|
|
import math |
|
|
import torch.nn.functional as F |
|
|
import numpy as np |
|
|
import torch |
|
|
|
|
|
|
|
|
def quaternion_to_matrix(quaternions): |
|
|
""" |
|
|
From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html |
|
|
Convert rotations given as quaternions to rotation matrices. |
|
|
|
|
|
Args: |
|
|
quaternions: quaternions with real part first, |
|
|
as tensor of shape (..., 4). |
|
|
|
|
|
Returns: |
|
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
|
""" |
|
|
r, i, j, k = torch.unbind(quaternions, -1) |
|
|
two_s = 2.0 / (quaternions * quaternions).sum(-1) |
|
|
|
|
|
o = torch.stack( |
|
|
( |
|
|
1 - two_s * (j * j + k * k), |
|
|
two_s * (i * j - k * r), |
|
|
two_s * (i * k + j * r), |
|
|
two_s * (i * j + k * r), |
|
|
1 - two_s * (i * i + k * k), |
|
|
two_s * (j * k - i * r), |
|
|
two_s * (i * k - j * r), |
|
|
two_s * (j * k + i * r), |
|
|
1 - two_s * (i * i + j * j), |
|
|
), |
|
|
-1, |
|
|
) |
|
|
return o.reshape(quaternions.shape[:-1] + (3, 3)) |
|
|
|
|
|
|
|
|
def axis_angle_to_quaternion(axis_angle): |
|
|
""" |
|
|
From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html |
|
|
Convert rotations given as axis/angle to quaternions. |
|
|
|
|
|
Args: |
|
|
axis_angle: Rotations given as a vector in axis angle form, |
|
|
as a tensor of shape (..., 3), where the magnitude is |
|
|
the angle turned anticlockwise in radians around the |
|
|
vector's direction. |
|
|
|
|
|
Returns: |
|
|
quaternions with real part first, as tensor of shape (..., 4). |
|
|
""" |
|
|
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True) |
|
|
half_angles = 0.5 * angles |
|
|
eps = 1e-6 |
|
|
small_angles = angles.abs() < eps |
|
|
sin_half_angles_over_angles = torch.empty_like(angles) |
|
|
sin_half_angles_over_angles[~small_angles] = ( |
|
|
torch.sin(half_angles[~small_angles]) / angles[~small_angles] |
|
|
) |
|
|
|
|
|
|
|
|
sin_half_angles_over_angles[small_angles] = ( |
|
|
0.5 - (angles[small_angles] * angles[small_angles]) / 48 |
|
|
) |
|
|
quaternions = torch.cat( |
|
|
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1 |
|
|
) |
|
|
return quaternions |
|
|
|
|
|
|
|
|
def axis_angle_to_matrix(axis_angle): |
|
|
""" |
|
|
From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html |
|
|
Convert rotations given as axis/angle to rotation matrices. |
|
|
|
|
|
Args: |
|
|
axis_angle: Rotations given as a vector in axis angle form, |
|
|
as a tensor of shape (..., 3), where the magnitude is |
|
|
the angle turned anticlockwise in radians around the |
|
|
vector's direction. |
|
|
|
|
|
Returns: |
|
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
|
""" |
|
|
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle)) |
|
|
|
|
|
|
|
|
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Returns torch.sqrt(torch.max(0, x)) |
|
|
but with a zero subgradient where x is 0. |
|
|
""" |
|
|
ret = torch.zeros_like(x) |
|
|
positive_mask = x > 0 |
|
|
ret[positive_mask] = torch.sqrt(x[positive_mask]) |
|
|
return ret |
|
|
|
|
|
|
|
|
def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Convert rotations given as rotation matrices to quaternions. |
|
|
|
|
|
Args: |
|
|
matrix: Rotation matrices as tensor of shape (..., 3, 3). |
|
|
|
|
|
Returns: |
|
|
quaternions with real part first, as tensor of shape (..., 4). |
|
|
""" |
|
|
if matrix.size(-1) != 3 or matrix.size(-2) != 3: |
|
|
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.") |
|
|
|
|
|
batch_dim = matrix.shape[:-2] |
|
|
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind( |
|
|
matrix.reshape(batch_dim + (9,)), dim=-1 |
|
|
) |
|
|
|
|
|
q_abs = _sqrt_positive_part( |
|
|
torch.stack( |
|
|
[ |
|
|
1.0 + m00 + m11 + m22, |
|
|
1.0 + m00 - m11 - m22, |
|
|
1.0 - m00 + m11 - m22, |
|
|
1.0 - m00 - m11 + m22, |
|
|
], |
|
|
dim=-1, |
|
|
) |
|
|
) |
|
|
|
|
|
|
|
|
quat_by_rijk = torch.stack( |
|
|
[ |
|
|
|
|
|
|
|
|
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1), |
|
|
|
|
|
|
|
|
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1), |
|
|
|
|
|
|
|
|
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1), |
|
|
|
|
|
|
|
|
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1), |
|
|
], |
|
|
dim=-2, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device) |
|
|
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return quat_candidates[ |
|
|
F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, : |
|
|
].reshape(batch_dim + (4,)) |
|
|
|
|
|
|
|
|
def quaternion_to_axis_angle(quaternions: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Convert rotations given as quaternions to axis/angle. |
|
|
|
|
|
Args: |
|
|
quaternions: quaternions with real part first, |
|
|
as tensor of shape (..., 4). |
|
|
|
|
|
Returns: |
|
|
Rotations given as a vector in axis angle form, as a tensor |
|
|
of shape (..., 3), where the magnitude is the angle |
|
|
turned anticlockwise in radians around the vector's |
|
|
direction. |
|
|
""" |
|
|
norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True) |
|
|
half_angles = torch.atan2(norms, quaternions[..., :1]) |
|
|
angles = 2 * half_angles |
|
|
eps = 1e-6 |
|
|
small_angles = angles.abs() < eps |
|
|
sin_half_angles_over_angles = torch.empty_like(angles) |
|
|
sin_half_angles_over_angles[~small_angles] = ( |
|
|
torch.sin(half_angles[~small_angles]) / angles[~small_angles] |
|
|
) |
|
|
|
|
|
|
|
|
sin_half_angles_over_angles[small_angles] = ( |
|
|
0.5 - (angles[small_angles] * angles[small_angles]) / 48 |
|
|
) |
|
|
return quaternions[..., 1:] / sin_half_angles_over_angles |
|
|
|
|
|
|
|
|
def matrix_to_axis_angle(matrix: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Convert rotations given as rotation matrices to axis/angle. |
|
|
|
|
|
Args: |
|
|
matrix: Rotation matrices as tensor of shape (..., 3, 3). |
|
|
|
|
|
Returns: |
|
|
Rotations given as a vector in axis angle form, as a tensor |
|
|
of shape (..., 3), where the magnitude is the angle |
|
|
turned anticlockwise in radians around the vector's |
|
|
direction. |
|
|
""" |
|
|
return quaternion_to_axis_angle(matrix_to_quaternion(matrix)) |
|
|
|
|
|
|
|
|
def rigid_transform_Kabsch_3D_torch(A, B): |
|
|
|
|
|
|
|
|
|
|
|
assert A.shape[1] == B.shape[1] |
|
|
num_rows, num_cols = A.shape |
|
|
if num_rows != 3: |
|
|
raise Exception(f"matrix A is not 3xN, it is {num_rows}x{num_cols}") |
|
|
num_rows, num_cols = B.shape |
|
|
if num_rows != 3: |
|
|
raise Exception(f"matrix B is not 3xN, it is {num_rows}x{num_cols}") |
|
|
|
|
|
|
|
|
centroid_A = torch.mean(A, axis=1, keepdims=True) |
|
|
centroid_B = torch.mean(B, axis=1, keepdims=True) |
|
|
|
|
|
|
|
|
Am = A - centroid_A |
|
|
Bm = B - centroid_B |
|
|
|
|
|
H = Am @ Bm.T |
|
|
|
|
|
|
|
|
U, S, Vt = torch.linalg.svd(H) |
|
|
|
|
|
R = Vt.T @ U.T |
|
|
|
|
|
if torch.linalg.det(R) < 0: |
|
|
|
|
|
SS = torch.diag(torch.tensor([1.,1.,-1.], device=A.device)) |
|
|
R = (Vt.T @ SS) @ U.T |
|
|
assert math.fabs(torch.linalg.det(R) - 1) < 3e-3 |
|
|
|
|
|
t = -R @ centroid_A + centroid_B |
|
|
return R, t |
|
|
|
|
|
|
|
|
def rigid_transform_Kabsch_3D_torch_batch(A, B): |
|
|
|
|
|
|
|
|
assert A.shape == B.shape |
|
|
_, N, M = A.shape |
|
|
if M != 3: |
|
|
raise Exception(f"matrix A and B should be BxNx3") |
|
|
|
|
|
A, B = A.permute(0, 2, 1), B.permute(0, 2, 1) |
|
|
|
|
|
|
|
|
centroid_A = torch.mean(A, axis=2, keepdims=True) |
|
|
centroid_B = torch.mean(B, axis=2, keepdims=True) |
|
|
|
|
|
|
|
|
Am = A - centroid_A |
|
|
Bm = B - centroid_B |
|
|
H = torch.bmm(Am, Bm.transpose(1, 2)) |
|
|
|
|
|
|
|
|
U, S, Vt = torch.linalg.svd(H) |
|
|
R = torch.bmm(Vt.transpose(1, 2), U.transpose(1, 2)) |
|
|
|
|
|
|
|
|
SS = torch.diag(torch.tensor([1., 1., -1.], device=A.device)) |
|
|
Rm = torch.bmm(Vt.transpose(1,2) @ SS, U.transpose(1, 2)) |
|
|
R = torch.where(torch.linalg.det(R)[:, None, None] < 0, Rm, R) |
|
|
assert torch.all(torch.abs(torch.linalg.det(R) - 1) < 3e-3) |
|
|
|
|
|
t = torch.bmm(-R, centroid_A) + centroid_B |
|
|
return R, t |
|
|
|
|
|
|
|
|
def rigid_transform_Kabsch_independent_torch(A, B): |
|
|
|
|
|
|
|
|
|
|
|
assert A.shape[1] == B.shape[1] |
|
|
num_rows, num_cols = A.shape |
|
|
if num_rows != 3: |
|
|
raise Exception(f"matrix A is not 3xN, it is {num_rows}x{num_cols}") |
|
|
num_rows, num_cols = B.shape |
|
|
if num_rows != 3: |
|
|
raise Exception(f"matrix B is not 3xN, it is {num_rows}x{num_cols}") |
|
|
|
|
|
|
|
|
centroid_A = torch.mean(A, axis=1, keepdims=True) |
|
|
centroid_B = torch.mean(B, axis=1, keepdims=True) |
|
|
|
|
|
|
|
|
Am = A - centroid_A |
|
|
Bm = B - centroid_B |
|
|
|
|
|
H = Am @ Bm.T |
|
|
|
|
|
|
|
|
U, S, Vt = torch.linalg.svd(H) |
|
|
|
|
|
R = Vt.T @ U.T |
|
|
|
|
|
if torch.linalg.det(R) < 0: |
|
|
|
|
|
SS = torch.diag(torch.tensor([1.,1.,-1.], device=A.device)) |
|
|
R = (Vt.T @ SS) @ U.T |
|
|
assert math.fabs(torch.linalg.det(R) - 1) < 3e-3 |
|
|
|
|
|
t = - centroid_A + centroid_B |
|
|
R_vec = matrix_to_axis_angle(R) |
|
|
return t, R_vec |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|