Add dataset files
Browse files- README.md +3 -0
- data/label.txt +7 -0
- data/test.tsv +0 -0
- data/train.tsv +0 -0
- data/valid.tsv +0 -0
- klue-tc-dev-tsv.py +55 -0
README.md
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
This is a in-house development version of KLUE Topic Classification benchmark, as the test split is not released by the KLUE team.
|
| 2 |
+
|
| 3 |
+
We randomly split the original validation set (9,107 instances) into in-house validation set (5,107 instances) and the in-house test set (4,000 instances).
|
data/label.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
정치
|
| 2 |
+
세계
|
| 3 |
+
IT과학
|
| 4 |
+
스포츠
|
| 5 |
+
사회
|
| 6 |
+
경제
|
| 7 |
+
생활문화
|
data/test.tsv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
data/train.tsv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
data/valid.tsv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
klue-tc-dev-tsv.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import absolute_import, division, print_function
|
| 2 |
+
import datasets
|
| 3 |
+
_URL = "data/"
|
| 4 |
+
_URLs = {
|
| 5 |
+
"train": _URL + "train.tsv",
|
| 6 |
+
"valid": _URL + "valid.tsv",
|
| 7 |
+
"test": _URL + "test.tsv",
|
| 8 |
+
}
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class KlueTC(datasets.GeneratorBasedBuilder):
|
| 12 |
+
|
| 13 |
+
def _info(self):
|
| 14 |
+
return datasets.DatasetInfo(
|
| 15 |
+
description="KLUE Topic Classification (Dev Split)",
|
| 16 |
+
features=datasets.Features(
|
| 17 |
+
{
|
| 18 |
+
"text": datasets.Value("string"),
|
| 19 |
+
"label": datasets.features.ClassLabel(names=['정치', '세계', 'IT과학', '스포츠', '사회', '경제', '생활문화']),
|
| 20 |
+
}
|
| 21 |
+
),
|
| 22 |
+
supervised_keys=None,
|
| 23 |
+
license="",
|
| 24 |
+
homepage="",
|
| 25 |
+
citation="",
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
def _split_generators(self, dl_manager):
|
| 29 |
+
downloaded_files = dl_manager.download_and_extract(_URLs)
|
| 30 |
+
return [
|
| 31 |
+
datasets.SplitGenerator(
|
| 32 |
+
name=datasets.Split.TRAIN,
|
| 33 |
+
gen_kwargs={
|
| 34 |
+
"filepath": downloaded_files["train"],
|
| 35 |
+
}
|
| 36 |
+
),
|
| 37 |
+
datasets.SplitGenerator(
|
| 38 |
+
name=datasets.Split.VALIDATION,
|
| 39 |
+
gen_kwargs={
|
| 40 |
+
"filepath": downloaded_files["valid"],
|
| 41 |
+
}
|
| 42 |
+
),
|
| 43 |
+
datasets.SplitGenerator(
|
| 44 |
+
name=datasets.Split.TEST,
|
| 45 |
+
gen_kwargs={
|
| 46 |
+
"filepath": downloaded_files["test"],
|
| 47 |
+
}
|
| 48 |
+
),
|
| 49 |
+
]
|
| 50 |
+
|
| 51 |
+
def _generate_examples(self, filepath):
|
| 52 |
+
with open(filepath, "r", encoding='UTF-8') as f:
|
| 53 |
+
for idx, line in enumerate(f):
|
| 54 |
+
text, label = line.split("\t")
|
| 55 |
+
yield idx, {"text": text.strip(), "label": label.strip()}
|