DiffDock / utils /inference_utils.py
Dvincis's picture
解决合并冲突,同步远程变更
ce9690f
import os
from esm import FastaBatchedDataset, pretrained
from rdkit.Chem import AddHs, MolFromSmiles
from torch_geometric.data import Dataset, HeteroData
import numpy as np
import torch
import prody as pr
import esm
from datasets.process_mols import generate_conformer, read_molecule, get_lig_graph_with_matching, moad_extract_receptor_structure
from datasets.parse_chi import aa_idx2aa_short, get_onehot_sequence
def get_sequences_from_pdbfile(file_path):
sequence = None
pdb = pr.parsePDB(file_path)
seq = pdb.ca.getSequence()
one_hot = get_onehot_sequence(seq)
chain_ids = np.zeros(len(one_hot))
res_chain_ids = pdb.ca.getChids()
res_seg_ids = pdb.ca.getSegnames()
res_chain_ids = np.asarray([s + c for s, c in zip(res_seg_ids, res_chain_ids)])
ids = np.unique(res_chain_ids)
for i, id in enumerate(ids):
chain_ids[res_chain_ids == id] = i
s_temp = np.argmax(one_hot[res_chain_ids == id], axis=1)
s = ''.join([aa_idx2aa_short[aa_idx] for aa_idx in s_temp])
if sequence is None:
sequence = s
else:
sequence += (":" + s)
return sequence
def set_nones(l):
return [s if str(s) != 'nan' else None for s in l]
def get_sequences(protein_files, protein_sequences):
new_sequences = []
for i in range(len(protein_files)):
if protein_files[i] is not None:
new_sequences.append(get_sequences_from_pdbfile(protein_files[i]))
else:
new_sequences.append(protein_sequences[i])
return new_sequences
def compute_ESM_embeddings(model, alphabet, labels, sequences):
# settings used
toks_per_batch = 4096
repr_layers = [33]
include = "per_tok"
truncation_seq_length = 1022
dataset = FastaBatchedDataset(labels, sequences)
batches = dataset.get_batch_indices(toks_per_batch, extra_toks_per_seq=1)
data_loader = torch.utils.data.DataLoader(
dataset, collate_fn=alphabet.get_batch_converter(truncation_seq_length), batch_sampler=batches
)
assert all(-(model.num_layers + 1) <= i <= model.num_layers for i in repr_layers)
repr_layers = [(i + model.num_layers + 1) % (model.num_layers + 1) for i in repr_layers]
embeddings = {}
with torch.no_grad():
for batch_idx, (labels, strs, toks) in enumerate(data_loader):
print(f"Processing {batch_idx + 1} of {len(batches)} batches ({toks.size(0)} sequences)")
if torch.cuda.is_available():
toks = toks.to(device="cuda", non_blocking=True)
out = model(toks, repr_layers=repr_layers, return_contacts=False)
representations = {layer: t.to(device="cpu") for layer, t in out["representations"].items()}
for i, label in enumerate(labels):
truncate_len = min(truncation_seq_length, len(strs[i]))
embeddings[label] = representations[33][i, 1: truncate_len + 1].clone()
return embeddings
def generate_ESM_structure(model, filename, sequence):
model.set_chunk_size(256)
chunk_size = 256
output = None
while output is None:
try:
with torch.no_grad():
output = model.infer_pdb(sequence)
with open(filename, "w") as f:
f.write(output)
print("saved", filename)
except RuntimeError as e:
if 'out of memory' in str(e):
print('| WARNING: ran out of memory on chunk_size', chunk_size)
for p in model.parameters():
if p.grad is not None:
del p.grad # free some memory
torch.cuda.empty_cache()
chunk_size = chunk_size // 2
if chunk_size > 2:
model.set_chunk_size(chunk_size)
else:
print("Not enough memory for ESMFold")
break
else:
raise e
return output is not None
class InferenceDataset(Dataset):
def __init__(self, out_dir, complex_names, protein_files, ligand_descriptions, protein_sequences, lm_embeddings,
receptor_radius=30, c_alpha_max_neighbors=None, precomputed_lm_embeddings=None,
remove_hs=False, all_atoms=False, atom_radius=5, atom_max_neighbors=None, knn_only_graph=False):
super(InferenceDataset, self).__init__()
self.receptor_radius = receptor_radius
self.c_alpha_max_neighbors = c_alpha_max_neighbors
self.remove_hs = remove_hs
self.all_atoms = all_atoms
self.atom_radius, self.atom_max_neighbors = atom_radius, atom_max_neighbors
self.knn_only_graph = knn_only_graph
self.complex_names = complex_names
self.protein_files = protein_files
self.ligand_descriptions = ligand_descriptions
self.protein_sequences = protein_sequences
# generate LM embeddings
if lm_embeddings and (precomputed_lm_embeddings is None or precomputed_lm_embeddings[0] is None):
print("Generating ESM language model embeddings")
model_location = "esm2_t33_650M_UR50D"
model, alphabet = pretrained.load_model_and_alphabet(model_location)
model.eval()
if torch.cuda.is_available():
model = model.cuda()
protein_sequences = get_sequences(protein_files, protein_sequences)
labels, sequences = [], []
for i in range(len(protein_sequences)):
s = protein_sequences[i].split(':')
sequences.extend(s)
labels.extend([complex_names[i] + '_chain_' + str(j) for j in range(len(s))])
lm_embeddings = compute_ESM_embeddings(model, alphabet, labels, sequences)
self.lm_embeddings = []
for i in range(len(protein_sequences)):
s = protein_sequences[i].split(':')
self.lm_embeddings.append([lm_embeddings[f'{complex_names[i]}_chain_{j}'] for j in range(len(s))])
elif not lm_embeddings:
self.lm_embeddings = [None] * len(self.complex_names)
else:
self.lm_embeddings = precomputed_lm_embeddings
# generate structures with ESMFold
if None in protein_files:
print("generating missing structures with ESMFold")
model = esm.pretrained.esmfold_v1()
model = model.eval().cuda()
for i in range(len(protein_files)):
if protein_files[i] is None:
self.protein_files[i] = f"{out_dir}/{complex_names[i]}/{complex_names[i]}_esmfold.pdb"
if not os.path.exists(self.protein_files[i]):
print("generating", self.protein_files[i])
generate_ESM_structure(model, self.protein_files[i], protein_sequences[i])
def len(self):
return len(self.complex_names)
def get(self, idx):
name, protein_file, ligand_description, lm_embedding = \
self.complex_names[idx], self.protein_files[idx], self.ligand_descriptions[idx], self.lm_embeddings[idx]
# build the pytorch geometric heterogeneous graph
complex_graph = HeteroData()
complex_graph['name'] = name
# parse the ligand, either from file or smile
try:
mol = MolFromSmiles(ligand_description) # check if it is a smiles or a path
if mol is not None:
mol = AddHs(mol)
generate_conformer(mol)
else:
mol = read_molecule(ligand_description, remove_hs=False, sanitize=True)
if mol is None:
raise Exception('RDKit could not read the molecule ', ligand_description)
mol.RemoveAllConformers()
mol = AddHs(mol)
generate_conformer(mol)
except Exception as e:
print('Failed to read molecule ', ligand_description, ' We are skipping it. The reason is the exception: ', e)
complex_graph['success'] = False
return complex_graph
try:
# parse the receptor from the pdb file
get_lig_graph_with_matching(mol, complex_graph, popsize=None, maxiter=None, matching=False, keep_original=False,
num_conformers=1, remove_hs=self.remove_hs)
moad_extract_receptor_structure(
path=os.path.join(protein_file),
complex_graph=complex_graph,
neighbor_cutoff=self.receptor_radius,
max_neighbors=self.c_alpha_max_neighbors,
lm_embeddings=lm_embedding,
knn_only_graph=self.knn_only_graph,
all_atoms=self.all_atoms,
atom_cutoff=self.atom_radius,
atom_max_neighbors=self.atom_max_neighbors)
except Exception as e:
print(f'Skipping {name} because of the error:')
print(e)
complex_graph['success'] = False
return complex_graph
protein_center = torch.mean(complex_graph['receptor'].pos, dim=0, keepdim=True)
complex_graph['receptor'].pos -= protein_center
if self.all_atoms:
complex_graph['atom'].pos -= protein_center
ligand_center = torch.mean(complex_graph['ligand'].pos, dim=0, keepdim=True)
complex_graph['ligand'].pos -= ligand_center
complex_graph.original_center = protein_center
complex_graph.mol = mol
complex_graph['success'] = True
return complex_graph