--- library_name: pytorch tags: - robotics - libero - vision-language-action - imitation-learning - manipulation datasets: - gate-institute/GATE-VLAP-datasets --- # GATE-VLAP: Grounded Action Trajectory Embeddings with Vision-Language Action Planning **Trained on LIBERO-10 Benchmark** This model is trained for robotic manipulation tasks using vision-language-action learning with semantic action chunking. ## Model Details - **Architecture**: CLIP-RT (CLIP-based Robot Transformer) - **Training Dataset**: [GATE-VLAP LIBERO-10](https://huggingface.co/datasets/gate-institute/GATE-VLAP-datasets) - **Training Epochs**: 90 - **Task Type**: Long-horizon robotic manipulation - **Input**: RGB images (128×128) + language instructions - **Output**: 7-DOF actions (xyz, rpy, gripper) ## Training Details - **Dataset**: LIBERO-10 (29 subtasks, 1,354 demonstrations) - **Segmentation**: Semantic action chunking using Gemini Vision API - **Framework**: PyTorch - **Checkpoint**: Epoch 90 (best_epoch) ## Performance Training run: `libero_10_fixed_training_v1` *Overall performance accuracy: 88.8 % task success rate => 5 % better than raw CLIP-RT on LIBERO-LONG* ## Dataset This model was trained on the [GATE-VLAP Datasets](https://huggingface.co/datasets/gate-institute/GATE-VLAP-datasets), which includes: - LIBERO-10: 103,650 frames across 29 subtasks - Semantic action segmentation - Vision-language annotations ## Citation ```bibtex @article{gateVLAP@SAC2026, title={Atomic Action Slicing: Planner-Aligned Options for Generalist VLA Agents}, author={Stefan Tabakov, Asen Popov, Dimitar Dimitrov, Ensiye Kiyamousavi and Boris Kraychev}, journal={arXiv preprint arXiv:XXXX.XXXXX}, conference={The 41st ACM/SIGAPP Symposium On Applied Computing (SAC2026), track on Intelligent Robotics and Multi-Agent Systems (IRMAS)}, year={2025} } ``` ## Maintainer [**GATE Institute**](https://www.gate-ai.eu/en/home/) - Advanced AI Research Group, Sofia, Bulgaria ## Links - 🤗 **Dataset**: [gate-institute/GATE-VLAP-datasets](https://huggingface.co/datasets/gate-institute/GATE-VLAP-datasets) - 📄 **Paper**: *Coming soon* - 💻 **Code**: *Coming soon*