Upload 2 files
Browse files- modules/hypernetworks/hypernetwork.py +782 -0
- modules/hypernetworks/ui.py +38 -0
modules/hypernetworks/hypernetwork.py
ADDED
|
@@ -0,0 +1,782 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import datetime
|
| 2 |
+
import glob
|
| 3 |
+
import html
|
| 4 |
+
import os
|
| 5 |
+
import inspect
|
| 6 |
+
from contextlib import closing
|
| 7 |
+
|
| 8 |
+
import modules.textual_inversion.dataset
|
| 9 |
+
import torch
|
| 10 |
+
import tqdm
|
| 11 |
+
from einops import rearrange, repeat
|
| 12 |
+
from ldm.util import default
|
| 13 |
+
from modules import devices, sd_models, shared, sd_samplers, hashes, sd_hijack_checkpoint, errors
|
| 14 |
+
from modules.textual_inversion import textual_inversion, logging
|
| 15 |
+
from modules.textual_inversion.learn_schedule import LearnRateScheduler
|
| 16 |
+
from torch import einsum
|
| 17 |
+
from torch.nn.init import normal_, xavier_normal_, xavier_uniform_, kaiming_normal_, kaiming_uniform_, zeros_
|
| 18 |
+
|
| 19 |
+
from collections import deque
|
| 20 |
+
from statistics import stdev, mean
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
optimizer_dict = {optim_name : cls_obj for optim_name, cls_obj in inspect.getmembers(torch.optim, inspect.isclass) if optim_name != "Optimizer"}
|
| 24 |
+
|
| 25 |
+
class HypernetworkModule(torch.nn.Module):
|
| 26 |
+
activation_dict = {
|
| 27 |
+
"linear": torch.nn.Identity,
|
| 28 |
+
"relu": torch.nn.ReLU,
|
| 29 |
+
"leakyrelu": torch.nn.LeakyReLU,
|
| 30 |
+
"elu": torch.nn.ELU,
|
| 31 |
+
"swish": torch.nn.Hardswish,
|
| 32 |
+
"tanh": torch.nn.Tanh,
|
| 33 |
+
"sigmoid": torch.nn.Sigmoid,
|
| 34 |
+
}
|
| 35 |
+
activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})
|
| 36 |
+
|
| 37 |
+
def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal',
|
| 38 |
+
add_layer_norm=False, activate_output=False, dropout_structure=None):
|
| 39 |
+
super().__init__()
|
| 40 |
+
|
| 41 |
+
self.multiplier = 1.0
|
| 42 |
+
|
| 43 |
+
assert layer_structure is not None, "layer_structure must not be None"
|
| 44 |
+
assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
|
| 45 |
+
assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
|
| 46 |
+
|
| 47 |
+
linears = []
|
| 48 |
+
for i in range(len(layer_structure) - 1):
|
| 49 |
+
|
| 50 |
+
# Add a fully-connected layer
|
| 51 |
+
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
|
| 52 |
+
|
| 53 |
+
# Add an activation func except last layer
|
| 54 |
+
if activation_func == "linear" or activation_func is None or (i >= len(layer_structure) - 2 and not activate_output):
|
| 55 |
+
pass
|
| 56 |
+
elif activation_func in self.activation_dict:
|
| 57 |
+
linears.append(self.activation_dict[activation_func]())
|
| 58 |
+
else:
|
| 59 |
+
raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')
|
| 60 |
+
|
| 61 |
+
# Add layer normalization
|
| 62 |
+
if add_layer_norm:
|
| 63 |
+
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
|
| 64 |
+
|
| 65 |
+
# Everything should be now parsed into dropout structure, and applied here.
|
| 66 |
+
# Since we only have dropouts after layers, dropout structure should start with 0 and end with 0.
|
| 67 |
+
if dropout_structure is not None and dropout_structure[i+1] > 0:
|
| 68 |
+
assert 0 < dropout_structure[i+1] < 1, "Dropout probability should be 0 or float between 0 and 1!"
|
| 69 |
+
linears.append(torch.nn.Dropout(p=dropout_structure[i+1]))
|
| 70 |
+
# Code explanation : [1, 2, 1] -> dropout is missing when last_layer_dropout is false. [1, 2, 2, 1] -> [0, 0.3, 0, 0], when its True, [0, 0.3, 0.3, 0].
|
| 71 |
+
|
| 72 |
+
self.linear = torch.nn.Sequential(*linears)
|
| 73 |
+
|
| 74 |
+
if state_dict is not None:
|
| 75 |
+
self.fix_old_state_dict(state_dict)
|
| 76 |
+
self.load_state_dict(state_dict)
|
| 77 |
+
else:
|
| 78 |
+
for layer in self.linear:
|
| 79 |
+
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
|
| 80 |
+
w, b = layer.weight.data, layer.bias.data
|
| 81 |
+
if weight_init == "Normal" or type(layer) == torch.nn.LayerNorm:
|
| 82 |
+
normal_(w, mean=0.0, std=0.01)
|
| 83 |
+
normal_(b, mean=0.0, std=0)
|
| 84 |
+
elif weight_init == 'XavierUniform':
|
| 85 |
+
xavier_uniform_(w)
|
| 86 |
+
zeros_(b)
|
| 87 |
+
elif weight_init == 'XavierNormal':
|
| 88 |
+
xavier_normal_(w)
|
| 89 |
+
zeros_(b)
|
| 90 |
+
elif weight_init == 'KaimingUniform':
|
| 91 |
+
kaiming_uniform_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
|
| 92 |
+
zeros_(b)
|
| 93 |
+
elif weight_init == 'KaimingNormal':
|
| 94 |
+
kaiming_normal_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
|
| 95 |
+
zeros_(b)
|
| 96 |
+
else:
|
| 97 |
+
raise KeyError(f"Key {weight_init} is not defined as initialization!")
|
| 98 |
+
self.to(devices.device)
|
| 99 |
+
|
| 100 |
+
def fix_old_state_dict(self, state_dict):
|
| 101 |
+
changes = {
|
| 102 |
+
'linear1.bias': 'linear.0.bias',
|
| 103 |
+
'linear1.weight': 'linear.0.weight',
|
| 104 |
+
'linear2.bias': 'linear.1.bias',
|
| 105 |
+
'linear2.weight': 'linear.1.weight',
|
| 106 |
+
}
|
| 107 |
+
|
| 108 |
+
for fr, to in changes.items():
|
| 109 |
+
x = state_dict.get(fr, None)
|
| 110 |
+
if x is None:
|
| 111 |
+
continue
|
| 112 |
+
|
| 113 |
+
del state_dict[fr]
|
| 114 |
+
state_dict[to] = x
|
| 115 |
+
|
| 116 |
+
def forward(self, x):
|
| 117 |
+
return x + self.linear(x) * (self.multiplier if not self.training else 1)
|
| 118 |
+
|
| 119 |
+
def trainables(self):
|
| 120 |
+
layer_structure = []
|
| 121 |
+
for layer in self.linear:
|
| 122 |
+
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
|
| 123 |
+
layer_structure += [layer.weight, layer.bias]
|
| 124 |
+
return layer_structure
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
#param layer_structure : sequence used for length, use_dropout : controlling boolean, last_layer_dropout : for compatibility check.
|
| 128 |
+
def parse_dropout_structure(layer_structure, use_dropout, last_layer_dropout):
|
| 129 |
+
if layer_structure is None:
|
| 130 |
+
layer_structure = [1, 2, 1]
|
| 131 |
+
if not use_dropout:
|
| 132 |
+
return [0] * len(layer_structure)
|
| 133 |
+
dropout_values = [0]
|
| 134 |
+
dropout_values.extend([0.3] * (len(layer_structure) - 3))
|
| 135 |
+
if last_layer_dropout:
|
| 136 |
+
dropout_values.append(0.3)
|
| 137 |
+
else:
|
| 138 |
+
dropout_values.append(0)
|
| 139 |
+
dropout_values.append(0)
|
| 140 |
+
return dropout_values
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
class Hypernetwork:
|
| 144 |
+
filename = None
|
| 145 |
+
name = None
|
| 146 |
+
|
| 147 |
+
def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, activate_output=False, **kwargs):
|
| 148 |
+
self.filename = None
|
| 149 |
+
self.name = name
|
| 150 |
+
self.layers = {}
|
| 151 |
+
self.step = 0
|
| 152 |
+
self.sd_checkpoint = None
|
| 153 |
+
self.sd_checkpoint_name = None
|
| 154 |
+
self.layer_structure = layer_structure
|
| 155 |
+
self.activation_func = activation_func
|
| 156 |
+
self.weight_init = weight_init
|
| 157 |
+
self.add_layer_norm = add_layer_norm
|
| 158 |
+
self.use_dropout = use_dropout
|
| 159 |
+
self.activate_output = activate_output
|
| 160 |
+
self.last_layer_dropout = kwargs.get('last_layer_dropout', True)
|
| 161 |
+
self.dropout_structure = kwargs.get('dropout_structure', None)
|
| 162 |
+
if self.dropout_structure is None:
|
| 163 |
+
self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout)
|
| 164 |
+
self.optimizer_name = None
|
| 165 |
+
self.optimizer_state_dict = None
|
| 166 |
+
self.optional_info = None
|
| 167 |
+
|
| 168 |
+
for size in enable_sizes or []:
|
| 169 |
+
self.layers[size] = (
|
| 170 |
+
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
|
| 171 |
+
self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure),
|
| 172 |
+
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
|
| 173 |
+
self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure),
|
| 174 |
+
)
|
| 175 |
+
self.eval()
|
| 176 |
+
|
| 177 |
+
def weights(self):
|
| 178 |
+
res = []
|
| 179 |
+
for layers in self.layers.values():
|
| 180 |
+
for layer in layers:
|
| 181 |
+
res += layer.parameters()
|
| 182 |
+
return res
|
| 183 |
+
|
| 184 |
+
def train(self, mode=True):
|
| 185 |
+
for layers in self.layers.values():
|
| 186 |
+
for layer in layers:
|
| 187 |
+
layer.train(mode=mode)
|
| 188 |
+
for param in layer.parameters():
|
| 189 |
+
param.requires_grad = mode
|
| 190 |
+
|
| 191 |
+
def to(self, device):
|
| 192 |
+
for layers in self.layers.values():
|
| 193 |
+
for layer in layers:
|
| 194 |
+
layer.to(device)
|
| 195 |
+
|
| 196 |
+
return self
|
| 197 |
+
|
| 198 |
+
def set_multiplier(self, multiplier):
|
| 199 |
+
for layers in self.layers.values():
|
| 200 |
+
for layer in layers:
|
| 201 |
+
layer.multiplier = multiplier
|
| 202 |
+
|
| 203 |
+
return self
|
| 204 |
+
|
| 205 |
+
def eval(self):
|
| 206 |
+
for layers in self.layers.values():
|
| 207 |
+
for layer in layers:
|
| 208 |
+
layer.eval()
|
| 209 |
+
for param in layer.parameters():
|
| 210 |
+
param.requires_grad = False
|
| 211 |
+
|
| 212 |
+
def save(self, filename):
|
| 213 |
+
state_dict = {}
|
| 214 |
+
optimizer_saved_dict = {}
|
| 215 |
+
|
| 216 |
+
for k, v in self.layers.items():
|
| 217 |
+
state_dict[k] = (v[0].state_dict(), v[1].state_dict())
|
| 218 |
+
|
| 219 |
+
state_dict['step'] = self.step
|
| 220 |
+
state_dict['name'] = self.name
|
| 221 |
+
state_dict['layer_structure'] = self.layer_structure
|
| 222 |
+
state_dict['activation_func'] = self.activation_func
|
| 223 |
+
state_dict['is_layer_norm'] = self.add_layer_norm
|
| 224 |
+
state_dict['weight_initialization'] = self.weight_init
|
| 225 |
+
state_dict['sd_checkpoint'] = self.sd_checkpoint
|
| 226 |
+
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
|
| 227 |
+
state_dict['activate_output'] = self.activate_output
|
| 228 |
+
state_dict['use_dropout'] = self.use_dropout
|
| 229 |
+
state_dict['dropout_structure'] = self.dropout_structure
|
| 230 |
+
state_dict['last_layer_dropout'] = (self.dropout_structure[-2] != 0) if self.dropout_structure is not None else self.last_layer_dropout
|
| 231 |
+
state_dict['optional_info'] = self.optional_info if self.optional_info else None
|
| 232 |
+
|
| 233 |
+
if self.optimizer_name is not None:
|
| 234 |
+
optimizer_saved_dict['optimizer_name'] = self.optimizer_name
|
| 235 |
+
|
| 236 |
+
torch.save(state_dict, filename)
|
| 237 |
+
if shared.opts.save_optimizer_state and self.optimizer_state_dict:
|
| 238 |
+
optimizer_saved_dict['hash'] = self.shorthash()
|
| 239 |
+
optimizer_saved_dict['optimizer_state_dict'] = self.optimizer_state_dict
|
| 240 |
+
torch.save(optimizer_saved_dict, filename + '.optim')
|
| 241 |
+
|
| 242 |
+
def load(self, filename):
|
| 243 |
+
self.filename = filename
|
| 244 |
+
if self.name is None:
|
| 245 |
+
self.name = os.path.splitext(os.path.basename(filename))[0]
|
| 246 |
+
|
| 247 |
+
state_dict = torch.load(filename, map_location='cpu')
|
| 248 |
+
|
| 249 |
+
self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
|
| 250 |
+
self.optional_info = state_dict.get('optional_info', None)
|
| 251 |
+
self.activation_func = state_dict.get('activation_func', None)
|
| 252 |
+
self.weight_init = state_dict.get('weight_initialization', 'Normal')
|
| 253 |
+
self.add_layer_norm = state_dict.get('is_layer_norm', False)
|
| 254 |
+
self.dropout_structure = state_dict.get('dropout_structure', None)
|
| 255 |
+
self.use_dropout = True if self.dropout_structure is not None and any(self.dropout_structure) else state_dict.get('use_dropout', False)
|
| 256 |
+
self.activate_output = state_dict.get('activate_output', True)
|
| 257 |
+
self.last_layer_dropout = state_dict.get('last_layer_dropout', False)
|
| 258 |
+
# Dropout structure should have same length as layer structure, Every digits should be in [0,1), and last digit must be 0.
|
| 259 |
+
if self.dropout_structure is None:
|
| 260 |
+
self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout)
|
| 261 |
+
|
| 262 |
+
if shared.opts.print_hypernet_extra:
|
| 263 |
+
if self.optional_info is not None:
|
| 264 |
+
print(f" INFO:\n {self.optional_info}\n")
|
| 265 |
+
|
| 266 |
+
print(f" Layer structure: {self.layer_structure}")
|
| 267 |
+
print(f" Activation function: {self.activation_func}")
|
| 268 |
+
print(f" Weight initialization: {self.weight_init}")
|
| 269 |
+
print(f" Layer norm: {self.add_layer_norm}")
|
| 270 |
+
print(f" Dropout usage: {self.use_dropout}" )
|
| 271 |
+
print(f" Activate last layer: {self.activate_output}")
|
| 272 |
+
print(f" Dropout structure: {self.dropout_structure}")
|
| 273 |
+
|
| 274 |
+
optimizer_saved_dict = torch.load(self.filename + '.optim', map_location='cpu') if os.path.exists(self.filename + '.optim') else {}
|
| 275 |
+
|
| 276 |
+
if self.shorthash() == optimizer_saved_dict.get('hash', None):
|
| 277 |
+
self.optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
|
| 278 |
+
else:
|
| 279 |
+
self.optimizer_state_dict = None
|
| 280 |
+
if self.optimizer_state_dict:
|
| 281 |
+
self.optimizer_name = optimizer_saved_dict.get('optimizer_name', 'AdamW')
|
| 282 |
+
if shared.opts.print_hypernet_extra:
|
| 283 |
+
print("Loaded existing optimizer from checkpoint")
|
| 284 |
+
print(f"Optimizer name is {self.optimizer_name}")
|
| 285 |
+
else:
|
| 286 |
+
self.optimizer_name = "AdamW"
|
| 287 |
+
if shared.opts.print_hypernet_extra:
|
| 288 |
+
print("No saved optimizer exists in checkpoint")
|
| 289 |
+
|
| 290 |
+
for size, sd in state_dict.items():
|
| 291 |
+
if type(size) == int:
|
| 292 |
+
self.layers[size] = (
|
| 293 |
+
HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init,
|
| 294 |
+
self.add_layer_norm, self.activate_output, self.dropout_structure),
|
| 295 |
+
HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init,
|
| 296 |
+
self.add_layer_norm, self.activate_output, self.dropout_structure),
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
self.name = state_dict.get('name', self.name)
|
| 300 |
+
self.step = state_dict.get('step', 0)
|
| 301 |
+
self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
|
| 302 |
+
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
|
| 303 |
+
self.eval()
|
| 304 |
+
|
| 305 |
+
def shorthash(self):
|
| 306 |
+
sha256 = hashes.sha256(self.filename, f'hypernet/{self.name}')
|
| 307 |
+
|
| 308 |
+
return sha256[0:10] if sha256 else None
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
def list_hypernetworks(path):
|
| 312 |
+
res = {}
|
| 313 |
+
for filename in sorted(glob.iglob(os.path.join(path, '**/*.pt'), recursive=True), key=str.lower):
|
| 314 |
+
name = os.path.splitext(os.path.basename(filename))[0]
|
| 315 |
+
# Prevent a hypothetical "None.pt" from being listed.
|
| 316 |
+
if name != "None":
|
| 317 |
+
res[name] = filename
|
| 318 |
+
return res
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
def load_hypernetwork(name):
|
| 322 |
+
path = shared.hypernetworks.get(name, None)
|
| 323 |
+
|
| 324 |
+
if path is None:
|
| 325 |
+
return None
|
| 326 |
+
|
| 327 |
+
try:
|
| 328 |
+
hypernetwork = Hypernetwork()
|
| 329 |
+
hypernetwork.load(path)
|
| 330 |
+
return hypernetwork
|
| 331 |
+
except Exception:
|
| 332 |
+
errors.report(f"Error loading hypernetwork {path}", exc_info=True)
|
| 333 |
+
return None
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
def load_hypernetworks(names, multipliers=None):
|
| 337 |
+
already_loaded = {}
|
| 338 |
+
|
| 339 |
+
for hypernetwork in shared.loaded_hypernetworks:
|
| 340 |
+
if hypernetwork.name in names:
|
| 341 |
+
already_loaded[hypernetwork.name] = hypernetwork
|
| 342 |
+
|
| 343 |
+
shared.loaded_hypernetworks.clear()
|
| 344 |
+
|
| 345 |
+
for i, name in enumerate(names):
|
| 346 |
+
hypernetwork = already_loaded.get(name, None)
|
| 347 |
+
if hypernetwork is None:
|
| 348 |
+
hypernetwork = load_hypernetwork(name)
|
| 349 |
+
|
| 350 |
+
if hypernetwork is None:
|
| 351 |
+
continue
|
| 352 |
+
|
| 353 |
+
hypernetwork.set_multiplier(multipliers[i] if multipliers else 1.0)
|
| 354 |
+
shared.loaded_hypernetworks.append(hypernetwork)
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
def apply_single_hypernetwork(hypernetwork, context_k, context_v, layer=None):
|
| 358 |
+
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context_k.shape[2], None)
|
| 359 |
+
|
| 360 |
+
if hypernetwork_layers is None:
|
| 361 |
+
return context_k, context_v
|
| 362 |
+
|
| 363 |
+
if layer is not None:
|
| 364 |
+
layer.hyper_k = hypernetwork_layers[0]
|
| 365 |
+
layer.hyper_v = hypernetwork_layers[1]
|
| 366 |
+
|
| 367 |
+
context_k = devices.cond_cast_unet(hypernetwork_layers[0](devices.cond_cast_float(context_k)))
|
| 368 |
+
context_v = devices.cond_cast_unet(hypernetwork_layers[1](devices.cond_cast_float(context_v)))
|
| 369 |
+
return context_k, context_v
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
def apply_hypernetworks(hypernetworks, context, layer=None):
|
| 373 |
+
context_k = context
|
| 374 |
+
context_v = context
|
| 375 |
+
for hypernetwork in hypernetworks:
|
| 376 |
+
context_k, context_v = apply_single_hypernetwork(hypernetwork, context_k, context_v, layer)
|
| 377 |
+
|
| 378 |
+
return context_k, context_v
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
def attention_CrossAttention_forward(self, x, context=None, mask=None, **kwargs):
|
| 382 |
+
h = self.heads
|
| 383 |
+
|
| 384 |
+
q = self.to_q(x)
|
| 385 |
+
context = default(context, x)
|
| 386 |
+
|
| 387 |
+
context_k, context_v = apply_hypernetworks(shared.loaded_hypernetworks, context, self)
|
| 388 |
+
k = self.to_k(context_k)
|
| 389 |
+
v = self.to_v(context_v)
|
| 390 |
+
|
| 391 |
+
q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q, k, v))
|
| 392 |
+
|
| 393 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
| 394 |
+
|
| 395 |
+
if mask is not None:
|
| 396 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
| 397 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
| 398 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
| 399 |
+
sim.masked_fill_(~mask, max_neg_value)
|
| 400 |
+
|
| 401 |
+
# attention, what we cannot get enough of
|
| 402 |
+
attn = sim.softmax(dim=-1)
|
| 403 |
+
|
| 404 |
+
out = einsum('b i j, b j d -> b i d', attn, v)
|
| 405 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
| 406 |
+
return self.to_out(out)
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
def stack_conds(conds):
|
| 410 |
+
if len(conds) == 1:
|
| 411 |
+
return torch.stack(conds)
|
| 412 |
+
|
| 413 |
+
# same as in reconstruct_multicond_batch
|
| 414 |
+
token_count = max([x.shape[0] for x in conds])
|
| 415 |
+
for i in range(len(conds)):
|
| 416 |
+
if conds[i].shape[0] != token_count:
|
| 417 |
+
last_vector = conds[i][-1:]
|
| 418 |
+
last_vector_repeated = last_vector.repeat([token_count - conds[i].shape[0], 1])
|
| 419 |
+
conds[i] = torch.vstack([conds[i], last_vector_repeated])
|
| 420 |
+
|
| 421 |
+
return torch.stack(conds)
|
| 422 |
+
|
| 423 |
+
|
| 424 |
+
def statistics(data):
|
| 425 |
+
if len(data) < 2:
|
| 426 |
+
std = 0
|
| 427 |
+
else:
|
| 428 |
+
std = stdev(data)
|
| 429 |
+
total_information = f"loss:{mean(data):.3f}" + u"\u00B1" + f"({std/ (len(data) ** 0.5):.3f})"
|
| 430 |
+
recent_data = data[-32:]
|
| 431 |
+
if len(recent_data) < 2:
|
| 432 |
+
std = 0
|
| 433 |
+
else:
|
| 434 |
+
std = stdev(recent_data)
|
| 435 |
+
recent_information = f"recent 32 loss:{mean(recent_data):.3f}" + u"\u00B1" + f"({std / (len(recent_data) ** 0.5):.3f})"
|
| 436 |
+
return total_information, recent_information
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None):
|
| 440 |
+
# Remove illegal characters from name.
|
| 441 |
+
name = "".join( x for x in name if (x.isalnum() or x in "._- "))
|
| 442 |
+
assert name, "Name cannot be empty!"
|
| 443 |
+
|
| 444 |
+
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
|
| 445 |
+
if not overwrite_old:
|
| 446 |
+
assert not os.path.exists(fn), f"file {fn} already exists"
|
| 447 |
+
|
| 448 |
+
if type(layer_structure) == str:
|
| 449 |
+
layer_structure = [float(x.strip()) for x in layer_structure.split(",")]
|
| 450 |
+
|
| 451 |
+
if use_dropout and dropout_structure and type(dropout_structure) == str:
|
| 452 |
+
dropout_structure = [float(x.strip()) for x in dropout_structure.split(",")]
|
| 453 |
+
else:
|
| 454 |
+
dropout_structure = [0] * len(layer_structure)
|
| 455 |
+
|
| 456 |
+
hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
|
| 457 |
+
name=name,
|
| 458 |
+
enable_sizes=[int(x) for x in enable_sizes],
|
| 459 |
+
layer_structure=layer_structure,
|
| 460 |
+
activation_func=activation_func,
|
| 461 |
+
weight_init=weight_init,
|
| 462 |
+
add_layer_norm=add_layer_norm,
|
| 463 |
+
use_dropout=use_dropout,
|
| 464 |
+
dropout_structure=dropout_structure
|
| 465 |
+
)
|
| 466 |
+
hypernet.save(fn)
|
| 467 |
+
|
| 468 |
+
shared.reload_hypernetworks()
|
| 469 |
+
|
| 470 |
+
|
| 471 |
+
def train_hypernetwork(id_task, hypernetwork_name: str, learn_rate: float, batch_size: int, gradient_step: int, data_root: str, log_directory: str, training_width: int, training_height: int, varsize: bool, steps: int, clip_grad_mode: str, clip_grad_value: float, shuffle_tags: bool, tag_drop_out: bool, latent_sampling_method: str, use_weight: bool, create_image_every: int, save_hypernetwork_every: int, template_filename: str, preview_from_txt2img: bool, preview_prompt: str, preview_negative_prompt: str, preview_steps: int, preview_sampler_name: str, preview_cfg_scale: float, preview_seed: int, preview_width: int, preview_height: int):
|
| 472 |
+
from modules import images, processing
|
| 473 |
+
|
| 474 |
+
save_hypernetwork_every = save_hypernetwork_every or 0
|
| 475 |
+
create_image_every = create_image_every or 0
|
| 476 |
+
template_file = textual_inversion.textual_inversion_templates.get(template_filename, None)
|
| 477 |
+
textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
|
| 478 |
+
template_file = template_file.path
|
| 479 |
+
|
| 480 |
+
path = shared.hypernetworks.get(hypernetwork_name, None)
|
| 481 |
+
hypernetwork = Hypernetwork()
|
| 482 |
+
hypernetwork.load(path)
|
| 483 |
+
shared.loaded_hypernetworks = [hypernetwork]
|
| 484 |
+
|
| 485 |
+
shared.state.job = "train-hypernetwork"
|
| 486 |
+
shared.state.textinfo = "Initializing hypernetwork training..."
|
| 487 |
+
shared.state.job_count = steps
|
| 488 |
+
|
| 489 |
+
hypernetwork_name = hypernetwork_name.rsplit('(', 1)[0]
|
| 490 |
+
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
|
| 491 |
+
|
| 492 |
+
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
|
| 493 |
+
unload = shared.opts.unload_models_when_training
|
| 494 |
+
|
| 495 |
+
if save_hypernetwork_every > 0:
|
| 496 |
+
hypernetwork_dir = os.path.join(log_directory, "hypernetworks")
|
| 497 |
+
os.makedirs(hypernetwork_dir, exist_ok=True)
|
| 498 |
+
else:
|
| 499 |
+
hypernetwork_dir = None
|
| 500 |
+
|
| 501 |
+
if create_image_every > 0:
|
| 502 |
+
images_dir = os.path.join(log_directory, "images")
|
| 503 |
+
os.makedirs(images_dir, exist_ok=True)
|
| 504 |
+
else:
|
| 505 |
+
images_dir = None
|
| 506 |
+
|
| 507 |
+
checkpoint = sd_models.select_checkpoint()
|
| 508 |
+
|
| 509 |
+
initial_step = hypernetwork.step or 0
|
| 510 |
+
if initial_step >= steps:
|
| 511 |
+
shared.state.textinfo = "Model has already been trained beyond specified max steps"
|
| 512 |
+
return hypernetwork, filename
|
| 513 |
+
|
| 514 |
+
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
|
| 515 |
+
|
| 516 |
+
clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else None
|
| 517 |
+
if clip_grad:
|
| 518 |
+
clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False)
|
| 519 |
+
|
| 520 |
+
if shared.opts.training_enable_tensorboard:
|
| 521 |
+
tensorboard_writer = textual_inversion.tensorboard_setup(log_directory)
|
| 522 |
+
|
| 523 |
+
# dataset loading may take a while, so input validations and early returns should be done before this
|
| 524 |
+
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
| 525 |
+
|
| 526 |
+
pin_memory = shared.opts.pin_memory
|
| 527 |
+
|
| 528 |
+
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize, use_weight=use_weight)
|
| 529 |
+
|
| 530 |
+
if shared.opts.save_training_settings_to_txt:
|
| 531 |
+
saved_params = dict(
|
| 532 |
+
model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds),
|
| 533 |
+
**{field: getattr(hypernetwork, field) for field in ['layer_structure', 'activation_func', 'weight_init', 'add_layer_norm', 'use_dropout', ]}
|
| 534 |
+
)
|
| 535 |
+
logging.save_settings_to_file(log_directory, {**saved_params, **locals()})
|
| 536 |
+
|
| 537 |
+
latent_sampling_method = ds.latent_sampling_method
|
| 538 |
+
|
| 539 |
+
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
|
| 540 |
+
|
| 541 |
+
old_parallel_processing_allowed = shared.parallel_processing_allowed
|
| 542 |
+
|
| 543 |
+
if unload:
|
| 544 |
+
shared.parallel_processing_allowed = False
|
| 545 |
+
shared.sd_model.cond_stage_model.to(devices.cpu)
|
| 546 |
+
shared.sd_model.first_stage_model.to(devices.cpu)
|
| 547 |
+
|
| 548 |
+
weights = hypernetwork.weights()
|
| 549 |
+
hypernetwork.train()
|
| 550 |
+
|
| 551 |
+
# Here we use optimizer from saved HN, or we can specify as UI option.
|
| 552 |
+
if hypernetwork.optimizer_name in optimizer_dict:
|
| 553 |
+
optimizer = optimizer_dict[hypernetwork.optimizer_name](params=weights, lr=scheduler.learn_rate)
|
| 554 |
+
optimizer_name = hypernetwork.optimizer_name
|
| 555 |
+
else:
|
| 556 |
+
print(f"Optimizer type {hypernetwork.optimizer_name} is not defined!")
|
| 557 |
+
optimizer = torch.optim.AdamW(params=weights, lr=scheduler.learn_rate)
|
| 558 |
+
optimizer_name = 'AdamW'
|
| 559 |
+
|
| 560 |
+
if hypernetwork.optimizer_state_dict: # This line must be changed if Optimizer type can be different from saved optimizer.
|
| 561 |
+
try:
|
| 562 |
+
optimizer.load_state_dict(hypernetwork.optimizer_state_dict)
|
| 563 |
+
except RuntimeError as e:
|
| 564 |
+
print("Cannot resume from saved optimizer!")
|
| 565 |
+
print(e)
|
| 566 |
+
|
| 567 |
+
scaler = torch.cuda.amp.GradScaler()
|
| 568 |
+
|
| 569 |
+
batch_size = ds.batch_size
|
| 570 |
+
gradient_step = ds.gradient_step
|
| 571 |
+
# n steps = batch_size * gradient_step * n image processed
|
| 572 |
+
steps_per_epoch = len(ds) // batch_size // gradient_step
|
| 573 |
+
max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
|
| 574 |
+
loss_step = 0
|
| 575 |
+
_loss_step = 0 #internal
|
| 576 |
+
# size = len(ds.indexes)
|
| 577 |
+
# loss_dict = defaultdict(lambda : deque(maxlen = 1024))
|
| 578 |
+
loss_logging = deque(maxlen=len(ds) * 3) # this should be configurable parameter, this is 3 * epoch(dataset size)
|
| 579 |
+
# losses = torch.zeros((size,))
|
| 580 |
+
# previous_mean_losses = [0]
|
| 581 |
+
# previous_mean_loss = 0
|
| 582 |
+
# print("Mean loss of {} elements".format(size))
|
| 583 |
+
|
| 584 |
+
steps_without_grad = 0
|
| 585 |
+
|
| 586 |
+
last_saved_file = "<none>"
|
| 587 |
+
last_saved_image = "<none>"
|
| 588 |
+
forced_filename = "<none>"
|
| 589 |
+
|
| 590 |
+
pbar = tqdm.tqdm(total=steps - initial_step)
|
| 591 |
+
try:
|
| 592 |
+
sd_hijack_checkpoint.add()
|
| 593 |
+
|
| 594 |
+
for _ in range((steps-initial_step) * gradient_step):
|
| 595 |
+
if scheduler.finished:
|
| 596 |
+
break
|
| 597 |
+
if shared.state.interrupted:
|
| 598 |
+
break
|
| 599 |
+
for j, batch in enumerate(dl):
|
| 600 |
+
# works as a drop_last=True for gradient accumulation
|
| 601 |
+
if j == max_steps_per_epoch:
|
| 602 |
+
break
|
| 603 |
+
scheduler.apply(optimizer, hypernetwork.step)
|
| 604 |
+
if scheduler.finished:
|
| 605 |
+
break
|
| 606 |
+
if shared.state.interrupted:
|
| 607 |
+
break
|
| 608 |
+
|
| 609 |
+
if clip_grad:
|
| 610 |
+
clip_grad_sched.step(hypernetwork.step)
|
| 611 |
+
|
| 612 |
+
with devices.autocast():
|
| 613 |
+
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
|
| 614 |
+
if use_weight:
|
| 615 |
+
w = batch.weight.to(devices.device, non_blocking=pin_memory)
|
| 616 |
+
if tag_drop_out != 0 or shuffle_tags:
|
| 617 |
+
shared.sd_model.cond_stage_model.to(devices.device)
|
| 618 |
+
c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device, non_blocking=pin_memory)
|
| 619 |
+
shared.sd_model.cond_stage_model.to(devices.cpu)
|
| 620 |
+
else:
|
| 621 |
+
c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
|
| 622 |
+
if use_weight:
|
| 623 |
+
loss = shared.sd_model.weighted_forward(x, c, w)[0] / gradient_step
|
| 624 |
+
del w
|
| 625 |
+
else:
|
| 626 |
+
loss = shared.sd_model.forward(x, c)[0] / gradient_step
|
| 627 |
+
del x
|
| 628 |
+
del c
|
| 629 |
+
|
| 630 |
+
_loss_step += loss.item()
|
| 631 |
+
scaler.scale(loss).backward()
|
| 632 |
+
|
| 633 |
+
# go back until we reach gradient accumulation steps
|
| 634 |
+
if (j + 1) % gradient_step != 0:
|
| 635 |
+
continue
|
| 636 |
+
loss_logging.append(_loss_step)
|
| 637 |
+
if clip_grad:
|
| 638 |
+
clip_grad(weights, clip_grad_sched.learn_rate)
|
| 639 |
+
|
| 640 |
+
scaler.step(optimizer)
|
| 641 |
+
scaler.update()
|
| 642 |
+
hypernetwork.step += 1
|
| 643 |
+
pbar.update()
|
| 644 |
+
optimizer.zero_grad(set_to_none=True)
|
| 645 |
+
loss_step = _loss_step
|
| 646 |
+
_loss_step = 0
|
| 647 |
+
|
| 648 |
+
steps_done = hypernetwork.step + 1
|
| 649 |
+
|
| 650 |
+
epoch_num = hypernetwork.step // steps_per_epoch
|
| 651 |
+
epoch_step = hypernetwork.step % steps_per_epoch
|
| 652 |
+
|
| 653 |
+
description = f"Training hypernetwork [Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}]loss: {loss_step:.7f}"
|
| 654 |
+
pbar.set_description(description)
|
| 655 |
+
if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
|
| 656 |
+
# Before saving, change name to match current checkpoint.
|
| 657 |
+
hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
|
| 658 |
+
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')
|
| 659 |
+
hypernetwork.optimizer_name = optimizer_name
|
| 660 |
+
if shared.opts.save_optimizer_state:
|
| 661 |
+
hypernetwork.optimizer_state_dict = optimizer.state_dict()
|
| 662 |
+
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
|
| 663 |
+
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
|
| 664 |
+
|
| 665 |
+
|
| 666 |
+
|
| 667 |
+
if shared.opts.training_enable_tensorboard:
|
| 668 |
+
epoch_num = hypernetwork.step // len(ds)
|
| 669 |
+
epoch_step = hypernetwork.step - (epoch_num * len(ds)) + 1
|
| 670 |
+
mean_loss = sum(loss_logging) / len(loss_logging)
|
| 671 |
+
textual_inversion.tensorboard_add(tensorboard_writer, loss=mean_loss, global_step=hypernetwork.step, step=epoch_step, learn_rate=scheduler.learn_rate, epoch_num=epoch_num)
|
| 672 |
+
|
| 673 |
+
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, steps_per_epoch, {
|
| 674 |
+
"loss": f"{loss_step:.7f}",
|
| 675 |
+
"learn_rate": scheduler.learn_rate
|
| 676 |
+
})
|
| 677 |
+
|
| 678 |
+
if images_dir is not None and steps_done % create_image_every == 0:
|
| 679 |
+
forced_filename = f'{hypernetwork_name}-{steps_done}'
|
| 680 |
+
last_saved_image = os.path.join(images_dir, forced_filename)
|
| 681 |
+
hypernetwork.eval()
|
| 682 |
+
rng_state = torch.get_rng_state()
|
| 683 |
+
cuda_rng_state = None
|
| 684 |
+
if torch.cuda.is_available():
|
| 685 |
+
cuda_rng_state = torch.cuda.get_rng_state_all()
|
| 686 |
+
shared.sd_model.cond_stage_model.to(devices.device)
|
| 687 |
+
shared.sd_model.first_stage_model.to(devices.device)
|
| 688 |
+
|
| 689 |
+
p = processing.StableDiffusionProcessingTxt2Img(
|
| 690 |
+
sd_model=shared.sd_model,
|
| 691 |
+
do_not_save_grid=True,
|
| 692 |
+
do_not_save_samples=True,
|
| 693 |
+
)
|
| 694 |
+
|
| 695 |
+
p.disable_extra_networks = True
|
| 696 |
+
|
| 697 |
+
if preview_from_txt2img:
|
| 698 |
+
p.prompt = preview_prompt
|
| 699 |
+
p.negative_prompt = preview_negative_prompt
|
| 700 |
+
p.steps = preview_steps
|
| 701 |
+
p.sampler_name = sd_samplers.samplers_map[preview_sampler_name.lower()]
|
| 702 |
+
p.cfg_scale = preview_cfg_scale
|
| 703 |
+
p.seed = preview_seed
|
| 704 |
+
p.width = preview_width
|
| 705 |
+
p.height = preview_height
|
| 706 |
+
else:
|
| 707 |
+
p.prompt = batch.cond_text[0]
|
| 708 |
+
p.steps = 20
|
| 709 |
+
p.width = training_width
|
| 710 |
+
p.height = training_height
|
| 711 |
+
|
| 712 |
+
preview_text = p.prompt
|
| 713 |
+
|
| 714 |
+
with closing(p):
|
| 715 |
+
processed = processing.process_images(p)
|
| 716 |
+
image = processed.images[0] if len(processed.images) > 0 else None
|
| 717 |
+
|
| 718 |
+
if unload:
|
| 719 |
+
shared.sd_model.cond_stage_model.to(devices.cpu)
|
| 720 |
+
shared.sd_model.first_stage_model.to(devices.cpu)
|
| 721 |
+
torch.set_rng_state(rng_state)
|
| 722 |
+
if torch.cuda.is_available():
|
| 723 |
+
torch.cuda.set_rng_state_all(cuda_rng_state)
|
| 724 |
+
hypernetwork.train()
|
| 725 |
+
if image is not None:
|
| 726 |
+
shared.state.assign_current_image(image)
|
| 727 |
+
if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
|
| 728 |
+
textual_inversion.tensorboard_add_image(tensorboard_writer,
|
| 729 |
+
f"Validation at epoch {epoch_num}", image,
|
| 730 |
+
hypernetwork.step)
|
| 731 |
+
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
|
| 732 |
+
last_saved_image += f", prompt: {preview_text}"
|
| 733 |
+
|
| 734 |
+
shared.state.job_no = hypernetwork.step
|
| 735 |
+
|
| 736 |
+
shared.state.textinfo = f"""
|
| 737 |
+
<p>
|
| 738 |
+
Loss: {loss_step:.7f}<br/>
|
| 739 |
+
Step: {steps_done}<br/>
|
| 740 |
+
Last prompt: {html.escape(batch.cond_text[0])}<br/>
|
| 741 |
+
Last saved hypernetwork: {html.escape(last_saved_file)}<br/>
|
| 742 |
+
Last saved image: {html.escape(last_saved_image)}<br/>
|
| 743 |
+
</p>
|
| 744 |
+
"""
|
| 745 |
+
except Exception:
|
| 746 |
+
errors.report("Exception in training hypernetwork", exc_info=True)
|
| 747 |
+
finally:
|
| 748 |
+
pbar.leave = False
|
| 749 |
+
pbar.close()
|
| 750 |
+
hypernetwork.eval()
|
| 751 |
+
sd_hijack_checkpoint.remove()
|
| 752 |
+
|
| 753 |
+
|
| 754 |
+
|
| 755 |
+
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
|
| 756 |
+
hypernetwork.optimizer_name = optimizer_name
|
| 757 |
+
if shared.opts.save_optimizer_state:
|
| 758 |
+
hypernetwork.optimizer_state_dict = optimizer.state_dict()
|
| 759 |
+
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)
|
| 760 |
+
|
| 761 |
+
del optimizer
|
| 762 |
+
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
|
| 763 |
+
shared.sd_model.cond_stage_model.to(devices.device)
|
| 764 |
+
shared.sd_model.first_stage_model.to(devices.device)
|
| 765 |
+
shared.parallel_processing_allowed = old_parallel_processing_allowed
|
| 766 |
+
|
| 767 |
+
return hypernetwork, filename
|
| 768 |
+
|
| 769 |
+
def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename):
|
| 770 |
+
old_hypernetwork_name = hypernetwork.name
|
| 771 |
+
old_sd_checkpoint = hypernetwork.sd_checkpoint if hasattr(hypernetwork, "sd_checkpoint") else None
|
| 772 |
+
old_sd_checkpoint_name = hypernetwork.sd_checkpoint_name if hasattr(hypernetwork, "sd_checkpoint_name") else None
|
| 773 |
+
try:
|
| 774 |
+
hypernetwork.sd_checkpoint = checkpoint.shorthash
|
| 775 |
+
hypernetwork.sd_checkpoint_name = checkpoint.model_name
|
| 776 |
+
hypernetwork.name = hypernetwork_name
|
| 777 |
+
hypernetwork.save(filename)
|
| 778 |
+
except:
|
| 779 |
+
hypernetwork.sd_checkpoint = old_sd_checkpoint
|
| 780 |
+
hypernetwork.sd_checkpoint_name = old_sd_checkpoint_name
|
| 781 |
+
hypernetwork.name = old_hypernetwork_name
|
| 782 |
+
raise
|
modules/hypernetworks/ui.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import html
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import modules.hypernetworks.hypernetwork
|
| 5 |
+
from modules import devices, sd_hijack, shared
|
| 6 |
+
|
| 7 |
+
not_available = ["hardswish", "multiheadattention"]
|
| 8 |
+
keys = [x for x in modules.hypernetworks.hypernetwork.HypernetworkModule.activation_dict if x not in not_available]
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None):
|
| 12 |
+
filename = modules.hypernetworks.hypernetwork.create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout, dropout_structure)
|
| 13 |
+
|
| 14 |
+
return gr.Dropdown.update(choices=sorted(shared.hypernetworks)), f"Created: {filename}", ""
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def train_hypernetwork(*args):
|
| 18 |
+
shared.loaded_hypernetworks = []
|
| 19 |
+
|
| 20 |
+
assert not shared.cmd_opts.lowvram, 'Training models with lowvram is not possible'
|
| 21 |
+
|
| 22 |
+
try:
|
| 23 |
+
sd_hijack.undo_optimizations()
|
| 24 |
+
|
| 25 |
+
hypernetwork, filename = modules.hypernetworks.hypernetwork.train_hypernetwork(*args)
|
| 26 |
+
|
| 27 |
+
res = f"""
|
| 28 |
+
Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps.
|
| 29 |
+
Hypernetwork saved to {html.escape(filename)}
|
| 30 |
+
"""
|
| 31 |
+
return res, ""
|
| 32 |
+
except Exception:
|
| 33 |
+
raise
|
| 34 |
+
finally:
|
| 35 |
+
shared.sd_model.cond_stage_model.to(devices.device)
|
| 36 |
+
shared.sd_model.first_stage_model.to(devices.device)
|
| 37 |
+
sd_hijack.apply_optimizations()
|
| 38 |
+
|