stable-diffusion-backup
/
extensions
/multidiffusion-upscaler-for-automatic1111
/scripts
/vae_optimize.py
| ''' | |
| # ------------------------------------------------------------------------ | |
| # | |
| # Tiled VAE | |
| # | |
| # Introducing a revolutionary new optimization designed to make | |
| # the VAE work with giant images on limited VRAM! | |
| # Say goodbye to the frustration of OOM and hello to seamless output! | |
| # | |
| # ------------------------------------------------------------------------ | |
| # | |
| # This script is a wild hack that splits the image into tiles, | |
| # encodes each tile separately, and merges the result back together. | |
| # | |
| # Advantages: | |
| # - The VAE can now work with giant images on limited VRAM | |
| # (~10 GB for 8K images!) | |
| # - The merged output is completely seamless without any post-processing. | |
| # | |
| # Drawbacks: | |
| # - NaNs always appear in for 8k images when you use fp16 (half) VAE | |
| # You must use --no-half-vae to disable half VAE for that giant image. | |
| # - The gradient calculation is not compatible with this hack. It | |
| # will break any backward() or torch.autograd.grad() that passes VAE. | |
| # (But you can still use the VAE to generate training data.) | |
| # | |
| # How it works: | |
| # 1. The image is split into tiles, which are then padded with 11/32 pixels' in the decoder/encoder. | |
| # 2. When Fast Mode is disabled: | |
| # 1. The original VAE forward is decomposed into a task queue and a task worker, which starts to process each tile. | |
| # 2. When GroupNorm is needed, it suspends, stores current GroupNorm mean and var, send everything to RAM, and turns to the next tile. | |
| # 3. After all GroupNorm means and vars are summarized, it applies group norm to tiles and continues. | |
| # 4. A zigzag execution order is used to reduce unnecessary data transfer. | |
| # 3. When Fast Mode is enabled: | |
| # 1. The original input is downsampled and passed to a separate task queue. | |
| # 2. Its group norm parameters are recorded and used by all tiles' task queues. | |
| # 3. Each tile is separately processed without any RAM-VRAM data transfer. | |
| # 4. After all tiles are processed, tiles are written to a result buffer and returned. | |
| # Encoder color fix = only estimate GroupNorm before downsampling, i.e., run in a semi-fast mode. | |
| # | |
| # Enjoy! | |
| # | |
| # @Author: LI YI @ Nanyang Technological University - Singapore | |
| # @Date: 2023-03-02 | |
| # @License: CC BY-NC-SA 4.0 | |
| # | |
| # Please give me a star if you like this project! | |
| # | |
| # ------------------------------------------------------------------------- | |
| ''' | |
| import gc | |
| import math | |
| from time import time | |
| from tqdm import tqdm | |
| import torch | |
| import torch.version | |
| import torch.nn.functional as F | |
| import gradio as gr | |
| import modules.scripts as scripts | |
| import modules.devices as devices | |
| from modules.shared import state | |
| from modules.ui import gr_show | |
| from modules.processing import opt_f | |
| from modules.sd_vae_approx import cheap_approximation | |
| from ldm.modules.diffusionmodules.model import AttnBlock, MemoryEfficientAttnBlock | |
| from tile_utils.attn import get_attn_func | |
| from tile_utils.typing import Processing | |
| def get_rcmd_enc_tsize(): | |
| if torch.cuda.is_available() and devices.device not in ['cpu', devices.cpu]: | |
| total_memory = torch.cuda.get_device_properties(devices.device).total_memory // 2**20 | |
| if total_memory > 16*1000: ENCODER_TILE_SIZE = 3072 | |
| elif total_memory > 12*1000: ENCODER_TILE_SIZE = 2048 | |
| elif total_memory > 8*1000: ENCODER_TILE_SIZE = 1536 | |
| else: ENCODER_TILE_SIZE = 960 | |
| else: ENCODER_TILE_SIZE = 512 | |
| return ENCODER_TILE_SIZE | |
| def get_rcmd_dec_tsize(): | |
| if torch.cuda.is_available() and devices.device not in ['cpu', devices.cpu]: | |
| total_memory = torch.cuda.get_device_properties(devices.device).total_memory // 2**20 | |
| if total_memory > 30*1000: DECODER_TILE_SIZE = 256 | |
| elif total_memory > 16*1000: DECODER_TILE_SIZE = 192 | |
| elif total_memory > 12*1000: DECODER_TILE_SIZE = 128 | |
| elif total_memory > 8*1000: DECODER_TILE_SIZE = 96 | |
| else: DECODER_TILE_SIZE = 64 | |
| else: DECODER_TILE_SIZE = 64 | |
| return DECODER_TILE_SIZE | |
| def inplace_nonlinearity(x): | |
| # Test: fix for Nans | |
| return F.silu(x, inplace=True) | |
| def attn2task(task_queue, net): | |
| attn_forward = get_attn_func() | |
| task_queue.append(('store_res', lambda x: x)) | |
| task_queue.append(('pre_norm', net.norm)) | |
| task_queue.append(('attn', lambda x, net=net: attn_forward(net, x))) | |
| task_queue.append(['add_res', None]) | |
| def resblock2task(queue, block): | |
| """ | |
| Turn a ResNetBlock into a sequence of tasks and append to the task queue | |
| @param queue: the target task queue | |
| @param block: ResNetBlock | |
| """ | |
| if block.in_channels != block.out_channels: | |
| if block.use_conv_shortcut: | |
| queue.append(('store_res', block.conv_shortcut)) | |
| else: | |
| queue.append(('store_res', block.nin_shortcut)) | |
| else: | |
| queue.append(('store_res', lambda x: x)) | |
| queue.append(('pre_norm', block.norm1)) | |
| queue.append(('silu', inplace_nonlinearity)) | |
| queue.append(('conv1', block.conv1)) | |
| queue.append(('pre_norm', block.norm2)) | |
| queue.append(('silu', inplace_nonlinearity)) | |
| queue.append(('conv2', block.conv2)) | |
| queue.append(['add_res', None]) | |
| def build_sampling(task_queue, net, is_decoder): | |
| """ | |
| Build the sampling part of a task queue | |
| @param task_queue: the target task queue | |
| @param net: the network | |
| @param is_decoder: currently building decoder or encoder | |
| """ | |
| if is_decoder: | |
| resblock2task(task_queue, net.mid.block_1) | |
| attn2task(task_queue, net.mid.attn_1) | |
| resblock2task(task_queue, net.mid.block_2) | |
| resolution_iter = reversed(range(net.num_resolutions)) | |
| block_ids = net.num_res_blocks + 1 | |
| condition = 0 | |
| module = net.up | |
| func_name = 'upsample' | |
| else: | |
| resolution_iter = range(net.num_resolutions) | |
| block_ids = net.num_res_blocks | |
| condition = net.num_resolutions - 1 | |
| module = net.down | |
| func_name = 'downsample' | |
| for i_level in resolution_iter: | |
| for i_block in range(block_ids): | |
| resblock2task(task_queue, module[i_level].block[i_block]) | |
| if i_level != condition: | |
| task_queue.append((func_name, getattr(module[i_level], func_name))) | |
| if not is_decoder: | |
| resblock2task(task_queue, net.mid.block_1) | |
| attn2task(task_queue, net.mid.attn_1) | |
| resblock2task(task_queue, net.mid.block_2) | |
| def build_task_queue(net, is_decoder): | |
| """ | |
| Build a single task queue for the encoder or decoder | |
| @param net: the VAE decoder or encoder network | |
| @param is_decoder: currently building decoder or encoder | |
| @return: the task queue | |
| """ | |
| task_queue = [] | |
| task_queue.append(('conv_in', net.conv_in)) | |
| # construct the sampling part of the task queue | |
| # because encoder and decoder share the same architecture, we extract the sampling part | |
| build_sampling(task_queue, net, is_decoder) | |
| if not is_decoder or not net.give_pre_end: | |
| task_queue.append(('pre_norm', net.norm_out)) | |
| task_queue.append(('silu', inplace_nonlinearity)) | |
| task_queue.append(('conv_out', net.conv_out)) | |
| if is_decoder and net.tanh_out: | |
| task_queue.append(('tanh', torch.tanh)) | |
| return task_queue | |
| def clone_task_queue(task_queue): | |
| """ | |
| Clone a task queue | |
| @param task_queue: the task queue to be cloned | |
| @return: the cloned task queue | |
| """ | |
| return [[item for item in task] for task in task_queue] | |
| def get_var_mean(input, num_groups, eps=1e-6): | |
| """ | |
| Get mean and var for group norm | |
| """ | |
| b, c = input.size(0), input.size(1) | |
| channel_in_group = int(c/num_groups) | |
| input_reshaped = input.contiguous().view(1, int(b * num_groups), channel_in_group, *input.size()[2:]) | |
| var, mean = torch.var_mean(input_reshaped, dim=[0, 2, 3, 4], unbiased=False) | |
| return var, mean | |
| def custom_group_norm(input, num_groups, mean, var, weight=None, bias=None, eps=1e-6): | |
| """ | |
| Custom group norm with fixed mean and var | |
| @param input: input tensor | |
| @param num_groups: number of groups. by default, num_groups = 32 | |
| @param mean: mean, must be pre-calculated by get_var_mean | |
| @param var: var, must be pre-calculated by get_var_mean | |
| @param weight: weight, should be fetched from the original group norm | |
| @param bias: bias, should be fetched from the original group norm | |
| @param eps: epsilon, by default, eps = 1e-6 to match the original group norm | |
| @return: normalized tensor | |
| """ | |
| b, c = input.size(0), input.size(1) | |
| channel_in_group = int(c/num_groups) | |
| input_reshaped = input.contiguous().view( | |
| 1, int(b * num_groups), channel_in_group, *input.size()[2:]) | |
| out = F.batch_norm(input_reshaped, mean, var, weight=None, bias=None, training=False, momentum=0, eps=eps) | |
| out = out.view(b, c, *input.size()[2:]) | |
| # post affine transform | |
| if weight is not None: | |
| out *= weight.view(1, -1, 1, 1) | |
| if bias is not None: | |
| out += bias.view(1, -1, 1, 1) | |
| return out | |
| def crop_valid_region(x, input_bbox, target_bbox, is_decoder): | |
| """ | |
| Crop the valid region from the tile | |
| @param x: input tile | |
| @param input_bbox: original input bounding box | |
| @param target_bbox: output bounding box | |
| @param scale: scale factor | |
| @return: cropped tile | |
| """ | |
| padded_bbox = [i * 8 if is_decoder else i//8 for i in input_bbox] | |
| margin = [target_bbox[i] - padded_bbox[i] for i in range(4)] | |
| return x[:, :, margin[2]:x.size(2)+margin[3], margin[0]:x.size(3)+margin[1]] | |
| # ↓↓↓ https://github.com/Kahsolt/stable-diffusion-webui-vae-tile-infer ↓↓↓ | |
| def perfcount(fn): | |
| def wrapper(*args, **kwargs): | |
| ts = time() | |
| if torch.cuda.is_available(): | |
| torch.cuda.reset_peak_memory_stats(devices.device) | |
| devices.torch_gc() | |
| gc.collect() | |
| ret = fn(*args, **kwargs) | |
| devices.torch_gc() | |
| gc.collect() | |
| if torch.cuda.is_available(): | |
| vram = torch.cuda.max_memory_allocated(devices.device) / 2**20 | |
| print(f'[Tiled VAE]: Done in {time() - ts:.3f}s, max VRAM alloc {vram:.3f} MB') | |
| else: | |
| print(f'[Tiled VAE]: Done in {time() - ts:.3f}s') | |
| return ret | |
| return wrapper | |
| # ↑↑↑ https://github.com/Kahsolt/stable-diffusion-webui-vae-tile-infer ↑↑↑ | |
| class GroupNormParam: | |
| def __init__(self): | |
| self.var_list = [] | |
| self.mean_list = [] | |
| self.pixel_list = [] | |
| self.weight = None | |
| self.bias = None | |
| def add_tile(self, tile, layer): | |
| var, mean = get_var_mean(tile, 32) | |
| # For giant images, the variance can be larger than max float16 | |
| # In this case we create a copy to float32 | |
| if var.dtype == torch.float16 and var.isinf().any(): | |
| fp32_tile = tile.float() | |
| var, mean = get_var_mean(fp32_tile, 32) | |
| # ============= DEBUG: test for infinite ============= | |
| # if torch.isinf(var).any(): | |
| # print('var: ', var) | |
| # ==================================================== | |
| self.var_list.append(var) | |
| self.mean_list.append(mean) | |
| self.pixel_list.append( | |
| tile.shape[2]*tile.shape[3]) | |
| if hasattr(layer, 'weight'): | |
| self.weight = layer.weight | |
| self.bias = layer.bias | |
| else: | |
| self.weight = None | |
| self.bias = None | |
| def summary(self): | |
| """ | |
| summarize the mean and var and return a function | |
| that apply group norm on each tile | |
| """ | |
| if len(self.var_list) == 0: return None | |
| var = torch.vstack(self.var_list) | |
| mean = torch.vstack(self.mean_list) | |
| max_value = max(self.pixel_list) | |
| pixels = torch.tensor(self.pixel_list, dtype=torch.float32, device=devices.device) / max_value | |
| sum_pixels = torch.sum(pixels) | |
| pixels = pixels.unsqueeze(1) / sum_pixels | |
| var = torch.sum(var * pixels, dim=0) | |
| mean = torch.sum(mean * pixels, dim=0) | |
| return lambda x: custom_group_norm(x, 32, mean, var, self.weight, self.bias) | |
| def from_tile(tile, norm): | |
| """ | |
| create a function from a single tile without summary | |
| """ | |
| var, mean = get_var_mean(tile, 32) | |
| if var.dtype == torch.float16 and var.isinf().any(): | |
| fp32_tile = tile.float() | |
| var, mean = get_var_mean(fp32_tile, 32) | |
| # if it is a macbook, we need to convert back to float16 | |
| if var.device.type == 'mps': | |
| # clamp to avoid overflow | |
| var = torch.clamp(var, 0, 60000) | |
| var = var.half() | |
| mean = mean.half() | |
| if hasattr(norm, 'weight'): | |
| weight = norm.weight | |
| bias = norm.bias | |
| else: | |
| weight = None | |
| bias = None | |
| def group_norm_func(x, mean=mean, var=var, weight=weight, bias=bias): | |
| return custom_group_norm(x, 32, mean, var, weight, bias, 1e-6) | |
| return group_norm_func | |
| class VAEHook: | |
| def __init__(self, net, tile_size, is_decoder:bool, fast_decoder:bool, fast_encoder:bool, color_fix:bool, to_gpu:bool=False): | |
| self.net = net # encoder | decoder | |
| self.tile_size = tile_size | |
| self.is_decoder = is_decoder | |
| self.fast_mode = (fast_encoder and not is_decoder) or (fast_decoder and is_decoder) | |
| self.color_fix = color_fix and not is_decoder | |
| self.to_gpu = to_gpu | |
| self.pad = 11 if is_decoder else 32 # FIXME: magic number | |
| def __call__(self, x): | |
| original_device = next(self.net.parameters()).device | |
| try: | |
| if self.to_gpu: | |
| self.net = self.net.to(devices.get_optimal_device()) | |
| B, C, H, W = x.shape | |
| if max(H, W) <= self.pad * 2 + self.tile_size: | |
| print("[Tiled VAE]: the input size is tiny and unnecessary to tile.") | |
| return self.net.original_forward(x) | |
| else: | |
| return self.vae_tile_forward(x) | |
| finally: | |
| self.net = self.net.to(original_device) | |
| def get_best_tile_size(self, lowerbound, upperbound): | |
| """ | |
| Get the best tile size for GPU memory | |
| """ | |
| divider = 32 | |
| while divider >= 2: | |
| remainer = lowerbound % divider | |
| if remainer == 0: | |
| return lowerbound | |
| candidate = lowerbound - remainer + divider | |
| if candidate <= upperbound: | |
| return candidate | |
| divider //= 2 | |
| return lowerbound | |
| def split_tiles(self, h, w): | |
| """ | |
| Tool function to split the image into tiles | |
| @param h: height of the image | |
| @param w: width of the image | |
| @return: tile_input_bboxes, tile_output_bboxes | |
| """ | |
| tile_input_bboxes, tile_output_bboxes = [], [] | |
| tile_size = self.tile_size | |
| pad = self.pad | |
| num_height_tiles = math.ceil((h - 2 * pad) / tile_size) | |
| num_width_tiles = math.ceil((w - 2 * pad) / tile_size) | |
| # If any of the numbers are 0, we let it be 1 | |
| # This is to deal with long and thin images | |
| num_height_tiles = max(num_height_tiles, 1) | |
| num_width_tiles = max(num_width_tiles, 1) | |
| # Suggestions from https://github.com/Kahsolt: auto shrink the tile size | |
| real_tile_height = math.ceil((h - 2 * pad) / num_height_tiles) | |
| real_tile_width = math.ceil((w - 2 * pad) / num_width_tiles) | |
| real_tile_height = self.get_best_tile_size(real_tile_height, tile_size) | |
| real_tile_width = self.get_best_tile_size(real_tile_width, tile_size) | |
| print(f'[Tiled VAE]: split to {num_height_tiles}x{num_width_tiles} = {num_height_tiles*num_width_tiles} tiles. ' + | |
| f'Optimal tile size {real_tile_width}x{real_tile_height}, original tile size {tile_size}x{tile_size}') | |
| for i in range(num_height_tiles): | |
| for j in range(num_width_tiles): | |
| # bbox: [x1, x2, y1, y2] | |
| # the padding is is unnessary for image borders. So we directly start from (32, 32) | |
| input_bbox = [ | |
| pad + j * real_tile_width, | |
| min(pad + (j + 1) * real_tile_width, w), | |
| pad + i * real_tile_height, | |
| min(pad + (i + 1) * real_tile_height, h), | |
| ] | |
| # if the output bbox is close to the image boundary, we extend it to the image boundary | |
| output_bbox = [ | |
| input_bbox[0] if input_bbox[0] > pad else 0, | |
| input_bbox[1] if input_bbox[1] < w - pad else w, | |
| input_bbox[2] if input_bbox[2] > pad else 0, | |
| input_bbox[3] if input_bbox[3] < h - pad else h, | |
| ] | |
| # scale to get the final output bbox | |
| output_bbox = [x * 8 if self.is_decoder else x // 8 for x in output_bbox] | |
| tile_output_bboxes.append(output_bbox) | |
| # indistinguishable expand the input bbox by pad pixels | |
| tile_input_bboxes.append([ | |
| max(0, input_bbox[0] - pad), | |
| min(w, input_bbox[1] + pad), | |
| max(0, input_bbox[2] - pad), | |
| min(h, input_bbox[3] + pad), | |
| ]) | |
| return tile_input_bboxes, tile_output_bboxes | |
| def estimate_group_norm(self, z, task_queue, color_fix): | |
| device = z.device | |
| tile = z | |
| last_id = len(task_queue) - 1 | |
| while last_id >= 0 and task_queue[last_id][0] != 'pre_norm': | |
| last_id -= 1 | |
| if last_id <= 0 or task_queue[last_id][0] != 'pre_norm': | |
| raise ValueError('No group norm found in the task queue') | |
| # estimate until the last group norm | |
| for i in range(last_id + 1): | |
| task = task_queue[i] | |
| if task[0] == 'pre_norm': | |
| group_norm_func = GroupNormParam.from_tile(tile, task[1]) | |
| task_queue[i] = ('apply_norm', group_norm_func) | |
| if i == last_id: | |
| return True | |
| tile = group_norm_func(tile) | |
| elif task[0] == 'store_res': | |
| task_id = i + 1 | |
| while task_id < last_id and task_queue[task_id][0] != 'add_res': | |
| task_id += 1 | |
| if task_id >= last_id: | |
| continue | |
| task_queue[task_id][1] = task[1](tile) | |
| elif task[0] == 'add_res': | |
| tile += task[1].to(device) | |
| task[1] = None | |
| elif color_fix and task[0] == 'downsample': | |
| for j in range(i, last_id + 1): | |
| if task_queue[j][0] == 'store_res': | |
| task_queue[j] = ('store_res_cpu', task_queue[j][1]) | |
| return True | |
| else: | |
| tile = task[1](tile) | |
| try: | |
| devices.test_for_nans(tile, "vae") | |
| except: | |
| print(f'Nan detected in fast mode estimation. Fast mode disabled.') | |
| return False | |
| raise IndexError('Should not reach here') | |
| def vae_tile_forward(self, z): | |
| """ | |
| Decode a latent vector z into an image in a tiled manner. | |
| @param z: latent vector | |
| @return: image | |
| """ | |
| device = next(self.net.parameters()).device | |
| net = self.net | |
| tile_size = self.tile_size | |
| is_decoder = self.is_decoder | |
| z = z.detach() # detach the input to avoid backprop | |
| N, height, width = z.shape[0], z.shape[2], z.shape[3] | |
| net.last_z_shape = z.shape | |
| # Split the input into tiles and build a task queue for each tile | |
| print(f'[Tiled VAE]: input_size: {z.shape}, tile_size: {tile_size}, padding: {self.pad}') | |
| in_bboxes, out_bboxes = self.split_tiles(height, width) | |
| # Prepare tiles by split the input latents | |
| tiles = [] | |
| for input_bbox in in_bboxes: | |
| tile = z[:, :, input_bbox[2]:input_bbox[3], input_bbox[0]:input_bbox[1]].cpu() | |
| tiles.append(tile) | |
| num_tiles = len(tiles) | |
| num_completed = 0 | |
| # Build task queues | |
| single_task_queue = build_task_queue(net, is_decoder) | |
| if self.fast_mode: | |
| # Fast mode: downsample the input image to the tile size, | |
| # then estimate the group norm parameters on the downsampled image | |
| scale_factor = tile_size / max(height, width) | |
| z = z.to(device) | |
| downsampled_z = F.interpolate(z, scale_factor=scale_factor, mode='nearest-exact') | |
| # use nearest-exact to keep statictics as close as possible | |
| print(f'[Tiled VAE]: Fast mode enabled, estimating group norm parameters on {downsampled_z.shape[3]} x {downsampled_z.shape[2]} image') | |
| # ======= Special thanks to @Kahsolt for distribution shift issue ======= # | |
| # The downsampling will heavily distort its mean and std, so we need to recover it. | |
| std_old, mean_old = torch.std_mean(z, dim=[0, 2, 3], keepdim=True) | |
| std_new, mean_new = torch.std_mean(downsampled_z, dim=[0, 2, 3], keepdim=True) | |
| downsampled_z = (downsampled_z - mean_new) / std_new * std_old + mean_old | |
| del std_old, mean_old, std_new, mean_new | |
| # occasionally the std_new is too small or too large, which exceeds the range of float16 | |
| # so we need to clamp it to max z's range. | |
| downsampled_z = torch.clamp_(downsampled_z, min=z.min(), max=z.max()) | |
| estimate_task_queue = clone_task_queue(single_task_queue) | |
| if self.estimate_group_norm(downsampled_z, estimate_task_queue, color_fix=self.color_fix): | |
| single_task_queue = estimate_task_queue | |
| del downsampled_z | |
| task_queues = [clone_task_queue(single_task_queue) for _ in range(num_tiles)] | |
| # Dummy result | |
| result = None | |
| result_approx = None | |
| try: | |
| with devices.autocast(): | |
| result_approx = torch.cat([F.interpolate(cheap_approximation(x).unsqueeze(0), scale_factor=opt_f, mode='nearest-exact') for x in z], dim=0).cpu() | |
| except: pass | |
| # Free memory of input latent tensor | |
| del z | |
| # Task queue execution | |
| pbar = tqdm(total=num_tiles * len(task_queues[0]), desc=f"[Tiled VAE]: Executing {'Decoder' if is_decoder else 'Encoder'} Task Queue: ") | |
| # execute the task back and forth when switch tiles so that we always | |
| # keep one tile on the GPU to reduce unnecessary data transfer | |
| forward = True | |
| interrupted = False | |
| #state.interrupted = interrupted | |
| while True: | |
| if state.interrupted: interrupted = True ; break | |
| group_norm_param = GroupNormParam() | |
| for i in range(num_tiles) if forward else reversed(range(num_tiles)): | |
| if state.interrupted: interrupted = True ; break | |
| tile = tiles[i].to(device) | |
| input_bbox = in_bboxes[i] | |
| task_queue = task_queues[i] | |
| interrupted = False | |
| while len(task_queue) > 0: | |
| if state.interrupted: interrupted = True ; break | |
| # DEBUG: current task | |
| # print('Running task: ', task_queue[0][0], ' on tile ', i, '/', num_tiles, ' with shape ', tile.shape) | |
| task = task_queue.pop(0) | |
| if task[0] == 'pre_norm': | |
| group_norm_param.add_tile(tile, task[1]) | |
| break | |
| elif task[0] == 'store_res' or task[0] == 'store_res_cpu': | |
| task_id = 0 | |
| res = task[1](tile) | |
| if not self.fast_mode or task[0] == 'store_res_cpu': | |
| res = res.cpu() | |
| while task_queue[task_id][0] != 'add_res': | |
| task_id += 1 | |
| task_queue[task_id][1] = res | |
| elif task[0] == 'add_res': | |
| tile += task[1].to(device) | |
| task[1] = None | |
| else: | |
| tile = task[1](tile) | |
| pbar.update(1) | |
| if interrupted: break | |
| # check for NaNs in the tile. | |
| # If there are NaNs, we abort the process to save user's time | |
| devices.test_for_nans(tile, "vae") | |
| if len(task_queue) == 0: | |
| tiles[i] = None | |
| num_completed += 1 | |
| if result is None: # NOTE: dim C varies from different cases, can only be inited dynamically | |
| result = torch.zeros((N, tile.shape[1], height * 8 if is_decoder else height // 8, width * 8 if is_decoder else width // 8), device=device, requires_grad=False) | |
| result[:, :, out_bboxes[i][2]:out_bboxes[i][3], out_bboxes[i][0]:out_bboxes[i][1]] = crop_valid_region(tile, in_bboxes[i], out_bboxes[i], is_decoder) | |
| del tile | |
| elif i == num_tiles - 1 and forward: | |
| forward = False | |
| tiles[i] = tile | |
| elif i == 0 and not forward: | |
| forward = True | |
| tiles[i] = tile | |
| else: | |
| tiles[i] = tile.cpu() | |
| del tile | |
| if interrupted: break | |
| if num_completed == num_tiles: break | |
| # insert the group norm task to the head of each task queue | |
| group_norm_func = group_norm_param.summary() | |
| if group_norm_func is not None: | |
| for i in range(num_tiles): | |
| task_queue = task_queues[i] | |
| task_queue.insert(0, ('apply_norm', group_norm_func)) | |
| # Done! | |
| pbar.close() | |
| return result if result is not None else result_approx.to(device) | |
| class Script(scripts.Script): | |
| def __init__(self): | |
| self.hooked = False | |
| def title(self): | |
| return "Tiled VAE" | |
| def show(self, is_img2img): | |
| return scripts.AlwaysVisible | |
| def ui(self, is_img2img): | |
| tab = 't2i' if not is_img2img else 'i2i' | |
| def uid(name): | |
| return f'tiledvae-{tab}-{name}' | |
| with gr.Accordion('Tiled VAE', open=False): | |
| with gr.Row() as tab_enable: | |
| enabled = gr.Checkbox(label='Enable Tiled VAE', value=False, elem_id=uid('enable')) | |
| vae_to_gpu = gr.Checkbox(label='Move VAE to GPU (if possible)', value=True, elem_id=uid('vae2gpu')) | |
| gr.HTML('<p style="margin-bottom:0.8em"> Recommended to set tile sizes as large as possible before got CUDA error: out of memory. </p>') | |
| with gr.Row() as tab_size: | |
| encoder_tile_size = gr.Slider(label='Encoder Tile Size', minimum=256, maximum=4096, step=16, value=get_rcmd_enc_tsize(), elem_id=uid('enc-size')) | |
| decoder_tile_size = gr.Slider(label='Decoder Tile Size', minimum=48, maximum=512, step=16, value=get_rcmd_dec_tsize(), elem_id=uid('dec-size')) | |
| reset = gr.Button(value='↻ Reset', variant='tool') | |
| reset.click(fn=lambda: [get_rcmd_enc_tsize(), get_rcmd_dec_tsize()], outputs=[encoder_tile_size, decoder_tile_size], show_progress=False) | |
| with gr.Row() as tab_param: | |
| fast_encoder = gr.Checkbox(label='Fast Encoder', value=True, elem_id=uid('fastenc')) | |
| color_fix = gr.Checkbox(label='Fast Encoder Color Fix', value=False, visible=True, elem_id=uid('fastenc-colorfix')) | |
| fast_decoder = gr.Checkbox(label='Fast Decoder', value=True, elem_id=uid('fastdec')) | |
| fast_encoder.change(fn=gr_show, inputs=fast_encoder, outputs=color_fix, show_progress=False) | |
| return [ | |
| enabled, | |
| encoder_tile_size, decoder_tile_size, | |
| vae_to_gpu, fast_decoder, fast_encoder, color_fix, | |
| ] | |
| def process(self, p:Processing, | |
| enabled:bool, | |
| encoder_tile_size:int, decoder_tile_size:int, | |
| vae_to_gpu:bool, fast_decoder:bool, fast_encoder:bool, color_fix:bool | |
| ): | |
| # for shorthand | |
| vae = p.sd_model.first_stage_model | |
| encoder = vae.encoder | |
| decoder = vae.decoder | |
| # undo hijack if disabled (in cases last time crashed) | |
| if not enabled: | |
| if self.hooked: | |
| if isinstance(encoder.forward, VAEHook): | |
| encoder.forward.net = None | |
| encoder.forward = encoder.original_forward | |
| if isinstance(decoder.forward, VAEHook): | |
| decoder.forward.net = None | |
| decoder.forward = decoder.original_forward | |
| self.hooked = False | |
| return | |
| if devices.get_optimal_device_name().startswith('cuda') and vae.device == devices.cpu and not vae_to_gpu: | |
| print("[Tiled VAE] warn: VAE is not on GPU, check 'Move VAE to GPU' if possible.") | |
| # do hijack | |
| kwargs = { | |
| 'fast_decoder': fast_decoder, | |
| 'fast_encoder': fast_encoder, | |
| 'color_fix': color_fix, | |
| 'to_gpu': vae_to_gpu, | |
| } | |
| # save original forward (only once) | |
| if not hasattr(encoder, 'original_forward'): setattr(encoder, 'original_forward', encoder.forward) | |
| if not hasattr(decoder, 'original_forward'): setattr(decoder, 'original_forward', decoder.forward) | |
| self.hooked = True | |
| encoder.forward = VAEHook(encoder, encoder_tile_size, is_decoder=False, **kwargs) | |
| decoder.forward = VAEHook(decoder, decoder_tile_size, is_decoder=True, **kwargs) | |
| def postprocess(self, p:Processing, processed, enabled:bool, *args): | |
| if not enabled: return | |
| vae = p.sd_model.first_stage_model | |
| encoder = vae.encoder | |
| decoder = vae.decoder | |
| if isinstance(encoder.forward, VAEHook): | |
| encoder.forward.net = None | |
| encoder.forward = encoder.original_forward | |
| if isinstance(decoder.forward, VAEHook): | |
| decoder.forward.net = None | |
| decoder.forward = decoder.original_forward | |