Datasets:
release scraper code
Browse files
main.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
from datasets import Dataset
|
| 3 |
+
from selectolax.lexbor import LexborHTMLParser
|
| 4 |
+
|
| 5 |
+
# How many pages to seek for article recommendations?
|
| 6 |
+
# (https://www.storm.mg/articles/{page_id})
|
| 7 |
+
N_PAGES_OF_ARTICLES_RECOMMENDATIONS = 100
|
| 8 |
+
|
| 9 |
+
base_url = "https://www.storm.mg/articles/%i"
|
| 10 |
+
user_agent = (
|
| 11 |
+
# use mine, or put your user agent here
|
| 12 |
+
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) "
|
| 13 |
+
"Chrome/121.0.0.0 Safari/537.36 OPR/107.0.0.0"
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
def read_article(link: str):
|
| 17 |
+
"""Read an article on www.storm.mg."""
|
| 18 |
+
r = requests.get(link, headers={ "User-Agent": user_agent })
|
| 19 |
+
r.raise_for_status()
|
| 20 |
+
|
| 21 |
+
contents = []
|
| 22 |
+
parser = LexborHTMLParser(r.text)
|
| 23 |
+
|
| 24 |
+
for paragraph in parser.css("p[aid]"):
|
| 25 |
+
contents.append(paragraph.text(separator=" ", strip=True))
|
| 26 |
+
|
| 27 |
+
return contents
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def generate_dataset():
|
| 31 |
+
"""Generate the dataset."""
|
| 32 |
+
for page_id in range(N_PAGES_OF_ARTICLES_RECOMMENDATIONS):
|
| 33 |
+
r = requests.get(base_url % (page_id + 1), headers={
|
| 34 |
+
"User-Agent": user_agent
|
| 35 |
+
})
|
| 36 |
+
r.raise_for_status()
|
| 37 |
+
|
| 38 |
+
parser = LexborHTMLParser(r.text)
|
| 39 |
+
articles = parser.css(".category_cards_wrapper .category_card.card_thumbs_left")
|
| 40 |
+
|
| 41 |
+
for article in articles:
|
| 42 |
+
image = article.css_first("img").attributes['src']
|
| 43 |
+
title = article.css_first(".card_title").text()
|
| 44 |
+
tag = article.css_first(".tags_wrapper a").text()
|
| 45 |
+
|
| 46 |
+
info = article.css_first("p.card_info.right")
|
| 47 |
+
author = info.css_first(".info_author").text()
|
| 48 |
+
timestamp = info.css_first(".info_time").text()
|
| 49 |
+
link = article.css_first(".link_title").attributes['href']
|
| 50 |
+
|
| 51 |
+
yield {
|
| 52 |
+
"image": image,
|
| 53 |
+
"title": title,
|
| 54 |
+
"content": "\n".join(read_article(link)),
|
| 55 |
+
"tag": tag,
|
| 56 |
+
"author": author,
|
| 57 |
+
"timestamp": timestamp,
|
| 58 |
+
"link": link
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
dataset = Dataset.from_generator(generate_dataset)
|
| 62 |
+
dataset.save_to_disk(
|
| 63 |
+
f"storm-org-articles-{20 * N_PAGES_OF_ARTICLES_RECOMMENDATIONS}"
|
| 64 |
+
)
|