Datasets:
Formats:
webdataset
Size:
100K - 1M
Update README.md
Browse files
README.md
CHANGED
|
@@ -17,83 +17,38 @@ size_categories:
|
|
| 17 |
|
| 18 |
**Grounded Action Trajectory Embeddings with Vision-Language Action Planning**
|
| 19 |
|
| 20 |
-
This repository contains preprocessed datasets from the LIBERO benchmark suite, specifically designed for training vision-language-action models with semantic action segmentation.
|
| 21 |
|
| 22 |
-
##
|
| 23 |
|
| 24 |
-
We provide datasets in **
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
| 29 |
-
2. **Maximum Flexibility**:
|
| 30 |
-
- Load with any framework (PyTorch, TensorFlow, JAX)
|
| 31 |
-
- Convert to your preferred format (TAR, RLDS, LeRobot, custom)
|
| 32 |
-
- Cherry-pick specific demos or subtasks
|
| 33 |
-
3. **Better Debugging**:
|
| 34 |
-
- Inspect problematic frames without extracting archives
|
| 35 |
-
- Verify data quality visually
|
| 36 |
-
- Check action sequences frame-by-frame
|
| 37 |
-
4. **Transparent**: See exact file structure and metadata organization
|
| 38 |
-
5. **Version Control**: Git LFS handles individual files better than large archives
|
| 39 |
|
| 40 |
-
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
|
|
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
import json
|
| 48 |
-
from PIL import Image
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
input_dir: Path to subtask directory (e.g., "libero_10/pick_up_the_black_bowl")
|
| 56 |
-
output_pattern: Output pattern (e.g., "output/shard-%06d.tar")
|
| 57 |
-
maxcount: Max samples per shard (default: 1000 frames per TAR)
|
| 58 |
-
"""
|
| 59 |
-
with wds.ShardWriter(output_pattern, maxcount=maxcount) as sink:
|
| 60 |
-
subtask_path = Path(input_dir)
|
| 61 |
-
|
| 62 |
-
# Iterate through demos
|
| 63 |
-
for demo_dir in sorted(subtask_path.iterdir()):
|
| 64 |
-
if not demo_dir.is_dir():
|
| 65 |
-
continue
|
| 66 |
-
|
| 67 |
-
# Iterate through timesteps
|
| 68 |
-
for json_file in sorted(demo_dir.glob("*.json")):
|
| 69 |
-
png_file = json_file.with_suffix(".png")
|
| 70 |
-
|
| 71 |
-
if not png_file.exists():
|
| 72 |
-
continue
|
| 73 |
-
|
| 74 |
-
# Load data
|
| 75 |
-
with open(json_file) as f:
|
| 76 |
-
data = json.load(f)
|
| 77 |
-
|
| 78 |
-
# Create WebDataset sample
|
| 79 |
-
sample = {
|
| 80 |
-
"__key__": f"{demo_dir.name}/{json_file.stem}",
|
| 81 |
-
"png": Image.open(png_file),
|
| 82 |
-
"json": data,
|
| 83 |
-
"action.pyd": data["action"], # NumPy-compatible format
|
| 84 |
-
"robot_state.pyd": data["robot_state"],
|
| 85 |
-
}
|
| 86 |
-
|
| 87 |
-
sink.write(sample)
|
| 88 |
-
|
| 89 |
-
# Example: Convert a subtask to TAR
|
| 90 |
-
convert_to_tar(
|
| 91 |
-
"libero_10/pick_up_the_black_bowl",
|
| 92 |
-
"tar_output/pick_up_the_black_bowl-%06d.tar"
|
| 93 |
-
)
|
| 94 |
```
|
| 95 |
|
| 96 |
-
### Loading Raw Data
|
| 97 |
|
| 98 |
```python
|
| 99 |
from pathlib import Path
|
|
@@ -102,7 +57,7 @@ from PIL import Image
|
|
| 102 |
import numpy as np
|
| 103 |
|
| 104 |
def load_demo(demo_dir):
|
| 105 |
-
"""Load a single demonstration."""
|
| 106 |
frames = []
|
| 107 |
demo_path = Path(demo_dir)
|
| 108 |
|
|
@@ -119,10 +74,59 @@ def load_demo(demo_dir):
|
|
| 119 |
|
| 120 |
return frames
|
| 121 |
|
| 122 |
-
#
|
| 123 |
-
demo = load_demo("
|
| 124 |
print(f"Demo length: {len(demo)} frames")
|
| 125 |
-
print(f"Action shape: {demo[0]['action']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
```
|
| 127 |
|
| 128 |
## Datasets Included
|
|
@@ -133,12 +137,12 @@ print(f"Action shape: {demo[0]['action'].shape}")
|
|
| 133 |
- **Segmentation Method**: Semantic Action Chunking using Gemini Vision API
|
| 134 |
- **Demos**: 1,354 demonstrations across 29 subtasks
|
| 135 |
- **Frames**: 103,650 total frames
|
| 136 |
-
- **
|
| 137 |
|
| 138 |
**Example Tasks**:
|
| 139 |
-
- `pick_up_the_black_bowl` →
|
| 140 |
-
- `close_the_drawer` →
|
| 141 |
-
- `put_the_bowl_in_the_drawer` → Multi-step pick, open, place, close sequence
|
| 142 |
|
| 143 |
### LIBERO-Object (Object Manipulation)
|
| 144 |
|
|
@@ -146,37 +150,26 @@ print(f"Action shape: {demo[0]['action'].shape}")
|
|
| 146 |
- **Segmentation Method**: Semantic Action Chunking using Gemini Vision API
|
| 147 |
- **Demos**: 875 demonstrations across 20 subtasks
|
| 148 |
- **Frames**: 66,334 total frames
|
| 149 |
-
- **
|
| 150 |
|
| 151 |
**Example Tasks**:
|
| 152 |
-
- `pick_up_the_alphabet_soup` → Approach, grasp, lift
|
| 153 |
-
- `place_the_alphabet_soup_on_the_basket` → Move, position, place, release
|
| 154 |
|
| 155 |
## 📁 Dataset Structure
|
| 156 |
|
| 157 |
```
|
| 158 |
gate-institute/GATE-VLAP-datasets/
|
| 159 |
-
├── libero_10/ # Long-horizon tasks
|
| 160 |
-
│ ├── close_the_drawer
|
| 161 |
-
│
|
| 162 |
-
│
|
| 163 |
-
│
|
| 164 |
-
│ │ │ ├── demo_0_timestep_0001.png
|
| 165 |
-
│ │ │ ├── demo_0_timestep_0001.json
|
| 166 |
-
│ │ │ └── ...
|
| 167 |
-
│ │ ├── demo_1/
|
| 168 |
-
│ │ └── ...
|
| 169 |
-
│ ├── pick_up_the_black_bowl/
|
| 170 |
-
│ └── ... (29 subtasks total)
|
| 171 |
│
|
| 172 |
-
├── libero_object/ # Object manipulation
|
| 173 |
-
│ ├── pick_up_the_alphabet_soup
|
| 174 |
-
│
|
| 175 |
-
│
|
| 176 |
-
│ │ │ ├── demo_0_timestep_0000.json
|
| 177 |
-
│ │ │ └── ...
|
| 178 |
-
│ │ └── ...
|
| 179 |
-
│ └── ... (20 subtasks total)
|
| 180 |
│
|
| 181 |
└── metadata/ # Dataset statistics & segmentation
|
| 182 |
├── libero_10_complete_stats.json
|
|
@@ -185,6 +178,23 @@ gate-institute/GATE-VLAP-datasets/
|
|
| 185 |
└── libero_object_all_segments.json
|
| 186 |
```
|
| 187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
## Data Format
|
| 189 |
|
| 190 |
### JSON Metadata (per timestep)
|
|
@@ -193,13 +203,13 @@ Each `.json` file contains:
|
|
| 193 |
|
| 194 |
```json
|
| 195 |
{
|
| 196 |
-
"action": [0.1, -0.2, 0.0, 0.0, 0.0, 0.0, 1.0], // 7-DOF action
|
| 197 |
-
"robot_state": [...], // Joint
|
| 198 |
"demo_id": "demo_0",
|
| 199 |
"timestep": 42,
|
| 200 |
"subtask": "pick_up_the_black_bowl",
|
| 201 |
"parent_task": "LIBERO_10",
|
| 202 |
-
"is_stop_signal": false // Segment boundary
|
| 203 |
}
|
| 204 |
```
|
| 205 |
|
|
@@ -225,33 +235,7 @@ Each `.json` file contains:
|
|
| 225 |
|
| 226 |
**Purpose**: Overview statistics for the entire LIBERO-10 dataset
|
| 227 |
|
| 228 |
-
|
| 229 |
-
{
|
| 230 |
-
"dataset": "LIBERO-10",
|
| 231 |
-
"total_parent_tasks": 10,
|
| 232 |
-
"total_subtasks": 29,
|
| 233 |
-
"total_demos": 1354,
|
| 234 |
-
"total_frames": 103650,
|
| 235 |
-
"parent_task_mapping": {
|
| 236 |
-
"LIBERO_10": {
|
| 237 |
-
"frames": 103650,
|
| 238 |
-
"demos": 1354,
|
| 239 |
-
"subtasks": ["pick_up_the_black_bowl", "close_the_drawer", ...]
|
| 240 |
-
}
|
| 241 |
-
},
|
| 242 |
-
"subtask_details": {
|
| 243 |
-
"pick_up_the_black_bowl": {
|
| 244 |
-
"demo_count": 48,
|
| 245 |
-
"frame_count": 3516,
|
| 246 |
-
"avg_frames_per_demo": 73.25,
|
| 247 |
-
"parent_task": "LIBERO_10"
|
| 248 |
-
},
|
| 249 |
-
...
|
| 250 |
-
}
|
| 251 |
-
}
|
| 252 |
-
```
|
| 253 |
-
|
| 254 |
-
**Use Case**:
|
| 255 |
- Understand dataset composition
|
| 256 |
- Plan training splits
|
| 257 |
- Check demo/frame distribution across tasks
|
|
@@ -260,36 +244,13 @@ Each `.json` file contains:
|
|
| 260 |
|
| 261 |
**Purpose**: Detailed segmentation metadata for each demonstration
|
| 262 |
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
"segments": [
|
| 269 |
-
{
|
| 270 |
-
"segment_id": 0,
|
| 271 |
-
"start_frame": 0,
|
| 272 |
-
"end_frame": 35,
|
| 273 |
-
"description": "Approach the black bowl",
|
| 274 |
-
"action_type": "reach"
|
| 275 |
-
},
|
| 276 |
-
{
|
| 277 |
-
"segment_id": 1,
|
| 278 |
-
"start_frame": 36,
|
| 279 |
-
"end_frame": 45,
|
| 280 |
-
"description": "Grasp the black bowl",
|
| 281 |
-
"action_type": "grasp"
|
| 282 |
-
},
|
| 283 |
-
...
|
| 284 |
-
],
|
| 285 |
-
"segmentation_method": "gemini_vision_api",
|
| 286 |
-
"total_segments": 3
|
| 287 |
-
},
|
| 288 |
-
...
|
| 289 |
-
}
|
| 290 |
-
```
|
| 291 |
|
| 292 |
-
**Use
|
| 293 |
- Train with semantic action chunks
|
| 294 |
- Implement hierarchical policies
|
| 295 |
- Analyze action primitives
|
|
@@ -297,21 +258,11 @@ Each `.json` file contains:
|
|
| 297 |
|
| 298 |
### 3. `libero_object_complete_stats.json`
|
| 299 |
|
| 300 |
-
**Purpose**: Statistics for LIBERO-Object dataset
|
| 301 |
-
|
| 302 |
-
**Key Differences**:
|
| 303 |
-
- Fewer, simpler subtasks (20 vs 29)
|
| 304 |
-
- Object-centric task naming
|
| 305 |
-
- Rule-based segmentation instead of vision-based
|
| 306 |
|
| 307 |
### 4. `libero_object_all_segments.json`
|
| 308 |
|
| 309 |
-
**Purpose**: Segmentation for LIBERO-Object demonstrations
|
| 310 |
-
|
| 311 |
-
**Segmentation Method**: Rule-based gripper detection
|
| 312 |
-
- Segments identified by gripper state changes
|
| 313 |
-
- Stop signals mark task completion
|
| 314 |
-
- More consistent segment boundaries than vision-based
|
| 315 |
|
| 316 |
## Citation
|
| 317 |
|
|
@@ -320,7 +271,7 @@ If you use this dataset, please cite:
|
|
| 320 |
```bibtex
|
| 321 |
@article{gateVLAP@SAC2026,
|
| 322 |
title={Atomic Action Slicing: Planner-Aligned Options for Generalist VLA Agents},
|
| 323 |
-
author={
|
| 324 |
journal={arXiv preprint arXiv:XXXX.XXXXX},
|
| 325 |
conference={The 41st ACM/SIGAPP Symposium On Applied Computing (SAC2026), track on Intelligent Robotics and Multi-Agent Systems (IRMAS)},
|
| 326 |
year={2025}
|
|
@@ -329,7 +280,7 @@ If you use this dataset, please cite:
|
|
| 329 |
@inproceedings{liu2023libero,
|
| 330 |
title={LIBERO: Benchmarking Knowledge Transfer for Lifelong Robot Learning},
|
| 331 |
author={Liu, Bo and Zhu, Yifeng and Gao, Chongkai and Feng, Yihao and Liu, Qiang and Zhu, Yuke and Stone, Peter},
|
| 332 |
-
booktitle={
|
| 333 |
year={2023}
|
| 334 |
}
|
| 335 |
```
|
|
@@ -338,18 +289,17 @@ If you use this dataset, please cite:
|
|
| 338 |
|
| 339 |
- **Model Checkpoints**: [gate-institute/GATE-VLAP](https://huggingface.co/gate-institute/GATE-VLAP)
|
| 340 |
- **Original LIBERO**: [https://github.com/Lifelong-Robot-Learning/LIBERO](https://github.com/Lifelong-Robot-Learning/LIBERO)
|
| 341 |
-
- **Paper**:
|
| 342 |
-
|
| 343 |
|
| 344 |
## Acknowledgments
|
| 345 |
|
| 346 |
- **LIBERO Benchmark**: Original dataset by Liu et al. (2023)
|
| 347 |
-
- **Segmentation**: Gemini Vision API for
|
| 348 |
-
- **
|
| 349 |
|
| 350 |
## Contact
|
| 351 |
|
| 352 |
-
For questions or issues, please
|
| 353 |
|
| 354 |
---
|
| 355 |
|
|
|
|
| 17 |
|
| 18 |
**Grounded Action Trajectory Embeddings with Vision-Language Action Planning**
|
| 19 |
|
| 20 |
+
This repository contains preprocessed datasets from the LIBERO benchmark suite in WebDataset TAR format, specifically designed for training vision-language-action models with semantic action segmentation.
|
| 21 |
|
| 22 |
+
## Data Format: WebDataset TAR
|
| 23 |
|
| 24 |
+
We provide datasets in **WebDataset TAR format** for optimal performance:
|
| 25 |
|
| 26 |
+
✅ **Fast loading** - Efficient streaming during training
|
| 27 |
+
✅ **Easy downloading** - Single file per subtask
|
| 28 |
+
✅ **HuggingFace optimized** - Quick browsing and file listing
|
| 29 |
+
✅ **Inspectable** - Extract locally to view individual frames
|
| 30 |
|
| 31 |
+
### Extracting TAR Files
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
```bash
|
| 34 |
+
# Download a subtask
|
| 35 |
+
wget https://huggingface.co/datasets/gate-institute/GATE-VLAP-datasets/resolve/main/libero_10/pick_up_the_black_bowl.tar
|
| 36 |
|
| 37 |
+
# Extract all files
|
| 38 |
+
tar -xf pick_up_the_black_bowl.tar
|
| 39 |
|
| 40 |
+
# View structure
|
| 41 |
+
ls
|
| 42 |
+
# Output: demo_0/ demo_1/ demo_2/ ...
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
# View demo contents
|
| 45 |
+
ls demo_0/
|
| 46 |
+
# Output: demo_0_timestep_0000.png demo_0_timestep_0000.json
|
| 47 |
+
# demo_0_timestep_0001.png demo_0_timestep_0001.json
|
| 48 |
+
# ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
```
|
| 50 |
|
| 51 |
+
### Loading Raw Data (After Extraction)
|
| 52 |
|
| 53 |
```python
|
| 54 |
from pathlib import Path
|
|
|
|
| 57 |
import numpy as np
|
| 58 |
|
| 59 |
def load_demo(demo_dir):
|
| 60 |
+
"""Load a single demonstration from extracted TAR."""
|
| 61 |
frames = []
|
| 62 |
demo_path = Path(demo_dir)
|
| 63 |
|
|
|
|
| 74 |
|
| 75 |
return frames
|
| 76 |
|
| 77 |
+
# After extracting pick_up_the_black_bowl.tar
|
| 78 |
+
demo = load_demo("demo_0")
|
| 79 |
print(f"Demo length: {len(demo)} frames")
|
| 80 |
+
print(f"Action shape: {demo[0]['action']}")
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
### Loading with WebDataset (Direct Streaming)
|
| 84 |
+
|
| 85 |
+
```python
|
| 86 |
+
import webdataset as wds
|
| 87 |
+
from PIL import Image
|
| 88 |
+
import json
|
| 89 |
+
|
| 90 |
+
# Stream data directly from HuggingFace (no download needed!)
|
| 91 |
+
url = "https://huggingface.co/datasets/gate-institute/GATE-VLAP-datasets/resolve/main/libero_10/pick_up_the_black_bowl.tar"
|
| 92 |
+
|
| 93 |
+
dataset = wds.WebDataset(url).decode("rgb")
|
| 94 |
+
|
| 95 |
+
for sample in dataset:
|
| 96 |
+
# sample["png"] = PIL Image (128x128 RGB)
|
| 97 |
+
# sample["json"] = bytes (JSON metadata)
|
| 98 |
+
metadata = json.loads(sample["json"])
|
| 99 |
+
image = sample["png"]
|
| 100 |
+
|
| 101 |
+
print(f"Action: {metadata['action']}")
|
| 102 |
+
print(f"Image shape: {np.array(image).shape}")
|
| 103 |
+
break
|
| 104 |
+
```
|
| 105 |
+
|
| 106 |
+
### Training with Multiple Subtasks
|
| 107 |
+
|
| 108 |
+
```python
|
| 109 |
+
import webdataset as wds
|
| 110 |
+
import torch
|
| 111 |
+
from torch.utils.data import DataLoader
|
| 112 |
+
|
| 113 |
+
# Load multiple subtasks at once
|
| 114 |
+
base_url = "https://huggingface.co/datasets/gate-institute/GATE-VLAP-datasets/resolve/main/libero_10/"
|
| 115 |
+
subtasks = ["pick_up_the_black_bowl", "close_the_drawer", "open_the_top_drawer"]
|
| 116 |
+
urls = [f"{base_url}{task}.tar" for task in subtasks]
|
| 117 |
+
|
| 118 |
+
dataset = (
|
| 119 |
+
wds.WebDataset(urls)
|
| 120 |
+
.decode("rgb")
|
| 121 |
+
.to_tuple("png", "json")
|
| 122 |
+
.map(preprocess_fn) # Your preprocessing function
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
dataloader = DataLoader(dataset, batch_size=32, num_workers=4)
|
| 126 |
+
|
| 127 |
+
for images, actions in dataloader:
|
| 128 |
+
# Train your model
|
| 129 |
+
pass
|
| 130 |
```
|
| 131 |
|
| 132 |
## Datasets Included
|
|
|
|
| 137 |
- **Segmentation Method**: Semantic Action Chunking using Gemini Vision API
|
| 138 |
- **Demos**: 1,354 demonstrations across 29 subtasks
|
| 139 |
- **Frames**: 103,650 total frames
|
| 140 |
+
- **TAR Files**: 29 files (one per subtask)
|
| 141 |
|
| 142 |
**Example Tasks**:
|
| 143 |
+
- `pick_up_the_black_bowl.tar` → Pick and place subtasks
|
| 144 |
+
- `close_the_drawer.tar` → Approach, grasp, close subtasks
|
| 145 |
+
- `put_the_bowl_in_the_drawer.tar` → Multi-step pick, open, place, close sequence
|
| 146 |
|
| 147 |
### LIBERO-Object (Object Manipulation)
|
| 148 |
|
|
|
|
| 150 |
- **Segmentation Method**: Semantic Action Chunking using Gemini Vision API
|
| 151 |
- **Demos**: 875 demonstrations across 20 subtasks
|
| 152 |
- **Frames**: 66,334 total frames
|
| 153 |
+
- **TAR Files**: 20 files (one per subtask)
|
| 154 |
|
| 155 |
**Example Tasks**:
|
| 156 |
+
- `pick_up_the_alphabet_soup.tar` → Approach, grasp, lift
|
| 157 |
+
- `place_the_alphabet_soup_on_the_basket.tar` → Move, position, place, release
|
| 158 |
|
| 159 |
## 📁 Dataset Structure
|
| 160 |
|
| 161 |
```
|
| 162 |
gate-institute/GATE-VLAP-datasets/
|
| 163 |
+
├── libero_10/ # Long-horizon tasks (29 TAR files)
|
| 164 |
+
│ ├── close_the_drawer.tar
|
| 165 |
+
│ ├── pick_up_the_black_bowl.tar
|
| 166 |
+
│ ├── open_the_top_drawer.tar
|
| 167 |
+
│ └── ... (26 more)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
│
|
| 169 |
+
├── libero_object/ # Object manipulation (20 TAR files)
|
| 170 |
+
│ ├── pick_up_the_alphabet_soup.tar
|
| 171 |
+
│ ├── place_the_alphabet_soup_on_the_basket.tar
|
| 172 |
+
│ └── ... (18 more)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
│
|
| 174 |
└── metadata/ # Dataset statistics & segmentation
|
| 175 |
├── libero_10_complete_stats.json
|
|
|
|
| 178 |
└── libero_object_all_segments.json
|
| 179 |
```
|
| 180 |
|
| 181 |
+
### Inside Each TAR File
|
| 182 |
+
|
| 183 |
+
After extracting `pick_up_the_black_bowl.tar`:
|
| 184 |
+
|
| 185 |
+
```
|
| 186 |
+
pick_up_the_black_bowl/
|
| 187 |
+
├── demo_0/
|
| 188 |
+
│ ├── demo_0_timestep_0000.png # RGB observation (128×128)
|
| 189 |
+
│ ├── demo_0_timestep_0000.json # Action + metadata
|
| 190 |
+
│ ├── demo_0_timestep_0001.png
|
| 191 |
+
│ ├── demo_0_timestep_0001.json
|
| 192 |
+
│ └── ...
|
| 193 |
+
├── demo_1/
|
| 194 |
+
│ └── ...
|
| 195 |
+
└── ... (all demos for this subtask)
|
| 196 |
+
```
|
| 197 |
+
|
| 198 |
## Data Format
|
| 199 |
|
| 200 |
### JSON Metadata (per timestep)
|
|
|
|
| 203 |
|
| 204 |
```json
|
| 205 |
{
|
| 206 |
+
"action": [0.1, -0.2, 0.0, 0.0, 0.0, 0.0, 1.0], // 7-DOF action
|
| 207 |
+
"robot_state": [...], // Joint state
|
| 208 |
"demo_id": "demo_0",
|
| 209 |
"timestep": 42,
|
| 210 |
"subtask": "pick_up_the_black_bowl",
|
| 211 |
"parent_task": "LIBERO_10",
|
| 212 |
+
"is_stop_signal": false // Segment boundary
|
| 213 |
}
|
| 214 |
```
|
| 215 |
|
|
|
|
| 235 |
|
| 236 |
**Purpose**: Overview statistics for the entire LIBERO-10 dataset
|
| 237 |
|
| 238 |
+
**Use Cases**:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
- Understand dataset composition
|
| 240 |
- Plan training splits
|
| 241 |
- Check demo/frame distribution across tasks
|
|
|
|
| 244 |
|
| 245 |
**Purpose**: Detailed segmentation metadata for each demonstration
|
| 246 |
|
| 247 |
+
Contains semantic action chunks with:
|
| 248 |
+
- Segment boundaries (start/end frames)
|
| 249 |
+
- Action descriptions
|
| 250 |
+
- Segment types (reach, grasp, move, place, etc.)
|
| 251 |
+
- Gemini Vision API segmentation method
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
|
| 253 |
+
**Use Cases**:
|
| 254 |
- Train with semantic action chunks
|
| 255 |
- Implement hierarchical policies
|
| 256 |
- Analyze action primitives
|
|
|
|
| 258 |
|
| 259 |
### 3. `libero_object_complete_stats.json`
|
| 260 |
|
| 261 |
+
**Purpose**: Statistics for LIBERO-Object dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
|
| 263 |
### 4. `libero_object_all_segments.json`
|
| 264 |
|
| 265 |
+
**Purpose**: Segmentation for LIBERO-Object demonstrations with semantic action chunking
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
|
| 267 |
## Citation
|
| 268 |
|
|
|
|
| 271 |
```bibtex
|
| 272 |
@article{gateVLAP@SAC2026,
|
| 273 |
title={Atomic Action Slicing: Planner-Aligned Options for Generalist VLA Agents},
|
| 274 |
+
author={Tabakov, Stefan and Popov, Asen and Dimitrov, Dimitar and Kiyamousavi, Ensiye and Kraychev, Boris},
|
| 275 |
journal={arXiv preprint arXiv:XXXX.XXXXX},
|
| 276 |
conference={The 41st ACM/SIGAPP Symposium On Applied Computing (SAC2026), track on Intelligent Robotics and Multi-Agent Systems (IRMAS)},
|
| 277 |
year={2025}
|
|
|
|
| 280 |
@inproceedings{liu2023libero,
|
| 281 |
title={LIBERO: Benchmarking Knowledge Transfer for Lifelong Robot Learning},
|
| 282 |
author={Liu, Bo and Zhu, Yifeng and Gao, Chongkai and Feng, Yihao and Liu, Qiang and Zhu, Yuke and Stone, Peter},
|
| 283 |
+
booktitle={NeurIPS Datasets and Benchmarks Track},
|
| 284 |
year={2023}
|
| 285 |
}
|
| 286 |
```
|
|
|
|
| 289 |
|
| 290 |
- **Model Checkpoints**: [gate-institute/GATE-VLAP](https://huggingface.co/gate-institute/GATE-VLAP)
|
| 291 |
- **Original LIBERO**: [https://github.com/Lifelong-Robot-Learning/LIBERO](https://github.com/Lifelong-Robot-Learning/LIBERO)
|
| 292 |
+
- **Paper**: Coming soon
|
|
|
|
| 293 |
|
| 294 |
## Acknowledgments
|
| 295 |
|
| 296 |
- **LIBERO Benchmark**: Original dataset by Liu et al. (2023)
|
| 297 |
+
- **Segmentation**: Gemini Vision API for semantic action chunking
|
| 298 |
+
- **Institution**: GATE Institute, Sofia, Bulgaria
|
| 299 |
|
| 300 |
## Contact
|
| 301 |
|
| 302 |
+
For questions or issues, please contact the GATE Institute.
|
| 303 |
|
| 304 |
---
|
| 305 |
|