
- `per_device_eval_batch_size`: 16
|
| 216 |
+
- `per_gpu_train_batch_size`: None
|
| 217 |
+
- `per_gpu_eval_batch_size`: None
|
| 218 |
+
- `gradient_accumulation_steps`: 1
|
| 219 |
+
- `eval_accumulation_steps`: None
|
| 220 |
+
- `learning_rate`: 5e-05
|
| 221 |
+
- `weight_decay`: 0.0
|
| 222 |
+
- `adam_beta1`: 0.9
|
| 223 |
+
- `adam_beta2`: 0.999
|
| 224 |
+
- `adam_epsilon`: 1e-08
|
| 225 |
+
- `max_grad_norm`: 1.0
|
| 226 |
+
- `num_train_epochs`: 1
|
| 227 |
+
- `max_steps`: -1
|
| 228 |
+
- `lr_scheduler_type`: linear
|
| 229 |
+
- `lr_scheduler_kwargs`: {}
|
| 230 |
+
- `warmup_ratio`: 0.1
|
| 231 |
+
- `warmup_steps`: 0
|
| 232 |
+
- `log_level`: passive
|
| 233 |
+
- `log_level_replica`: warning
|
| 234 |
+
- `log_on_each_node`: True
|
| 235 |
+
- `logging_nan_inf_filter`: True
|
| 236 |
+
- `save_safetensors`: True
|
| 237 |
+
- `save_on_each_node`: False
|
| 238 |
+
- `save_only_model`: False
|
| 239 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 240 |
+
- `no_cuda`: False
|
| 241 |
+
- `use_cpu`: False
|
| 242 |
+
- `use_mps_device`: False
|
| 243 |
+
- `seed`: 42
|
| 244 |
+
- `data_seed`: None
|
| 245 |
+
- `jit_mode_eval`: False
|
| 246 |
+
- `use_ipex`: False
|
| 247 |
+
- `bf16`: False
|
| 248 |
+
- `fp16`: True
|
| 249 |
+
- `fp16_opt_level`: O1
|
| 250 |
+
- `half_precision_backend`: auto
|
| 251 |
+
- `bf16_full_eval`: False
|
| 252 |
+
- `fp16_full_eval`: False
|
| 253 |
+
- `tf32`: None
|
| 254 |
+
- `local_rank`: 0
|
| 255 |
+
- `ddp_backend`: None
|
| 256 |
+
- `tpu_num_cores`: None
|
| 257 |
+
- `tpu_metrics_debug`: False
|
| 258 |
+
- `debug`: []
|
| 259 |
+
- `dataloader_drop_last`: False
|
| 260 |
+
- `dataloader_num_workers`: 0
|
| 261 |
+
- `dataloader_prefetch_factor`: None
|
| 262 |
+
- `past_index`: -1
|
| 263 |
+
- `disable_tqdm`: False
|
| 264 |
+
- `remove_unused_columns`: True
|
| 265 |
+
- `label_names`: None
|
| 266 |
+
- `load_best_model_at_end`: True
|
| 267 |
+
- `ignore_data_skip`: False
|
| 268 |
+
- `fsdp`: []
|
| 269 |
+
- `fsdp_min_num_params`: 0
|
| 270 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 271 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 272 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 273 |
+
- `deepspeed`: None
|
| 274 |
+
- `label_smoothing_factor`: 0.0
|
| 275 |
+
- `optim`: adamw_torch
|
| 276 |
+
- `optim_args`: None
|
| 277 |
+
- `adafactor`: False
|
| 278 |
+
- `group_by_length`: False
|
| 279 |
+
- `length_column_name`: length
|
| 280 |
+
- `ddp_find_unused_parameters`: None
|
| 281 |
+
- `ddp_bucket_cap_mb`: None
|
| 282 |
+
- `ddp_broadcast_buffers`: False
|
| 283 |
+
- `dataloader_pin_memory`: True
|
| 284 |
+
- `dataloader_persistent_workers`: False
|
| 285 |
+
- `skip_memory_metrics`: True
|
| 286 |
+
- `use_legacy_prediction_loop`: False
|
| 287 |
+
- `push_to_hub`: False
|
| 288 |
+
- `resume_from_checkpoint`: None
|
| 289 |
+
- `hub_model_id`: None
|
| 290 |
+
- `hub_strategy`: every_save
|
| 291 |
+
- `hub_private_repo`: False
|
| 292 |
+
- `hub_always_push`: False
|
| 293 |
+
- `gradient_checkpointing`: False
|
| 294 |
+
- `gradient_checkpointing_kwargs`: None
|
| 295 |
+
- `include_inputs_for_metrics`: False
|
| 296 |
+
- `eval_do_concat_batches`: True
|
| 297 |
+
- `fp16_backend`: auto
|
| 298 |
+
- `push_to_hub_model_id`: None
|
| 299 |
+
- `push_to_hub_organization`: None
|
| 300 |
+
- `mp_parameters`:
|
| 301 |
+
- `auto_find_batch_size`: False
|
| 302 |
+
- `full_determinism`: False
|
| 303 |
+
- `torchdynamo`: None
|
| 304 |
+
- `ray_scope`: last
|
| 305 |
+
- `ddp_timeout`: 1800
|
| 306 |
+
- `torch_compile`: False
|
| 307 |
+
- `torch_compile_backend`: None
|
| 308 |
+
- `torch_compile_mode`: None
|
| 309 |
+
- `dispatch_batches`: None
|
| 310 |
+
- `split_batches`: None
|
| 311 |
+
- `include_tokens_per_second`: False
|
| 312 |
+
- `include_num_input_tokens_seen`: False
|
| 313 |
+
- `neftune_noise_alpha`: None
|
| 314 |
+
- `optim_target_modules`: None
|
| 315 |
+
- `batch_eval_metrics`: False
|
| 316 |
+
- `eval_on_start`: False
|
| 317 |
+
- `batch_sampler`: no_duplicates
|
| 318 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 319 |
+
|
| 320 |
+
</details>
|
| 321 |
+
|
| 322 |
+
### Training Logs
|
| 323 |
+
<details><summary>Click to expand</summary>
|
| 324 |
+
|
| 325 |
+
| Epoch | Step | Training Loss | loss |
|
| 326 |
+
|:----------:|:---------:|:-------------:|:----------:|
|
| 327 |
+
| 0.0021 | 100 | 0.4574 | - |
|
| 328 |
+
| 0.0042 | 200 | 0.4089 | - |
|
| 329 |
+
| 0.0063 | 300 | 0.2872 | - |
|
| 330 |
+
| 0.0085 | 400 | 0.2909 | - |
|
| 331 |
+
| 0.0106 | 500 | 0.3076 | - |
|
| 332 |
+
| 0.0127 | 600 | 0.2958 | - |
|
| 333 |
+
| 0.0148 | 700 | 0.2953 | - |
|
| 334 |
+
| 0.0169 | 800 | 0.31 | - |
|
| 335 |
+
| 0.0190 | 900 | 0.3031 | - |
|
| 336 |
+
| 0.0212 | 1000 | 0.263 | - |
|
| 337 |
+
| 0.0233 | 1100 | 0.27 | - |
|
| 338 |
+
| 0.0254 | 1200 | 0.3107 | - |
|
| 339 |
+
| 0.0275 | 1300 | 0.2453 | - |
|
| 340 |
+
| 0.0296 | 1400 | 0.2487 | - |
|
| 341 |
+
| 0.0317 | 1500 | 0.2332 | - |
|
| 342 |
+
| 0.0339 | 1600 | 0.2708 | - |
|
| 343 |
+
| 0.0360 | 1700 | 0.2731 | - |
|
| 344 |
+
| 0.0381 | 1800 | 0.3102 | - |
|
| 345 |
+
| 0.0402 | 1900 | 0.3385 | - |
|
| 346 |
+
| 0.0423 | 2000 | 0.2802 | - |
|
| 347 |
+
| 0.0444 | 2100 | 0.3348 | - |
|
| 348 |
+
| 0.0466 | 2200 | 0.2527 | - |
|
| 349 |
+
| 0.0487 | 2300 | 0.2916 | - |
|
| 350 |
+
| 0.0508 | 2400 | 0.2671 | - |
|
| 351 |
+
| 0.0529 | 2500 | 0.2187 | - |
|
| 352 |
+
| 0.0550 | 2600 | 0.2624 | - |
|
| 353 |
+
| 0.0571 | 2700 | 0.3061 | - |
|
| 354 |
+
| 0.0593 | 2800 | 0.2439 | - |
|
| 355 |
+
| 0.0614 | 2900 | 0.2831 | - |
|
| 356 |
+
| 0.0635 | 3000 | 0.2948 | - |
|
| 357 |
+
| 0.0656 | 3100 | 0.2828 | - |
|
| 358 |
+
| 0.0677 | 3200 | 0.3079 | - |
|
| 359 |
+
| 0.0698 | 3300 | 0.3194 | - |
|
| 360 |
+
| 0.0720 | 3400 | 0.2768 | - |
|
| 361 |
+
| 0.0741 | 3500 | 0.304 | - |
|
| 362 |
+
| 0.0762 | 3600 | 0.3056 | - |
|
| 363 |
+
| 0.0783 | 3700 | 0.2562 | - |
|
| 364 |
+
| 0.0804 | 3800 | 0.3138 | - |
|
| 365 |
+
| 0.0825 | 3900 | 0.3081 | - |
|
| 366 |
+
| 0.0846 | 4000 | 0.2733 | - |
|
| 367 |
+
| 0.0868 | 4100 | 0.3065 | - |
|
| 368 |
+
| 0.0889 | 4200 | 0.25 | - |
|
| 369 |
+
| 0.0910 | 4300 | 0.3076 | - |
|
| 370 |
+
| 0.0931 | 4400 | 0.2935 | - |
|
| 371 |
+
| 0.0952 | 4500 | 0.2644 | - |
|
| 372 |
+
| 0.0973 | 4600 | 0.2943 | - |
|
| 373 |
+
| 0.0995 | 4700 | 0.316 | - |
|
| 374 |
+
| 0.1016 | 4800 | 0.2616 | - |
|
| 375 |
+
| 0.1037 | 4900 | 0.2985 | - |
|
| 376 |
+
| 0.1058 | 5000 | 0.2962 | 0.2798 |
|
| 377 |
+
| 0.1079 | 5100 | 0.2872 | - |
|
| 378 |
+
| 0.1100 | 5200 | 0.2963 | - |
|
| 379 |
+
| 0.1122 | 5300 | 0.2968 | - |
|
| 380 |
+
| 0.1143 | 5400 | 0.2738 | - |
|
| 381 |
+
| 0.1164 | 5500 | 0.3198 | - |
|
| 382 |
+
| 0.1185 | 5600 | 0.294 | - |
|
| 383 |
+
| 0.1206 | 5700 | 0.3296 | - |
|
| 384 |
+
| 0.1227 | 5800 | 0.2605 | - |
|
| 385 |
+
| 0.1249 | 5900 | 0.3187 | - |
|
| 386 |
+
| 0.1270 | 6000 | 0.2657 | - |
|
| 387 |
+
| 0.1291 | 6100 | 0.3267 | - |
|
| 388 |
+
| 0.1312 | 6200 | 0.3839 | - |
|
| 389 |
+
| 0.1333 | 6300 | 0.3077 | - |
|
| 390 |
+
| 0.1354 | 6400 | 0.205 | - |
|
| 391 |
+
| 0.1376 | 6500 | 0.2839 | - |
|
| 392 |
+
| 0.1397 | 6600 | 0.3037 | - |
|
| 393 |
+
| 0.1418 | 6700 | 0.2694 | - |
|
| 394 |
+
| 0.1439 | 6800 | 0.2956 | - |
|
| 395 |
+
| 0.1460 | 6900 | 0.261 | - |
|
| 396 |
+
| 0.1481 | 7000 | 0.3173 | - |
|
| 397 |
+
| 0.1503 | 7100 | 0.2492 | - |
|
| 398 |
+
| 0.1524 | 7200 | 0.2885 | - |
|
| 399 |
+
| 0.1545 | 7300 | 0.3059 | - |
|
| 400 |
+
| 0.1566 | 7400 | 0.2883 | - |
|
| 401 |
+
| 0.1587 | 7500 | 0.2465 | - |
|
| 402 |
+
| 0.1608 | 7600 | 0.2926 | - |
|
| 403 |
+
| 0.1629 | 7700 | 0.2776 | - |
|
| 404 |
+
| 0.1651 | 7800 | 0.2769 | - |
|
| 405 |
+
| 0.1672 | 7900 | 0.2644 | - |
|
| 406 |
+
| 0.1693 | 8000 | 0.2416 | - |
|
| 407 |
+
| 0.1714 | 8100 | 0.254 | - |
|
| 408 |
+
| 0.1735 | 8200 | 0.2485 | - |
|
| 409 |
+
| 0.1756 | 8300 | 0.3029 | - |
|
| 410 |
+
| 0.1778 | 8400 | 0.2938 | - |
|
| 411 |
+
| 0.1799 | 8500 | 0.2936 | - |
|
| 412 |
+
| 0.1820 | 8600 | 0.2804 | - |
|
| 413 |
+
| 0.1841 | 8700 | 0.2408 | - |
|
| 414 |
+
| 0.1862 | 8800 | 0.2849 | - |
|
| 415 |
+
| 0.1883 | 8900 | 0.2954 | - |
|
| 416 |
+
| 0.1905 | 9000 | 0.2902 | - |
|
| 417 |
+
| 0.1926 | 9100 | 0.2845 | - |
|
| 418 |
+
| 0.1947 | 9200 | 0.3143 | - |
|
| 419 |
+
| 0.1968 | 9300 | 0.2514 | - |
|
| 420 |
+
| 0.1989 | 9400 | 0.2508 | - |
|
| 421 |
+
| 0.2010 | 9500 | 0.2782 | - |
|
| 422 |
+
| 0.2032 | 9600 | 0.291 | - |
|
| 423 |
+
| 0.2053 | 9700 | 0.2464 | - |
|
| 424 |
+
| 0.2074 | 9800 | 0.323 | - |
|
| 425 |
+
| 0.2095 | 9900 | 0.2332 | - |
|
| 426 |
+
| 0.2116 | 10000 | 0.2231 | 0.2521 |
|
| 427 |
+
| 0.2137 | 10100 | 0.245 | - |
|
| 428 |
+
| 0.2159 | 10200 | 0.2883 | - |
|
| 429 |
+
| 0.2180 | 10300 | 0.3097 | - |
|
| 430 |
+
| 0.2201 | 10400 | 0.2303 | - |
|
| 431 |
+
| 0.2222 | 10500 | 0.3194 | - |
|
| 432 |
+
| 0.2243 | 10600 | 0.2836 | - |
|
| 433 |
+
| 0.2264 | 10700 | 0.2727 | - |
|
| 434 |
+
| 0.2286 | 10800 | 0.2542 | - |
|
| 435 |
+
| 0.2307 | 10900 | 0.2708 | - |
|
| 436 |
+
| 0.2328 | 11000 | 0.263 | - |
|
| 437 |
+
| 0.2349 | 11100 | 0.3063 | - |
|
| 438 |
+
| 0.2370 | 11200 | 0.2667 | - |
|
| 439 |
+
| 0.2391 | 11300 | 0.2575 | - |
|
| 440 |
+
| 0.2412 | 11400 | 0.2487 | - |
|
| 441 |
+
| 0.2434 | 11500 | 0.2552 | - |
|
| 442 |
+
| 0.2455 | 11600 | 0.2669 | - |
|
| 443 |
+
| 0.2476 | 11700 | 0.2241 | - |
|
| 444 |
+
| 0.2497 | 11800 | 0.3029 | - |
|
| 445 |
+
| 0.2518 | 11900 | 0.2443 | - |
|
| 446 |
+
| 0.2539 | 12000 | 0.2961 | - |
|
| 447 |
+
| 0.2561 | 12100 | 0.2561 | - |
|
| 448 |
+
| 0.2582 | 12200 | 0.2436 | - |
|
| 449 |
+
| 0.2603 | 12300 | 0.2601 | - |
|
| 450 |
+
| 0.2624 | 12400 | 0.2553 | - |
|
| 451 |
+
| 0.2645 | 12500 | 0.2617 | - |
|
| 452 |
+
| 0.2666 | 12600 | 0.2581 | - |
|
| 453 |
+
| 0.2688 | 12700 | 0.2452 | - |
|
| 454 |
+
| 0.2709 | 12800 | 0.2227 | - |
|
| 455 |
+
| 0.2730 | 12900 | 0.2455 | - |
|
| 456 |
+
| 0.2751 | 13000 | 0.2469 | - |
|
| 457 |
+
| 0.2772 | 13100 | 0.2197 | - |
|
| 458 |
+
| 0.2793 | 13200 | 0.3086 | - |
|
| 459 |
+
| 0.2815 | 13300 | 0.2379 | - |
|
| 460 |
+
| 0.2836 | 13400 | 0.2441 | - |
|
| 461 |
+
| 0.2857 | 13500 | 0.2854 | - |
|
| 462 |
+
| 0.2878 | 13600 | 0.2405 | - |
|
| 463 |
+
| 0.2899 | 13700 | 0.2681 | - |
|
| 464 |
+
| 0.2920 | 13800 | 0.2405 | - |
|
| 465 |
+
| 0.2942 | 13900 | 0.251 | - |
|
| 466 |
+
| 0.2963 | 14000 | 0.2477 | - |
|
| 467 |
+
| 0.2984 | 14100 | 0.231 | - |
|
| 468 |
+
| 0.3005 | 14200 | 0.26 | - |
|
| 469 |
+
| 0.3026 | 14300 | 0.2395 | - |
|
| 470 |
+
| 0.3047 | 14400 | 0.2296 | - |
|
| 471 |
+
| 0.3069 | 14500 | 0.2554 | - |
|
| 472 |
+
| 0.3090 | 14600 | 0.2434 | - |
|
| 473 |
+
| 0.3111 | 14700 | 0.2247 | - |
|
| 474 |
+
| 0.3132 | 14800 | 0.267 | - |
|
| 475 |
+
| 0.3153 | 14900 | 0.2212 | - |
|
| 476 |
+
| 0.3174 | 15000 | 0.2744 | 0.2352 |
|
| 477 |
+
| 0.3195 | 15100 | 0.2168 | - |
|
| 478 |
+
| 0.3217 | 15200 | 0.2042 | - |
|
| 479 |
+
| 0.3238 | 15300 | 0.2187 | - |
|
| 480 |
+
| 0.3259 | 15400 | 0.2368 | - |
|
| 481 |
+
| 0.3280 | 15500 | 0.2693 | - |
|
| 482 |
+
| 0.3301 | 15600 | 0.255 | - |
|
| 483 |
+
| 0.3322 | 15700 | 0.2398 | - |
|
| 484 |
+
| 0.3344 | 15800 | 0.247 | - |
|
| 485 |
+
| 0.3365 | 15900 | 0.2431 | - |
|
| 486 |
+
| 0.3386 | 16000 | 0.2349 | - |
|
| 487 |
+
| 0.3407 | 16100 | 0.212 | - |
|
| 488 |
+
| 0.3428 | 16200 | 0.2875 | - |
|
| 489 |
+
| 0.3449 | 16300 | 0.2571 | - |
|
| 490 |
+
| 0.3471 | 16400 | 0.2513 | - |
|
| 491 |
+
| 0.3492 | 16500 | 0.2729 | - |
|
| 492 |
+
| 0.3513 | 16600 | 0.2755 | - |
|
| 493 |
+
| 0.3534 | 16700 | 0.2079 | - |
|
| 494 |
+
| 0.3555 | 16800 | 0.1997 | - |
|
| 495 |
+
| 0.3576 | 16900 | 0.2217 | - |
|
| 496 |
+
| 0.3598 | 17000 | 0.1887 | - |
|
| 497 |
+
| 0.3619 | 17100 | 0.2623 | - |
|
| 498 |
+
| 0.3640 | 17200 | 0.2049 | - |
|
| 499 |
+
| 0.3661 | 17300 | 0.2 | - |
|
| 500 |
+
| 0.3682 | 17400 | 0.2367 | - |
|
| 501 |
+
| 0.3703 | 17500 | 0.2368 | - |
|
| 502 |
+
| 0.3725 | 17600 | 0.2311 | - |
|
| 503 |
+
| 0.3746 | 17700 | 0.2359 | - |
|
| 504 |
+
| 0.3767 | 17800 | 0.2586 | - |
|
| 505 |
+
| 0.3788 | 17900 | 0.2222 | - |
|
| 506 |
+
| 0.3809 | 18000 | 0.2561 | - |
|
| 507 |
+
| 0.3830 | 18100 | 0.2246 | - |
|
| 508 |
+
| 0.3852 | 18200 | 0.1871 | - |
|
| 509 |
+
| 0.3873 | 18300 | 0.2147 | - |
|
| 510 |
+
| 0.3894 | 18400 | 0.2741 | - |
|
| 511 |
+
| 0.3915 | 18500 | 0.2079 | - |
|
| 512 |
+
| 0.3936 | 18600 | 0.2399 | - |
|
| 513 |
+
| 0.3957 | 18700 | 0.2375 | - |
|
| 514 |
+
| 0.3978 | 18800 | 0.2502 | - |
|
| 515 |
+
| 0.4000 | 18900 | 0.2385 | - |
|
| 516 |
+
| 0.4021 | 19000 | 0.2647 | - |
|
| 517 |
+
| 0.4042 | 19100 | 0.1847 | - |
|
| 518 |
+
| 0.4063 | 19200 | 0.2367 | - |
|
| 519 |
+
| 0.4084 | 19300 | 0.2148 | - |
|
| 520 |
+
| 0.4105 | 19400 | 0.1826 | - |
|
| 521 |
+
| 0.4127 | 19500 | 0.225 | - |
|
| 522 |
+
| 0.4148 | 19600 | 0.2415 | - |
|
| 523 |
+
| 0.4169 | 19700 | 0.2998 | - |
|
| 524 |
+
| 0.4190 | 19800 | 0.2435 | - |
|
| 525 |
+
| 0.4211 | 19900 | 0.2283 | - |
|
| 526 |
+
| 0.4232 | 20000 | 0.2782 | 0.2263 |
|
| 527 |
+
| 0.4254 | 20100 | 0.2786 | - |
|
| 528 |
+
| 0.4275 | 20200 | 0.2695 | - |
|
| 529 |
+
| 0.4296 | 20300 | 0.2112 | - |
|
| 530 |
+
| 0.4317 | 20400 | 0.2006 | - |
|
| 531 |
+
| 0.4338 | 20500 | 0.2031 | - |
|
| 532 |
+
| 0.4359 | 20600 | 0.2335 | - |
|
| 533 |
+
| 0.4381 | 20700 | 0.2154 | - |
|
| 534 |
+
| 0.4402 | 20800 | 0.2225 | - |
|
| 535 |
+
| 0.4423 | 20900 | 0.2234 | - |
|
| 536 |
+
| 0.4444 | 21000 | 0.2233 | - |
|
| 537 |
+
| 0.4465 | 21100 | 0.1851 | - |
|
| 538 |
+
| 0.4486 | 21200 | 0.2009 | - |
|
| 539 |
+
| 0.4508 | 21300 | 0.2337 | - |
|
| 540 |
+
| 0.4529 | 21400 | 0.2175 | - |
|
| 541 |
+
| 0.4550 | 21500 | 0.2564 | - |
|
| 542 |
+
| 0.4571 | 21600 | 0.205 | - |
|
| 543 |
+
| 0.4592 | 21700 | 0.233 | - |
|
| 544 |
+
| 0.4613 | 21800 | 0.2027 | - |
|
| 545 |
+
| 0.4635 | 21900 | 0.209 | - |
|
| 546 |
+
| 0.4656 | 22000 | 0.261 | - |
|
| 547 |
+
| 0.4677 | 22100 | 0.1755 | - |
|
| 548 |
+
| 0.4698 | 22200 | 0.2219 | - |
|
| 549 |
+
| 0.4719 | 22300 | 0.2108 | - |
|
| 550 |
+
| 0.4740 | 22400 | 0.212 | - |
|
| 551 |
+
| 0.4762 | 22500 | 0.2676 | - |
|
| 552 |
+
| 0.4783 | 22600 | 0.2314 | - |
|
| 553 |
+
| 0.4804 | 22700 | 0.1838 | - |
|
| 554 |
+
| 0.4825 | 22800 | 0.1967 | - |
|
| 555 |
+
| 0.4846 | 22900 | 0.2412 | - |
|
| 556 |
+
| 0.4867 | 23000 | 0.2203 | - |
|
| 557 |
+
| 0.4888 | 23100 | 0.2183 | - |
|
| 558 |
+
| 0.4910 | 23200 | 0.239 | - |
|
| 559 |
+
| 0.4931 | 23300 | 0.2273 | - |
|
| 560 |
+
| 0.4952 | 23400 | 0.2335 | - |
|
| 561 |
+
| 0.4973 | 23500 | 0.202 | - |
|
| 562 |
+
| 0.4994 | 23600 | 0.2176 | - |
|
| 563 |
+
| 0.5015 | 23700 | 0.2331 | - |
|
| 564 |
+
| 0.5037 | 23800 | 0.1949 | - |
|
| 565 |
+
| 0.5058 | 23900 | 0.2321 | - |
|
| 566 |
+
| 0.5079 | 24000 | 0.2046 | - |
|
| 567 |
+
| 0.5100 | 24100 | 0.2092 | - |
|
| 568 |
+
| 0.5121 | 24200 | 0.2195 | - |
|
| 569 |
+
| 0.5142 | 24300 | 0.2069 | - |
|
| 570 |
+
| 0.5164 | 24400 | 0.2049 | - |
|
| 571 |
+
| 0.5185 | 24500 | 0.2955 | - |
|
| 572 |
+
| 0.5206 | 24600 | 0.2101 | - |
|
| 573 |
+
| 0.5227 | 24700 | 0.2036 | - |
|
| 574 |
+
| 0.5248 | 24800 | 0.2507 | - |
|
| 575 |
+
| 0.5269 | 24900 | 0.2343 | - |
|
| 576 |
+
| 0.5291 | 25000 | 0.2026 | 0.2072 |
|
| 577 |
+
| 0.5312 | 25100 | 0.2288 | - |
|
| 578 |
+
| 0.5333 | 25200 | 0.2208 | - |
|
| 579 |
+
| 0.5354 | 25300 | 0.1914 | - |
|
| 580 |
+
| 0.5375 | 25400 | 0.1903 | - |
|
| 581 |
+
| 0.5396 | 25500 | 0.2156 | - |
|
| 582 |
+
| 0.5418 | 25600 | 0.216 | - |
|
| 583 |
+
| 0.5439 | 25700 | 0.1909 | - |
|
| 584 |
+
| 0.5460 | 25800 | 0.2265 | - |
|
| 585 |
+
| 0.5481 | 25900 | 0.2447 | - |
|
| 586 |
+
| 0.5502 | 26000 | 0.1879 | - |
|
| 587 |
+
| 0.5523 | 26100 | 0.204 | - |
|
| 588 |
+
| 0.5545 | 26200 | 0.2262 | - |
|
| 589 |
+
| 0.5566 | 26300 | 0.2448 | - |
|
| 590 |
+
| 0.5587 | 26400 | 0.1758 | - |
|
| 591 |
+
| 0.5608 | 26500 | 0.2102 | - |
|
| 592 |
+
| 0.5629 | 26600 | 0.2175 | - |
|
| 593 |
+
| 0.5650 | 26700 | 0.2109 | - |
|
| 594 |
+
| 0.5671 | 26800 | 0.202 | - |
|
| 595 |
+
| 0.5693 | 26900 | 0.2075 | - |
|
| 596 |
+
| 0.5714 | 27000 | 0.2021 | - |
|
| 597 |
+
| 0.5735 | 27100 | 0.1799 | - |
|
| 598 |
+
| 0.5756 | 27200 | 0.2084 | - |
|
| 599 |
+
| 0.5777 | 27300 | 0.2114 | - |
|
| 600 |
+
| 0.5798 | 27400 | 0.1851 | - |
|
| 601 |
+
| 0.5820 | 27500 | 0.22 | - |
|
| 602 |
+
| 0.5841 | 27600 | 0.181 | - |
|
| 603 |
+
| 0.5862 | 27700 | 0.2276 | - |
|
| 604 |
+
| 0.5883 | 27800 | 0.1944 | - |
|
| 605 |
+
| 0.5904 | 27900 | 0.1907 | - |
|
| 606 |
+
| 0.5925 | 28000 | 0.2176 | - |
|
| 607 |
+
| 0.5947 | 28100 | 0.2243 | - |
|
| 608 |
+
| 0.5968 | 28200 | 0.2191 | - |
|
| 609 |
+
| 0.5989 | 28300 | 0.2215 | - |
|
| 610 |
+
| 0.6010 | 28400 | 0.1769 | - |
|
| 611 |
+
| 0.6031 | 28500 | 0.1971 | - |
|
| 612 |
+
| 0.6052 | 28600 | 0.179 | - |
|
| 613 |
+
| 0.6074 | 28700 | 0.2308 | - |
|
| 614 |
+
| 0.6095 | 28800 | 0.2453 | - |
|
| 615 |
+
| 0.6116 | 28900 | 0.2293 | - |
|
| 616 |
+
| 0.6137 | 29000 | 0.2191 | - |
|
| 617 |
+
| 0.6158 | 29100 | 0.1988 | - |
|
| 618 |
+
| 0.6179 | 29200 | 0.1878 | - |
|
| 619 |
+
| 0.6201 | 29300 | 0.2215 | - |
|
| 620 |
+
| 0.6222 | 29400 | 0.2188 | - |
|
| 621 |
+
| 0.6243 | 29500 | 0.1821 | - |
|
| 622 |
+
| 0.6264 | 29600 | 0.1856 | - |
|
| 623 |
+
| 0.6285 | 29700 | 0.1907 | - |
|
| 624 |
+
| 0.6306 | 29800 | 0.1999 | - |
|
| 625 |
+
| 0.6328 | 29900 | 0.1803 | - |
|
| 626 |
+
| 0.6349 | 30000 | 0.201 | 0.1948 |
|
| 627 |
+
| 0.6370 | 30100 | 0.179 | - |
|
| 628 |
+
| 0.6391 | 30200 | 0.2073 | - |
|
| 629 |
+
| 0.6412 | 30300 | 0.2676 | - |
|
| 630 |
+
| 0.6433 | 30400 | 0.1824 | - |
|
| 631 |
+
| 0.6454 | 30500 | 0.1995 | - |
|
| 632 |
+
| 0.6476 | 30600 | 0.2097 | - |
|
| 633 |
+
| 0.6497 | 30700 | 0.2421 | - |
|
| 634 |
+
| 0.6518 | 30800 | 0.1745 | - |
|
| 635 |
+
| 0.6539 | 30900 | 0.2682 | - |
|
| 636 |
+
| 0.6560 | 31000 | 0.1892 | - |
|
| 637 |
+
| 0.6581 | 31100 | 0.2054 | - |
|
| 638 |
+
| 0.6603 | 31200 | 0.23 | - |
|
| 639 |
+
| 0.6624 | 31300 | 0.1711 | - |
|
| 640 |
+
| 0.6645 | 31400 | 0.2163 | - |
|
| 641 |
+
| 0.6666 | 31500 | 0.196 | - |
|
| 642 |
+
| 0.6687 | 31600 | 0.1746 | - |
|
| 643 |
+
| 0.6708 | 31700 | 0.2402 | - |
|
| 644 |
+
| 0.6730 | 31800 | 0.2096 | - |
|
| 645 |
+
| 0.6751 | 31900 | 0.1934 | - |
|
| 646 |
+
| 0.6772 | 32000 | 0.2021 | - |
|
| 647 |
+
| 0.6793 | 32100 | 0.1942 | - |
|
| 648 |
+
| 0.6814 | 32200 | 0.2076 | - |
|
| 649 |
+
| 0.6835 | 32300 | 0.1662 | - |
|
| 650 |
+
| 0.6857 | 32400 | 0.1777 | - |
|
| 651 |
+
| 0.6878 | 32500 | 0.1899 | - |
|
| 652 |
+
| 0.6899 | 32600 | 0.2253 | - |
|
| 653 |
+
| 0.6920 | 32700 | 0.221 | - |
|
| 654 |
+
| 0.6941 | 32800 | 0.1797 | - |
|
| 655 |
+
| 0.6962 | 32900 | 0.1884 | - |
|
| 656 |
+
| 0.6984 | 33000 | 0.2185 | - |
|
| 657 |
+
| 0.7005 | 33100 | 0.193 | - |
|
| 658 |
+
| 0.7026 | 33200 | 0.1975 | - |
|
| 659 |
+
| 0.7047 | 33300 | 0.1774 | - |
|
| 660 |
+
| 0.7068 | 33400 | 0.1709 | - |
|
| 661 |
+
| 0.7089 | 33500 | 0.1753 | - |
|
| 662 |
+
| 0.7111 | 33600 | 0.1834 | - |
|
| 663 |
+
| 0.7132 | 33700 | 0.1853 | - |
|
| 664 |
+
| 0.7153 | 33800 | 0.2155 | - |
|
| 665 |
+
| 0.7174 | 33900 | 0.1837 | - |
|
| 666 |
+
| 0.7195 | 34000 | 0.1655 | - |
|
| 667 |
+
| 0.7216 | 34100 | 0.212 | - |
|
| 668 |
+
| 0.7237 | 34200 | 0.2203 | - |
|
| 669 |
+
| 0.7259 | 34300 | 0.2267 | - |
|
| 670 |
+
| 0.7280 | 34400 | 0.208 | - |
|
| 671 |
+
| 0.7301 | 34500 | 0.1545 | - |
|
| 672 |
+
| 0.7322 | 34600 | 0.2003 | - |
|
| 673 |
+
| 0.7343 | 34700 | 0.2058 | - |
|
| 674 |
+
| 0.7364 | 34800 | 0.1837 | - |
|
| 675 |
+
| 0.7386 | 34900 | 0.2199 | - |
|
| 676 |
+
| 0.7407 | 35000 | 0.1931 | 0.1848 |
|
| 677 |
+
| 0.7428 | 35100 | 0.2456 | - |
|
| 678 |
+
| 0.7449 | 35200 | 0.1996 | - |
|
| 679 |
+
| 0.7470 | 35300 | 0.2145 | - |
|
| 680 |
+
| 0.7491 | 35400 | 0.1915 | - |
|
| 681 |
+
| 0.7513 | 35500 | 0.1734 | - |
|
| 682 |
+
| 0.7534 | 35600 | 0.19 | - |
|
| 683 |
+
| 0.7555 | 35700 | 0.182 | - |
|
| 684 |
+
| 0.7576 | 35800 | 0.1808 | - |
|
| 685 |
+
| 0.7597 | 35900 | 0.1625 | - |
|
| 686 |
+
| 0.7618 | 36000 | 0.1813 | - |
|
| 687 |
+
| 0.7640 | 36100 | 0.1412 | - |
|
| 688 |
+
| 0.7661 | 36200 | 0.2279 | - |
|
| 689 |
+
| 0.7682 | 36300 | 0.2444 | - |
|
| 690 |
+
| 0.7703 | 36400 | 0.1882 | - |
|
| 691 |
+
| 0.7724 | 36500 | 0.1731 | - |
|
| 692 |
+
| 0.7745 | 36600 | 0.1794 | - |
|
| 693 |
+
| 0.7767 | 36700 | 0.2577 | - |
|
| 694 |
+
| 0.7788 | 36800 | 0.169 | - |
|
| 695 |
+
| 0.7809 | 36900 | 0.1725 | - |
|
| 696 |
+
| 0.7830 | 37000 | 0.1788 | - |
|
| 697 |
+
| 0.7851 | 37100 | 0.1783 | - |
|
| 698 |
+
| 0.7872 | 37200 | 0.1764 | - |
|
| 699 |
+
| 0.7894 | 37300 | 0.1616 | - |
|
| 700 |
+
| 0.7915 | 37400 | 0.21 | - |
|
| 701 |
+
| 0.7936 | 37500 | 0.2091 | - |
|
| 702 |
+
| 0.7957 | 37600 | 0.1107 | - |
|
| 703 |
+
| 0.7978 | 37700 | 0.1773 | - |
|
| 704 |
+
| 0.7999 | 37800 | 0.1801 | - |
|
| 705 |
+
| 0.8020 | 37900 | 0.1621 | - |
|
| 706 |
+
| 0.8042 | 38000 | 0.189 | - |
|
| 707 |
+
| 0.8063 | 38100 | 0.182 | - |
|
| 708 |
+
| 0.8084 | 38200 | 0.1912 | - |
|
| 709 |
+
| 0.8105 | 38300 | 0.1731 | - |
|
| 710 |
+
| 0.8126 | 38400 | 0.1646 | - |
|
| 711 |
+
| 0.8147 | 38500 | 0.2037 | - |
|
| 712 |
+
| 0.8169 | 38600 | 0.1418 | - |
|
| 713 |
+
| 0.8190 | 38700 | 0.1485 | - |
|
| 714 |
+
| 0.8211 | 38800 | 0.2221 | - |
|
| 715 |
+
| 0.8232 | 38900 | 0.1886 | - |
|
| 716 |
+
| 0.8253 | 39000 | 0.2082 | - |
|
| 717 |
+
| 0.8274 | 39100 | 0.1742 | - |
|
| 718 |
+
| 0.8296 | 39200 | 0.1589 | - |
|
| 719 |
+
| 0.8317 | 39300 | 0.1959 | - |
|
| 720 |
+
| 0.8338 | 39400 | 0.1517 | - |
|
| 721 |
+
| 0.8359 | 39500 | 0.2049 | - |
|
| 722 |
+
| 0.8380 | 39600 | 0.2187 | - |
|
| 723 |
+
| 0.8401 | 39700 | 0.1801 | - |
|
| 724 |
+
| 0.8423 | 39800 | 0.1735 | - |
|
| 725 |
+
| 0.8444 | 39900 | 0.1881 | - |
|
| 726 |
+
| 0.8465 | 40000 | 0.1778 | 0.1787 |
|
| 727 |
+
| 0.8486 | 40100 | 0.1898 | - |
|
| 728 |
+
| 0.8507 | 40200 | 0.2021 | - |
|
| 729 |
+
| 0.8528 | 40300 | 0.1972 | - |
|
| 730 |
+
| 0.8550 | 40400 | 0.156 | - |
|
| 731 |
+
| 0.8571 | 40500 | 0.1791 | - |
|
| 732 |
+
| 0.8592 | 40600 | 0.188 | - |
|
| 733 |
+
| 0.8613 | 40700 | 0.2177 | - |
|
| 734 |
+
| 0.8634 | 40800 | 0.1287 | - |
|
| 735 |
+
| 0.8655 | 40900 | 0.1797 | - |
|
| 736 |
+
| 0.8677 | 41000 | 0.1533 | - |
|
| 737 |
+
| 0.8698 | 41100 | 0.1668 | - |
|
| 738 |
+
| 0.8719 | 41200 | 0.2047 | - |
|
| 739 |
+
| 0.8740 | 41300 | 0.1619 | - |
|
| 740 |
+
| 0.8761 | 41400 | 0.165 | - |
|
| 741 |
+
| 0.8782 | 41500 | 0.1781 | - |
|
| 742 |
+
| 0.8803 | 41600 | 0.2221 | - |
|
| 743 |
+
| 0.8825 | 41700 | 0.2031 | - |
|
| 744 |
+
| 0.8846 | 41800 | 0.1732 | - |
|
| 745 |
+
| 0.8867 | 41900 | 0.1599 | - |
|
| 746 |
+
| 0.8888 | 42000 | 0.1865 | - |
|
| 747 |
+
| 0.8909 | 42100 | 0.1367 | - |
|
| 748 |
+
| 0.8930 | 42200 | 0.1469 | - |
|
| 749 |
+
| 0.8952 | 42300 | 0.1777 | - |
|
| 750 |
+
| 0.8973 | 42400 | 0.1833 | - |
|
| 751 |
+
| 0.8994 | 42500 | 0.2102 | - |
|
| 752 |
+
| 0.9015 | 42600 | 0.164 | - |
|
| 753 |
+
| 0.9036 | 42700 | 0.1752 | - |
|
| 754 |
+
| 0.9057 | 42800 | 0.2186 | - |
|
| 755 |
+
| 0.9079 | 42900 | 0.1824 | - |
|
| 756 |
+
| 0.9100 | 43000 | 0.1796 | - |
|
| 757 |
+
| 0.9121 | 43100 | 0.1626 | - |
|
| 758 |
+
| 0.9142 | 43200 | 0.1623 | - |
|
| 759 |
+
| 0.9163 | 43300 | 0.2036 | - |
|
| 760 |
+
| 0.9184 | 43400 | 0.1365 | - |
|
| 761 |
+
| 0.9206 | 43500 | 0.1792 | - |
|
| 762 |
+
| 0.9227 | 43600 | 0.1583 | - |
|
| 763 |
+
| 0.9248 | 43700 | 0.1943 | - |
|
| 764 |
+
| 0.9269 | 43800 | 0.1931 | - |
|
| 765 |
+
| 0.9290 | 43900 | 0.1777 | - |
|
| 766 |
+
| 0.9311 | 44000 | 0.1633 | - |
|
| 767 |
+
| 0.9333 | 44100 | 0.1841 | - |
|
| 768 |
+
| 0.9354 | 44200 | 0.1674 | - |
|
| 769 |
+
| 0.9375 | 44300 | 0.1958 | - |
|
| 770 |
+
| 0.9396 | 44400 | 0.1831 | - |
|
| 771 |
+
| 0.9417 | 44500 | 0.1899 | - |
|
| 772 |
+
| 0.9438 | 44600 | 0.177 | - |
|
| 773 |
+
| 0.9460 | 44700 | 0.1881 | - |
|
| 774 |
+
| 0.9481 | 44800 | 0.1643 | - |
|
| 775 |
+
| 0.9502 | 44900 | 0.1462 | - |
|
| 776 |
+
| **0.9523** | **45000** | **0.2118** | **0.1719** |
|
| 777 |
+
| 0.9544 | 45100 | 0.1655 | - |
|
| 778 |
+
| 0.9565 | 45200 | 0.1567 | - |
|
| 779 |
+
| 0.9586 | 45300 | 0.1429 | - |
|
| 780 |
+
| 0.9608 | 45400 | 0.1718 | - |
|
| 781 |
+
| 0.9629 | 45500 | 0.1549 | - |
|
| 782 |
+
| 0.9650 | 45600 | 0.1556 | - |
|
| 783 |
+
| 0.9671 | 45700 | 0.1323 | - |
|
| 784 |
+
| 0.9692 | 45800 | 0.1988 | - |
|
| 785 |
+
| 0.9713 | 45900 | 0.15 | - |
|
| 786 |
+
| 0.9735 | 46000 | 0.1546 | - |
|
| 787 |
+
| 0.9756 | 46100 | 0.1472 | - |
|
| 788 |
+
| 0.9777 | 46200 | 0.196 | - |
|
| 789 |
+
| 0.9798 | 46300 | 0.1913 | - |
|
| 790 |
+
| 0.9819 | 46400 | 0.2261 | - |
|
| 791 |
+
| 0.9840 | 46500 | 0.1842 | - |
|
| 792 |
+
| 0.9862 | 46600 | 0.172 | - |
|
| 793 |
+
| 0.9883 | 46700 | 0.1925 | - |
|
| 794 |
+
| 0.9904 | 46800 | 0.1928 | - |
|
| 795 |
+
| 0.9925 | 46900 | 0.1698 | - |
|
| 796 |
+
| 0.9946 | 47000 | 0.1778 | - |
|
| 797 |
+
| 0.9967 | 47100 | 0.1497 | - |
|
| 798 |
+
| 0.9989 | 47200 | 0.1506 | - |
|
| 799 |
+
|
| 800 |
+
* The bold row denotes the saved checkpoint.
|
| 801 |
+
</details>
|
| 802 |
+
|
| 803 |
+
### Framework Versions
|
| 804 |
+
- Python: 3.12.4
|
| 805 |
+
- Sentence Transformers: 3.1.0.dev0
|
| 806 |
+
- Transformers: 4.42.4
|
| 807 |
+
- PyTorch: 2.3.1+cpu
|
| 808 |
+
- Accelerate: 0.32.1
|
| 809 |
+
- Datasets: 2.20.0
|
| 810 |
+
- Tokenizers: 0.19.1
|
| 811 |
+
|
| 812 |
+
## Citation
|
| 813 |
+
|
| 814 |
+
### BibTeX
|
| 815 |
+
|
| 816 |
+
#### Sentence Transformers
|
| 817 |
+
```bibtex
|
| 818 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 819 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 820 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 821 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 822 |
+
month = "11",
|
| 823 |
+
year = "2019",
|
| 824 |
+
publisher = "Association for Computational Linguistics",
|
| 825 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 826 |
+
}
|
| 827 |
+
```
|
| 828 |
+
|
| 829 |
+
#### MultipleNegativesRankingLoss
|
| 830 |
+
```bibtex
|
| 831 |
+
@misc{henderson2017efficient,
|
| 832 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
| 833 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
| 834 |
+
year={2017},
|
| 835 |
+
eprint={1705.00652},
|
| 836 |
+
archivePrefix={arXiv},
|
| 837 |
+
primaryClass={cs.CL}
|
| 838 |
+
}
|
| 839 |
+
```
|
| 840 |
+
|
| 841 |
+
<!--
|
| 842 |
+
## Glossary
|
| 843 |
+
|
| 844 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 845 |
+
-->
|
| 846 |
+
|
| 847 |
+
<!--
|
| 848 |
+
## Model Card Authors
|
| 849 |
+
|
| 850 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 851 |
+
-->
|
| 852 |
+
|
| 853 |
+
<!--
|
| 854 |
+
## Model Card Contact
|
| 855 |
+
|
| 856 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 857 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "nomic-ai/nomic-embed-text-v1.5",
|
| 3 |
+
"activation_function": "swiglu",
|
| 4 |
+
"architectures": [
|
| 5 |
+
"NomicBertModel"
|
| 6 |
+
],
|
| 7 |
+
"attn_pdrop": 0.0,
|
| 8 |
+
"auto_map": {
|
| 9 |
+
"AutoConfig": "nomic-ai/nomic-bert-2048--configuration_hf_nomic_bert.NomicBertConfig",
|
| 10 |
+
"AutoModel": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertModel",
|
| 11 |
+
"AutoModelForMaskedLM": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForPreTraining"
|
| 12 |
+
},
|
| 13 |
+
"bos_token_id": null,
|
| 14 |
+
"causal": false,
|
| 15 |
+
"dense_seq_output": true,
|
| 16 |
+
"embd_pdrop": 0.0,
|
| 17 |
+
"eos_token_id": null,
|
| 18 |
+
"fused_bias_fc": true,
|
| 19 |
+
"fused_dropout_add_ln": true,
|
| 20 |
+
"initializer_range": 0.02,
|
| 21 |
+
"layer_norm_epsilon": 1e-12,
|
| 22 |
+
"max_trained_positions": 2048,
|
| 23 |
+
"mlp_fc1_bias": false,
|
| 24 |
+
"mlp_fc2_bias": false,
|
| 25 |
+
"model_type": "nomic_bert",
|
| 26 |
+
"n_embd": 768,
|
| 27 |
+
"n_head": 12,
|
| 28 |
+
"n_inner": 3072,
|
| 29 |
+
"n_layer": 12,
|
| 30 |
+
"n_positions": 8192,
|
| 31 |
+
"pad_vocab_size_multiple": 64,
|
| 32 |
+
"parallel_block": false,
|
| 33 |
+
"parallel_block_tied_norm": false,
|
| 34 |
+
"prenorm": false,
|
| 35 |
+
"qkv_proj_bias": false,
|
| 36 |
+
"reorder_and_upcast_attn": false,
|
| 37 |
+
"resid_pdrop": 0.0,
|
| 38 |
+
"rotary_emb_base": 1000,
|
| 39 |
+
"rotary_emb_fraction": 1.0,
|
| 40 |
+
"rotary_emb_interleaved": false,
|
| 41 |
+
"rotary_emb_scale_base": null,
|
| 42 |
+
"rotary_scaling_factor": null,
|
| 43 |
+
"scale_attn_by_inverse_layer_idx": false,
|
| 44 |
+
"scale_attn_weights": true,
|
| 45 |
+
"summary_activation": null,
|
| 46 |
+
"summary_first_dropout": 0.0,
|
| 47 |
+
"summary_proj_to_labels": true,
|
| 48 |
+
"summary_type": "cls_index",
|
| 49 |
+
"summary_use_proj": true,
|
| 50 |
+
"torch_dtype": "float32",
|
| 51 |
+
"transformers_version": "4.42.4",
|
| 52 |
+
"type_vocab_size": 2,
|
| 53 |
+
"use_cache": true,
|
| 54 |
+
"use_flash_attn": true,
|
| 55 |
+
"use_rms_norm": false,
|
| 56 |
+
"use_xentropy": true,
|
| 57 |
+
"vocab_size": 30528
|
| 58 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.1.0.dev0",
|
| 4 |
+
"transformers": "4.42.4",
|
| 5 |
+
"pytorch": "2.3.1+cpu"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": null
|
| 10 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c62cc5556c0db315e9062bd7e1d2549f1127df17ce5da33359e8f0d03b5c28a2
|
| 3 |
+
size 546938168
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 8192,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_lower_case": true,
|
| 47 |
+
"mask_token": "[MASK]",
|
| 48 |
+
"model_max_length": 8192,
|
| 49 |
+
"pad_token": "[PAD]",
|
| 50 |
+
"sep_token": "[SEP]",
|
| 51 |
+
"strip_accents": null,
|
| 52 |
+
"tokenize_chinese_chars": true,
|
| 53 |
+
"tokenizer_class": "BertTokenizer",
|
| 54 |
+
"unk_token": "[UNK]"
|
| 55 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|