| # Importing standard libraries | |
| import os | |
| import glob | |
| import argparse | |
| import pandas as pd | |
| from tqdm import tqdm | |
| from pathlib import Path | |
| # Additional preprocessing functions are imported from another module. | |
| from preprocessing_sub_functions import * | |
| # This function returns a list of all CSV files in the given directory path. | |
| def get_files(path): | |
| return glob.glob(path + "/*.csv") | |
| # This function aims to remove meta information from the text. | |
| # The specifics of what meta information is removed depends on the function 'remove_meta_info'. | |
| def raw_preprocess(text): | |
| text = remove_meta_info(text) | |
| return text | |
| # A comprehensive text preprocessing function that applies several common preprocessing steps: | |
| # - URLs are removed from the text. | |
| # - The entire text is converted to lowercase to ensure uniformity. | |
| # - Punctuation is stripped from the text. | |
| # - Extra whitespaces (if any) are removed. | |
| # - The text is tokenized (split into individual words or tokens). | |
| # - Contractions (like "can't" or "won't") are expanded to their full forms. | |
| # - Common words (stopwords) that don't add significant meaning are removed. | |
| # Finally, the cleaned tokens are joined back into a string. | |
| def text_preprocess(text): | |
| text = remove_urls(text) | |
| text = to_lowercase(text) | |
| text = remove_sentence_punctuation(text) | |
| text = remove_extra_whitespace(text) | |
| tokens = tokenize(text) | |
| tokens = expand_contractions(tokens) | |
| tokens = remove_stopwords(tokens) | |
| text = " ".join(tokens) | |
| return text | |
| # This function preprocesses a dataframe. | |
| # Specific preprocessing steps include: | |
| # - Removing rows marked as 'deleted'. | |
| # - Removing posts marked as 'deleted'. | |
| # - Updating the 'lastEdit' column. | |
| # - Converting timestamps to a datetime format. | |
| # - Renaming the 'timestamp' column to 'start_edit'. | |
| def csv_preprocess(df): | |
| df = remove_deleted(df) | |
| df = remove_deleted_post(df) | |
| df = update_lastEdit(df) | |
| df = convert_to_datetime(df) | |
| df.rename(columns={"timestamp": "start_edit"}, inplace=True) | |
| return df | |
| # This function processes individual CSV files: | |
| # - Reads the CSV into a DataFrame. | |
| # - Applies dataframe preprocessing. | |
| # - Applies raw text preprocessing to the 'post' column. | |
| # - Saves the raw preprocessed data into a 'raw-data' folder. | |
| # - Applies comprehensive text preprocessing to the 'post' column. | |
| # - Saves the fully preprocessed data into a 'preprocessed-data' folder. | |
| def loop_through_csvs(filePath): | |
| file = os.path.basename(filePath) | |
| folder = os.path.basename(os.path.dirname(filePath)) | |
| df = pd.read_csv(filePath) | |
| df = csv_preprocess(df) | |
| # Create a directory for raw data if it doesn't exist. | |
| raw_folder = Path(f"raw-data/{folder}") | |
| raw_folder.mkdir(parents=True, exist_ok=True) | |
| # Apply raw preprocessing to the 'post' column of the dataframe. | |
| df["post"] = df["post"].apply(raw_preprocess) | |
| # Sort the dataframe by the 'last_edit' column. | |
| df.sort_values(by=["last_edit"], inplace=True) | |
| # Save the raw preprocessed dataframe to a CSV file. | |
| df.to_csv(f"{raw_folder}/{file}", index=False) | |
| # Create a directory for fully preprocessed data if it doesn't exist. | |
| clean_folder = Path(f"preprocessed-data/{folder}") | |
| clean_folder.mkdir(parents=True, exist_ok=True) | |
| # Apply the comprehensive text preprocessing to the 'post' column and store the result in a new column. | |
| df["preprocessed_post"] = df["post"].apply(text_preprocess) | |
| # Sort the dataframe by the 'last_edit' column again. | |
| df.sort_values(by=["last_edit"], inplace=True) | |
| # Save the fully preprocessed dataframe to a CSV file. | |
| df.to_csv(f"{clean_folder}/{file}", index=False) | |
| return df | |
| # A function to parse command-line arguments. | |
| # The script expects a 'path' argument which indicates the directory where the raw CSV files are located. | |
| def parse_args(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("path", help="path for the extraction") | |
| return vars(parser.parse_args()) | |
| # The main function of the script: | |
| # - It retrieves all the CSV files from the specified directory. | |
| # - Loops through each file, applying the preprocessing steps. | |
| # - If an error occurs during processing, the error message is appended to an 'error_log.txt' file. | |
| def main(path): | |
| print(f'Preprocessing data in {path}') | |
| rawFiles = get_files(path) | |
| for filePath in tqdm(rawFiles): | |
| try: | |
| df = loop_through_csvs(filePath) | |
| except Exception as e: | |
| # If an error occurs, log the error message to a file. | |
| with open(f"{path}/error_log.txt", "a") as f: | |
| f.write(f"{filePath} -- {e}\\n") | |
| continue | |
| if __name__ == "__main__": | |
| main(**parse_args()) | |