supporting code
Browse files- diffusion_bias_utils.py +338 -0
diffusion_bias_utils.py
ADDED
|
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from glob import glob
|
| 2 |
+
from os.path import join as pjoin
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import plotly.express as px
|
| 7 |
+
import plotly.graph_objects as go
|
| 8 |
+
import torch
|
| 9 |
+
import umap.umap_ as umap
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from scipy.cluster.hierarchy import dendrogram, linkage
|
| 12 |
+
from scipy.spatial.distance import squareform
|
| 13 |
+
from sklearn.preprocessing import normalize
|
| 14 |
+
from tqdm import tqdm
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
###
|
| 18 |
+
# Get text embeddings from sentence-transformers model
|
| 19 |
+
###
|
| 20 |
+
def sentence_mean_pooling(model_output, attention_mask):
|
| 21 |
+
token_embeddings = model_output[
|
| 22 |
+
0
|
| 23 |
+
] # First element of model_output contains all token embeddings
|
| 24 |
+
input_mask_expanded = (
|
| 25 |
+
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 26 |
+
)
|
| 27 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
|
| 28 |
+
input_mask_expanded.sum(1), min=1e-9
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def compute_text_embeddings(sentences, text_tokenizer, text_model):
|
| 33 |
+
batch = text_tokenizer(
|
| 34 |
+
sentences, padding=True, truncation=True, return_tensors="pt"
|
| 35 |
+
)
|
| 36 |
+
with torch.no_grad():
|
| 37 |
+
model_output = text_model(**batch)
|
| 38 |
+
sentence_embeds = sentence_mean_pooling(model_output, batch["attention_mask"])
|
| 39 |
+
sentence_embeds /= sentence_embeds.norm(dim=-1, keepdim=True)
|
| 40 |
+
return sentence_embeds
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
###
|
| 44 |
+
# Get image embeddings from BLIP VQA models
|
| 45 |
+
###
|
| 46 |
+
# returns the average pixel embedding from the last layer of the image encoder
|
| 47 |
+
def get_compute_image_embedding_blip_vqa_pixels(
|
| 48 |
+
img, blip_processor, blip_model, device="cpu"
|
| 49 |
+
):
|
| 50 |
+
pixel_values = blip_processor(img, "", return_tensors="pt")["pixel_values"].to(
|
| 51 |
+
device
|
| 52 |
+
)
|
| 53 |
+
with torch.no_grad():
|
| 54 |
+
vision_outputs = blip_model.vision_model(
|
| 55 |
+
pixel_values=pixel_values,
|
| 56 |
+
output_hidden_states=True,
|
| 57 |
+
)
|
| 58 |
+
image_embeds = vision_outputs[0].sum(dim=1).squeeze()
|
| 59 |
+
image_embeds /= image_embeds.norm()
|
| 60 |
+
return image_embeds.detach().cpu().numpy()
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
# returns the average token embedding from the question encoder (conditioned on the image) along with the generated answer
|
| 64 |
+
# adapted from:
|
| 65 |
+
# https://github.com/huggingface/transformers/blob/2411f0e465e761790879e605a4256f3d4afb7f82/src/transformers/models/blip/modeling_blip.py#L1225
|
| 66 |
+
def get_compute_image_embedding_blip_vqa_question(
|
| 67 |
+
img, blip_processor, blip_model, question=None, device="cpu"
|
| 68 |
+
):
|
| 69 |
+
question = "what word best describes this person?" if question is None else question
|
| 70 |
+
inputs = blip_processor(img, question, return_tensors="pt")
|
| 71 |
+
with torch.no_grad():
|
| 72 |
+
# make question embeddings
|
| 73 |
+
vision_outputs = blip_model.vision_model(
|
| 74 |
+
pixel_values=inputs["pixel_values"].to(device),
|
| 75 |
+
output_hidden_states=True,
|
| 76 |
+
)
|
| 77 |
+
image_embeds = vision_outputs[0]
|
| 78 |
+
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long)
|
| 79 |
+
question_embeds = blip_model.text_encoder(
|
| 80 |
+
input_ids=inputs["input_ids"].to(device),
|
| 81 |
+
attention_mask=inputs["attention_mask"].to(device),
|
| 82 |
+
encoder_hidden_states=image_embeds,
|
| 83 |
+
encoder_attention_mask=image_attention_mask,
|
| 84 |
+
return_dict=False,
|
| 85 |
+
)
|
| 86 |
+
question_embeds = question_embeds[0]
|
| 87 |
+
# generate outputs
|
| 88 |
+
question_attention_mask = torch.ones(
|
| 89 |
+
question_embeds.size()[:-1], dtype=torch.long
|
| 90 |
+
).to(question_embeds.device)
|
| 91 |
+
bos_ids = torch.full(
|
| 92 |
+
(question_embeds.size(0), 1),
|
| 93 |
+
fill_value=blip_model.decoder_bos_token_id,
|
| 94 |
+
device=question_embeds.device,
|
| 95 |
+
)
|
| 96 |
+
outputs = blip_model.text_decoder.generate(
|
| 97 |
+
input_ids=bos_ids,
|
| 98 |
+
eos_token_id=blip_model.config.text_config.sep_token_id,
|
| 99 |
+
pad_token_id=blip_model.config.text_config.pad_token_id,
|
| 100 |
+
encoder_hidden_states=question_embeds,
|
| 101 |
+
encoder_attention_mask=question_attention_mask,
|
| 102 |
+
# **generate_kwargs,
|
| 103 |
+
)
|
| 104 |
+
answer = blip_processor.decode(outputs[0], skip_special_tokens=True)
|
| 105 |
+
# average and normalize question embeddings
|
| 106 |
+
res_question_embeds = question_embeds.sum(dim=1).squeeze()
|
| 107 |
+
res_question_embeds /= res_question_embeds.norm()
|
| 108 |
+
res_question_embeds = res_question_embeds.detach().cpu().numpy()
|
| 109 |
+
return (res_question_embeds, answer)
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
###
|
| 113 |
+
# Plotting utilities: 2D and 3D projection + scatter plots
|
| 114 |
+
###
|
| 115 |
+
def make_2d_plot(embeds, text_list, color_list=None, shape_list=None, umap_spread=10):
|
| 116 |
+
# default color and shape
|
| 117 |
+
color_list = [0 for _ in text_list] if color_list is None else color_list
|
| 118 |
+
shape_list = ["circle" for _ in text_list] if shape_list is None else shape_list
|
| 119 |
+
# project to 2D
|
| 120 |
+
fit = umap.UMAP(
|
| 121 |
+
metric="cosine",
|
| 122 |
+
n_neighbors=len(embeds) - 1,
|
| 123 |
+
min_dist=1,
|
| 124 |
+
n_components=2,
|
| 125 |
+
spread=umap_spread,
|
| 126 |
+
)
|
| 127 |
+
u = fit.fit_transform(embeds)
|
| 128 |
+
fig = go.Figure()
|
| 129 |
+
fig.add_trace(
|
| 130 |
+
go.Scatter(
|
| 131 |
+
x=u[:, 0].tolist(),
|
| 132 |
+
y=u[:, 1].tolist(),
|
| 133 |
+
mode="markers",
|
| 134 |
+
name="nodes",
|
| 135 |
+
marker=dict(
|
| 136 |
+
symbol=shape_list,
|
| 137 |
+
color=color_list,
|
| 138 |
+
),
|
| 139 |
+
text=text_list,
|
| 140 |
+
hoverinfo="text",
|
| 141 |
+
marker_line_color="midnightblue",
|
| 142 |
+
marker_line_width=2,
|
| 143 |
+
marker_size=10,
|
| 144 |
+
opacity=0.8,
|
| 145 |
+
)
|
| 146 |
+
)
|
| 147 |
+
fig.update_yaxes(
|
| 148 |
+
scaleanchor="x",
|
| 149 |
+
scaleratio=1,
|
| 150 |
+
)
|
| 151 |
+
fig.update_layout(
|
| 152 |
+
autosize=False,
|
| 153 |
+
width=800,
|
| 154 |
+
height=800,
|
| 155 |
+
)
|
| 156 |
+
fig.layout.showlegend = False
|
| 157 |
+
return fig
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def make_3d_plot(embeds, text_list, color_list=None, shape_list=None, umap_spread=10):
|
| 161 |
+
# default color and shape
|
| 162 |
+
color_list = [0 for _ in text_list] if color_list is None else color_list
|
| 163 |
+
shape_list = ["circle" for _ in text_list] if shape_list is None else shape_list
|
| 164 |
+
# project to 3D
|
| 165 |
+
fit = umap.UMAP(
|
| 166 |
+
metric="cosine",
|
| 167 |
+
n_neighbors=len(embeds) - 1,
|
| 168 |
+
min_dist=1,
|
| 169 |
+
n_components=3,
|
| 170 |
+
spread=umap_spread,
|
| 171 |
+
)
|
| 172 |
+
u = fit.fit_transform(embeds)
|
| 173 |
+
# make nodes
|
| 174 |
+
df = pd.DataFrame(
|
| 175 |
+
{
|
| 176 |
+
"x": u[:, 0].tolist(),
|
| 177 |
+
"y": u[:, 1].tolist(),
|
| 178 |
+
"z": u[:, 2].tolist(),
|
| 179 |
+
"color": color_list,
|
| 180 |
+
"hover": text_list,
|
| 181 |
+
"symbol": shape_list,
|
| 182 |
+
"size": [5 for _ in text_list],
|
| 183 |
+
}
|
| 184 |
+
)
|
| 185 |
+
fig = px.scatter_3d(
|
| 186 |
+
df,
|
| 187 |
+
x="x",
|
| 188 |
+
y="y",
|
| 189 |
+
z="z",
|
| 190 |
+
color="color",
|
| 191 |
+
symbol="symbol",
|
| 192 |
+
size="size",
|
| 193 |
+
hover_data={
|
| 194 |
+
"hover": True,
|
| 195 |
+
"x": False,
|
| 196 |
+
"y": False,
|
| 197 |
+
"z": False,
|
| 198 |
+
"color": False,
|
| 199 |
+
"symbol": False,
|
| 200 |
+
"size": False,
|
| 201 |
+
},
|
| 202 |
+
)
|
| 203 |
+
fig.layout.showlegend = False
|
| 204 |
+
return fig
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
###
|
| 208 |
+
# Plotting utilities: cluster re-ordering and heatmaps
|
| 209 |
+
###
|
| 210 |
+
### Some utility functions to get the similarities between two lists of arrays
|
| 211 |
+
# average pairwise similarity
|
| 212 |
+
def sim_pairwise_avg(vecs_1, vecs_2):
|
| 213 |
+
res = np.matmul(np.array(vecs_1), np.array(vecs_2).transpose()).mean()
|
| 214 |
+
return res
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
# distance between (normalized) centroids
|
| 218 |
+
def sim_centroids(vecs_1, vecs_2):
|
| 219 |
+
res = np.dot(
|
| 220 |
+
normalize(np.array(vecs_1).mean(axis=0, keepdims=True), norm="l2")[0],
|
| 221 |
+
normalize(np.array(vecs_2).mean(axis=0, keepdims=True), norm="l2")[0],
|
| 222 |
+
)
|
| 223 |
+
return res
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
# distance to nearest neighbot/examplar
|
| 227 |
+
def sim_pairwise_examplar(vecs_1, vecs_2):
|
| 228 |
+
res = np.matmul(np.array(vecs_1), np.array(vecs_2).transpose()).max()
|
| 229 |
+
return res
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
# To make pretty heatmaps, similar rows need to be close to each other
|
| 233 |
+
# we achieve that by computing a hierarchical clustering of the points
|
| 234 |
+
# then ordering the items as the leaves of a dendrogram
|
| 235 |
+
def get_cluster_order(similarity_matrix, label_names=None):
|
| 236 |
+
label_names = (
|
| 237 |
+
["" for _ in range(similarity_matrix.shape[0])]
|
| 238 |
+
if label_names is None
|
| 239 |
+
else label_names
|
| 240 |
+
)
|
| 241 |
+
dissimilarity = 1 - similarity_matrix
|
| 242 |
+
np.fill_diagonal(dissimilarity, 0.0)
|
| 243 |
+
# checks = False because similarity checks can fail for torch to numpy conversion
|
| 244 |
+
Z = linkage(squareform(dissimilarity, checks=False), "average")
|
| 245 |
+
# no_plot when inside a function call required because of jupyter/matplotlib issue
|
| 246 |
+
ddgr = dendrogram(
|
| 247 |
+
Z, labels=label_names, orientation="top", leaf_rotation=90, no_plot=True
|
| 248 |
+
)
|
| 249 |
+
cluster_order = ddgr["leaves"]
|
| 250 |
+
return cluster_order
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
# then make heat map from similarity matrix
|
| 254 |
+
def make_heat_map(sim_matrix, labels_x, labels_y, scale=25):
|
| 255 |
+
fig = go.Figure(
|
| 256 |
+
data=go.Heatmap(z=sim_matrix, x=labels_x, y=labels_y, hoverongaps=False)
|
| 257 |
+
)
|
| 258 |
+
fig.update_yaxes(
|
| 259 |
+
scaleanchor="x",
|
| 260 |
+
scaleratio=1,
|
| 261 |
+
)
|
| 262 |
+
fig.update_layout(
|
| 263 |
+
autosize=False,
|
| 264 |
+
width=scale * len(labels_x),
|
| 265 |
+
height=scale * len(labels_y),
|
| 266 |
+
)
|
| 267 |
+
fig.layout.showlegend = False
|
| 268 |
+
return fig
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
# bring things together for a square heatmap
|
| 272 |
+
def build_heat_map_square(
|
| 273 |
+
img_list, embed_field, sim_fun, label_list, row_order=None, hm_scale=20
|
| 274 |
+
):
|
| 275 |
+
sim_mat = np.zeros((len(img_list), len(img_list)))
|
| 276 |
+
for i, dct_i in enumerate(img_list):
|
| 277 |
+
for j, dct_j in enumerate(img_list):
|
| 278 |
+
sim_mat[i, j] = sim_fun(dct_i[embed_field], dct_j[embed_field])
|
| 279 |
+
# optionally reorder labels and similarity matrix to be prettier
|
| 280 |
+
if row_order is None:
|
| 281 |
+
row_order = get_cluster_order(sim_mat)
|
| 282 |
+
labels_sorted = [label_list[i] for i in row_order]
|
| 283 |
+
sim_mat_sorted = sim_mat[np.ix_(row_order, row_order)]
|
| 284 |
+
# make heatmap from similarity matrix
|
| 285 |
+
heatmap_fig = make_heat_map(
|
| 286 |
+
sim_mat_sorted, labels_sorted, labels_sorted, scale=hm_scale
|
| 287 |
+
)
|
| 288 |
+
return heatmap_fig
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
# bring things together for a rectangle heatmap: across lists
|
| 292 |
+
def build_heat_map_rect(
|
| 293 |
+
img_list_rows,
|
| 294 |
+
img_list_cols,
|
| 295 |
+
label_list_rows,
|
| 296 |
+
label_list_cols,
|
| 297 |
+
embed_field,
|
| 298 |
+
sim_fun,
|
| 299 |
+
center=False,
|
| 300 |
+
temperature=5,
|
| 301 |
+
hm_scale=20,
|
| 302 |
+
):
|
| 303 |
+
sim_mat = np.zeros((len(img_list_rows), len(img_list_cols)))
|
| 304 |
+
for i, dct_i in enumerate(img_list_rows):
|
| 305 |
+
for j, dct_j in enumerate(img_list_cols):
|
| 306 |
+
sim_mat[i, j] = sim_fun(dct_i[embed_field], dct_j[embed_field])
|
| 307 |
+
# normalize and substract mean
|
| 308 |
+
sim_mat_exp = np.exp(temperature * sim_mat)
|
| 309 |
+
sim_mat_exp /= sim_mat_exp.sum(axis=1, keepdims=1)
|
| 310 |
+
if center:
|
| 311 |
+
sim_mat_exp_avg = sim_mat_exp.mean(axis=0, keepdims=1)
|
| 312 |
+
sim_mat_exp -= sim_mat_exp_avg
|
| 313 |
+
sim_mat_exp_avg = sim_mat_exp_avg * sim_mat_exp.max() / sim_mat_exp_avg.max()
|
| 314 |
+
# rows are reordered by decreasing norm,
|
| 315 |
+
sim_mat_norm = np.sum(sim_mat_exp * sim_mat_exp, axis=1)
|
| 316 |
+
row_order = np.argsort(sim_mat_norm, axis=-1)
|
| 317 |
+
row_labels_sorted = [label_list_rows[i] for i in row_order]
|
| 318 |
+
if center:
|
| 319 |
+
# columns are ordered by bias
|
| 320 |
+
col_order = np.argsort(sim_mat_exp_avg.sum(axis=0), axis=-1)
|
| 321 |
+
else:
|
| 322 |
+
# columns sre reordered by similarity
|
| 323 |
+
sim_mat_exp_norm = normalize(sim_mat_exp, axis=0, norm="l2")
|
| 324 |
+
cluster_cols_sim_mat = np.matmul(sim_mat_exp_norm.transpose(), sim_mat_exp_norm)
|
| 325 |
+
col_order = get_cluster_order(cluster_cols_sim_mat)
|
| 326 |
+
col_labels_sorted = [label_list_cols[i] for i in col_order]
|
| 327 |
+
# make heatmap from similarity matrix
|
| 328 |
+
if center:
|
| 329 |
+
row_order = list(row_order) + [len(row_order), len(row_order) + 1]
|
| 330 |
+
row_labels_sorted = row_labels_sorted + ["_", "AVERAGE"]
|
| 331 |
+
sim_mat_exp = np.concatenate(
|
| 332 |
+
[sim_mat_exp, np.zeros_like(sim_mat_exp_avg), sim_mat_exp_avg], axis=0
|
| 333 |
+
)
|
| 334 |
+
sim_mat_exp_sorted = sim_mat_exp[np.ix_(row_order, col_order)]
|
| 335 |
+
heatmap_fig = make_heat_map(
|
| 336 |
+
sim_mat_exp_sorted, col_labels_sorted, row_labels_sorted, scale=hm_scale
|
| 337 |
+
)
|
| 338 |
+
return heatmap_fig
|