Delete pixcell_controlnet.py
Browse files- pixcell_controlnet.py +0 -176
pixcell_controlnet.py
DELETED
|
@@ -1,176 +0,0 @@
|
|
| 1 |
-
from dataclasses import dataclass
|
| 2 |
-
from diffusers.configuration_utils import ConfigMixin
|
| 3 |
-
from diffusers.models.modeling_utils import ModelMixin
|
| 4 |
-
import torch
|
| 5 |
-
import torch.nn as nn
|
| 6 |
-
from typing import Any, Dict, Optional, Tuple
|
| 7 |
-
from pixcell_transformer_2d import PixCellTransformer2DModel
|
| 8 |
-
|
| 9 |
-
from diffusers.models.controlnet import zero_module
|
| 10 |
-
from diffusers.models.embeddings import PatchEmbed
|
| 11 |
-
from diffusers.utils import BaseOutput, is_torch_version
|
| 12 |
-
|
| 13 |
-
@dataclass
|
| 14 |
-
class PixCellControlNetOutput(BaseOutput):
|
| 15 |
-
controlnet_block_samples: Tuple[torch.Tensor]
|
| 16 |
-
|
| 17 |
-
class PixCellControlNet(ModelMixin, ConfigMixin):
|
| 18 |
-
def __init__(
|
| 19 |
-
self,
|
| 20 |
-
base_transformer: PixCellTransformer2DModel,
|
| 21 |
-
n_blocks: int = None,
|
| 22 |
-
):
|
| 23 |
-
super().__init__()
|
| 24 |
-
|
| 25 |
-
self.n_blocks = n_blocks
|
| 26 |
-
|
| 27 |
-
# Base transformer
|
| 28 |
-
self.transformer = base_transformer
|
| 29 |
-
|
| 30 |
-
# Input patch embedding is frozen
|
| 31 |
-
# self.transformer.pos_embed.requires_grad = False
|
| 32 |
-
|
| 33 |
-
# Condition patch embedding
|
| 34 |
-
interpolation_scale = (
|
| 35 |
-
self.transformer.config.interpolation_scale
|
| 36 |
-
if self.transformer.config.interpolation_scale is not None
|
| 37 |
-
else max(self.transformer.config.sample_size // 64, 1)
|
| 38 |
-
)
|
| 39 |
-
self.cond_pos_embed = zero_module(PatchEmbed(
|
| 40 |
-
height=self.transformer.config.sample_size,
|
| 41 |
-
width=self.transformer.config.sample_size,
|
| 42 |
-
patch_size=self.transformer.config.patch_size,
|
| 43 |
-
in_channels=self.transformer.config.in_channels,
|
| 44 |
-
embed_dim=self.transformer.inner_dim,
|
| 45 |
-
interpolation_scale=interpolation_scale,
|
| 46 |
-
))
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
# Do not use all transformer blocks for controlnet
|
| 50 |
-
if self.n_blocks is not None:
|
| 51 |
-
self.transformer.transformer_blocks = self.transformer.transformer_blocks[:self.n_blocks]
|
| 52 |
-
|
| 53 |
-
# ControlNet layers
|
| 54 |
-
self.controlnet_blocks = nn.ModuleList([])
|
| 55 |
-
for i in range(len(self.transformer.transformer_blocks)):
|
| 56 |
-
controlnet_block = nn.Linear(self.transformer.inner_dim, self.transformer.inner_dim)
|
| 57 |
-
controlnet_block = zero_module(controlnet_block)
|
| 58 |
-
self.controlnet_blocks.append(controlnet_block)
|
| 59 |
-
|
| 60 |
-
if self.n_blocks is not None:
|
| 61 |
-
if i+1 == self.n_blocks:
|
| 62 |
-
break
|
| 63 |
-
|
| 64 |
-
def forward(
|
| 65 |
-
self,
|
| 66 |
-
hidden_states: torch.Tensor,
|
| 67 |
-
conditioning: torch.Tensor,
|
| 68 |
-
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 69 |
-
timestep: Optional[torch.LongTensor] = None,
|
| 70 |
-
conditioning_scale: float = 1.0,
|
| 71 |
-
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
| 72 |
-
cross_attention_kwargs: Dict[str, Any] = None,
|
| 73 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 74 |
-
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 75 |
-
return_dict: bool = True,
|
| 76 |
-
):
|
| 77 |
-
if self.transformer.use_additional_conditions and added_cond_kwargs is None:
|
| 78 |
-
raise ValueError("`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`.")
|
| 79 |
-
|
| 80 |
-
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
| 81 |
-
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
| 82 |
-
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
| 83 |
-
# expects mask of shape:
|
| 84 |
-
# [batch, key_tokens]
|
| 85 |
-
# adds singleton query_tokens dimension:
|
| 86 |
-
# [batch, 1, key_tokens]
|
| 87 |
-
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
| 88 |
-
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
| 89 |
-
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
| 90 |
-
if attention_mask is not None and attention_mask.ndim == 2:
|
| 91 |
-
# assume that mask is expressed as:
|
| 92 |
-
# (1 = keep, 0 = discard)
|
| 93 |
-
# convert mask into a bias that can be added to attention scores:
|
| 94 |
-
# (keep = +0, discard = -10000.0)
|
| 95 |
-
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 96 |
-
attention_mask = attention_mask.unsqueeze(1)
|
| 97 |
-
|
| 98 |
-
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
| 99 |
-
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
| 100 |
-
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 101 |
-
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
| 102 |
-
|
| 103 |
-
# 1. Input
|
| 104 |
-
batch_size = hidden_states.shape[0]
|
| 105 |
-
height, width = (
|
| 106 |
-
hidden_states.shape[-2] // self.transformer.config.patch_size,
|
| 107 |
-
hidden_states.shape[-1] // self.transformer.config.patch_size,
|
| 108 |
-
)
|
| 109 |
-
hidden_states = self.transformer.pos_embed(hidden_states)
|
| 110 |
-
|
| 111 |
-
# Conditioning
|
| 112 |
-
hidden_states = hidden_states + self.cond_pos_embed(conditioning)
|
| 113 |
-
|
| 114 |
-
timestep, embedded_timestep = self.transformer.adaln_single(
|
| 115 |
-
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
| 116 |
-
)
|
| 117 |
-
|
| 118 |
-
if self.transformer.caption_projection is not None:
|
| 119 |
-
# Add positional embeddings to conditions if >1 UNI are given
|
| 120 |
-
if self.transformer.y_pos_embed is not None:
|
| 121 |
-
encoder_hidden_states = self.transformer.y_pos_embed(encoder_hidden_states)
|
| 122 |
-
encoder_hidden_states = self.transformer.caption_projection(encoder_hidden_states)
|
| 123 |
-
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
| 124 |
-
|
| 125 |
-
# 2. Blocks
|
| 126 |
-
block_outputs = ()
|
| 127 |
-
|
| 128 |
-
for block in self.transformer.transformer_blocks:
|
| 129 |
-
if torch.is_grad_enabled() and self.transformer.gradient_checkpointing:
|
| 130 |
-
|
| 131 |
-
def create_custom_forward(module, return_dict=None):
|
| 132 |
-
def custom_forward(*inputs):
|
| 133 |
-
if return_dict is not None:
|
| 134 |
-
return module(*inputs, return_dict=return_dict)
|
| 135 |
-
else:
|
| 136 |
-
return module(*inputs)
|
| 137 |
-
|
| 138 |
-
return custom_forward
|
| 139 |
-
|
| 140 |
-
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 141 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 142 |
-
create_custom_forward(block),
|
| 143 |
-
hidden_states,
|
| 144 |
-
attention_mask,
|
| 145 |
-
encoder_hidden_states,
|
| 146 |
-
encoder_attention_mask,
|
| 147 |
-
timestep,
|
| 148 |
-
cross_attention_kwargs,
|
| 149 |
-
None,
|
| 150 |
-
**ckpt_kwargs,
|
| 151 |
-
)
|
| 152 |
-
else:
|
| 153 |
-
hidden_states = block(
|
| 154 |
-
hidden_states,
|
| 155 |
-
attention_mask=attention_mask,
|
| 156 |
-
encoder_hidden_states=encoder_hidden_states,
|
| 157 |
-
encoder_attention_mask=encoder_attention_mask,
|
| 158 |
-
timestep=timestep,
|
| 159 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
| 160 |
-
class_labels=None,
|
| 161 |
-
)
|
| 162 |
-
|
| 163 |
-
block_outputs = block_outputs + (hidden_states,)
|
| 164 |
-
|
| 165 |
-
# 3. controlnet blocks
|
| 166 |
-
controlnet_outputs = ()
|
| 167 |
-
for t_output, controlnet_block in zip(block_outputs, self.controlnet_blocks):
|
| 168 |
-
b_output = controlnet_block(t_output)
|
| 169 |
-
controlnet_outputs = controlnet_outputs + (b_output,)
|
| 170 |
-
|
| 171 |
-
controlnet_outputs = [sample * conditioning_scale for sample in controlnet_outputs]
|
| 172 |
-
|
| 173 |
-
if not return_dict:
|
| 174 |
-
return (controlnet_outputs,)
|
| 175 |
-
|
| 176 |
-
return PixCellControlNetOutput(controlnet_block_samples=controlnet_outputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|