Sou-Cheng commited on
Commit
f4bff27
·
verified ·
1 Parent(s): 0e83a85

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +266 -1
README.md CHANGED
@@ -1 +1,266 @@
1
- ## Lattice Generating Vectors
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # LDData: Low-Discrepancy Generating Vectors and Matrices
2
+
3
+ A curated collection of **low-discrepancy point set parameters** including **lattice rules**, **digital nets**, **polynomial lattice rules**, **Sobol' nets**, and **RQMC randomizations**. This dataset enables reproducible research and high-performance Quasi–Monte Carlo (QMC) and Randomized QMC (RQMC) simulation.
4
+
5
+ The [LDData repository](https://github.com/QMCSoftware/LDData) provides **standard text-based formats** for specifying structures used in QMC point generation across arbitrarily high dimensions.
6
+
7
+ ---
8
+
9
+ ## Dataset Summary
10
+
11
+ LDData is a dataset of structured parameter files defining:
12
+
13
+ - Rank-1 **lattice rules**
14
+ - Base-$b$ **digital nets**
15
+ - **Polynomial lattice rules**
16
+ - **Sobol' and Sobol–Joe-Kuo sequences**
17
+ - Various **randomizations** (shift modulo 1, digital shifts, nested uniform
18
+ scrambles, left matrix scrambles)
19
+
20
+ Each file type follows a simple textual standard to ensure:
21
+ - Human readability
22
+ - Language-agnostic parsing
23
+ - Long-term reproducibility
24
+ - Extensibility to thousands of dimensions
25
+
26
+ The dataset is motivated by the need for **standardized, compact, transparent formats** in [our QMC research and software](https://github.com/QMCSoftware).
27
+
28
+ ---
29
+
30
+ ## Motivation
31
+
32
+ Many QMC constructions appear across scattered software packages, papers, or custom formats. LDData brings these formats together into a **consistent, unified, machine-readable** repository for:
33
+
34
+ - Researchers developing new QMC methods
35
+ - Practitioners needing high-dimensional low-discrepancy point sets
36
+ - Developers of simulation libraries such as SSJ, QMCPy, and LatNet Builder
37
+
38
+ This dataset is linked to the research works described in the Citation section below. **For detailed technical specifications and implementation details**, see
39
+ [LD_DATA.md](LD_DATA.md)
40
+
41
+ ---
42
+
43
+ ## Supported Tasks and Applications
44
+
45
+ ### ✔️ Quasi-Monte Carlo (QMC)
46
+ Generate deterministic point sets with excellent equidistribution.
47
+
48
+ ### ✔️ Randomized QMC (RQMC)
49
+ Use the included randomizations for variance estimation:
50
+ - Digital shifts
51
+ - Nested uniform scrambles
52
+ - Left-matrix scrambles
53
+
54
+ ### ✔️ High-dimensional Integration and Simulation
55
+
56
+ Used in:
57
+ - Bayesian computation
58
+ - Option pricing
59
+ - High-dimensional PDE solvers
60
+ - Uncertainty quantification
61
+ - Graphics and rendering research
62
+ - Machine learning sampling methods
63
+
64
+ ### ✔️ Benchmarking
65
+ Standard formats help evaluate new constructions against established ones.
66
+
67
+ ---
68
+
69
+ ## Features
70
+
71
+ - Simple `.txt` formats with **one line per dimension**
72
+ - Optional human-readable comments starting with `#`
73
+ - No binary encoding or word-size assumptions
74
+ - Supports extremely high dimensions (10,000+)
75
+ - Extensible constructions (e.g., Sobol or embedded nets)
76
+ - All formats interoperable with QMC software (SSJ, QMCPy, LatNet Builder)
77
+
78
+ ---
79
+
80
+ ## How to Use the Dataset
81
+
82
+ ### Load files directly from Hugging Face
83
+
84
+ ```python
85
+ from datasets import load_dataset
86
+
87
+ ds = load_dataset("QMCSoftware/LDData")
88
+ ```
89
+
90
+ All data files are preserved in their directory structure and can be accessed
91
+ using:
92
+
93
+ ```python
94
+ ds["train"] # or ds['default']
95
+ ```
96
+
97
+ ### Typical workflow
98
+
99
+ 1. Read a parameter file (e.g. `lattice_8d.txt`)
100
+ 2. Parse header (`# lattice`, dimensions, n, etc.)
101
+ 3. Parse one line per dimension for the generating vector or matrices
102
+ 4. Construct QMC point generator in your preferred library
103
+
104
+ ---
105
+
106
+ ## Dataset Structure
107
+
108
+ The dataset includes multiple categories of files:
109
+
110
+ ### 🔹 `lattice`
111
+ Rank-1 lattice generating vectors:
112
+ - Header: `# lattice`
113
+ - Parameters:
114
+ - Number of dimensions `s`
115
+ - Number of points `n`
116
+ - `s` lines of generating vector coefficients
117
+
118
+ ---
119
+
120
+ ### 🔹 `dnet`
121
+ General digital nets in base `b`:
122
+ - Header: `# dnet`
123
+ - Parameters:
124
+ - Base `b`
125
+ - Dimensions `s`
126
+ - Columns `k`
127
+ - Rows `r`
128
+ - Then `s` lines representing generating matrices
129
+
130
+ Efficient for high-dimensional digital nets.
131
+
132
+ ---
133
+
134
+ ### 🔹 `plattice`
135
+ Polynomial lattice rules:
136
+ - Compact format using integer-encoded polynomials
137
+ - Base `b`, dimension `s`, polynomial degree `k`, and generating polynomials
138
+
139
+ ---
140
+
141
+ ### 🔹 `sobol` and `soboljk`
142
+ Parameters for Sobol' sequences:
143
+ - `soboljk`: Joe & Kuo format with primitive polynomials and direction numbers
144
+ - `sobol`: Simplified direction-number only format
145
+
146
+ Used widely in QMC applications.
147
+
148
+ ---
149
+
150
+ ### 🔹 Randomization formats
151
+
152
+ Includes:
153
+
154
+ - `shiftmod1`: Shift modulo 1
155
+ - `dshift`: Digital shift in base `b`
156
+ - `nuscramble`: Nested uniform scramble
157
+ - `lmscramble`: Left matrix scramble
158
+
159
+ All formats are text-based and reproducible.
160
+
161
+ ---
162
+
163
+ ## Example: Parsing a Lattice Rule File
164
+
165
+ Example file:
166
+
167
+ ```
168
+ # lattice
169
+ 8
170
+ 65536
171
+ 1
172
+ 19463
173
+ 17213
174
+ 5895
175
+ 14865
176
+ 31925
177
+ 30921
178
+ 26671
179
+ ```
180
+
181
+ Python pseudo-code:
182
+
183
+ ```python
184
+ with open("lattice_8d.txt") as f:
185
+ lines = [l for l in f.readlines() if not l.startswith("#")]
186
+
187
+ s = int(lines[0])
188
+ n = int(lines[1])
189
+ a = [int(x) for x in lines[2:2+s]]
190
+ ```
191
+
192
+ ---
193
+
194
+ ## File Naming Recommendations
195
+
196
+ To support discoverability and consistent tooling:
197
+
198
+ - All files begin with their keyword (`lattice_`, `dnet_`, `sobol_`, etc.)
199
+ - Headers contain:
200
+ - Construction method
201
+ - Figure of merit (FOM)
202
+ - Weights
203
+ - Embedded range (if applicable)
204
+ - Comments allowed in headers only
205
+
206
+ ---
207
+
208
+ ## References
209
+
210
+ This dataset incorporates formats and ideas from foundational work in QMC:
211
+
212
+ - Bratley & Fox (1988)
213
+ - Joe & Kuo (2008)
214
+ - L’Ecuyer (2016)
215
+ - Goda & Dick (2015)
216
+ - Nuyens (2020)
217
+ - And others listed in the detailed specification [LD_DATA.md](LD_DATA.md).
218
+
219
+ ---
220
+
221
+ ## Citation
222
+
223
+ If you use LDData in academic work, please cite:
224
+
225
+ ```
226
+ @article{sorokin.2025.ld_randomizations_ho_nets_fast_kernel_mats,
227
+ title = {{QMCPy}: a {P}ython software for randomized low-discrepancy sequences, quasi-{M}onte {C}arlo, and fast kernel methods},
228
+ author = {Aleksei G. Sorokin},
229
+ year = {2025},
230
+ journal = {ArXiv preprint},
231
+ volume = {abs/2502.14256},
232
+ url = {https://arxiv.org/abs/2502.14256},
233
+ }
234
+
235
+
236
+ @inproceedings{choi.QMC_software,
237
+ title = {Quasi-{M}onte {C}arlo software},
238
+ author = {Choi, Sou-Cheng T. and Hickernell, Fred J. and Rathinavel, Jagadeeswaran and McCourt, Michael J. and Sorokin, Aleksei G.},
239
+ year = {2022},
240
+ booktitle = {{M}onte {C}arlo and Quasi-{M}onte {C}arlo Methods 2020},
241
+ publisher = {Springer International Publishing},
242
+ address = {Cham},
243
+ pages = {23--47},
244
+ isbn = {978-3-030-98319-2},
245
+ editor = {Keller, Alexander},
246
+ }
247
+ ```
248
+
249
+ ---
250
+
251
+ ## License
252
+
253
+ Apache 2 License.
254
+ See [`LICENSE`](LICENSE.txt) file for details.
255
+
256
+ ---
257
+
258
+ ## Acknowledgements
259
+
260
+ This dataset is developed and maintained by:
261
+
262
+ - **QMCSoftware team**
263
+ - Contributors to QMCPy, SSJ, and LatNet Builder
264
+ - Community contributions from QMC & RQMC researchers
265
+
266
+ Special thanks to researchers providing widely used generating vectors and direction numbers used throughout the scientific computing community.