merve HF Staff ZhengPeng7 commited on
Commit
74c1fc0
·
verified ·
0 Parent(s):

Duplicate from ZhengPeng7/BiRefNet

Browse files

Co-authored-by: Peng Zheng <ZhengPeng7@users.noreply.huggingface.co>

Files changed (9) hide show
  1. .gitattributes +35 -0
  2. .gitignore +142 -0
  3. BiRefNet_config.py +11 -0
  4. README.md +226 -0
  5. birefnet.py +2246 -0
  6. config.json +20 -0
  7. handler.py +139 -0
  8. model.safetensors +3 -0
  9. requirements.txt +16 -0
.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Custom
2
+ e_*
3
+ .vscode
4
+ ckpt
5
+ preds
6
+ evaluation/eval-*
7
+ nohup.out*
8
+ tmp*
9
+ *.pth
10
+ core-*-python-*
11
+ .DS_Store
12
+ __MACOSX/
13
+
14
+ # Byte-compiled / optimized / DLL files
15
+ __pycache__/
16
+ *.py[cod]
17
+ *$py.class
18
+
19
+ # C extensions
20
+ *.so
21
+
22
+ # Distribution / packaging
23
+ .Python
24
+ build/
25
+ develop-eggs/
26
+ dist/
27
+ downloads/
28
+ eggs/
29
+ .eggs/
30
+ lib/
31
+ lib64/
32
+ parts/
33
+ sdist/
34
+ var/
35
+ wheels/
36
+ pip-wheel-metadata/
37
+ share/python-wheels/
38
+ *.egg-info/
39
+ .installed.cfg
40
+ *.egg
41
+ MANIFEST
42
+
43
+ # PyInstaller
44
+ # Usually these files are written by a python script from a template
45
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
46
+ *.manifest
47
+ *.spec
48
+
49
+ # Installer logs
50
+ pip-log.txt
51
+ pip-delete-this-directory.txt
52
+
53
+ # Unit test / coverage reports
54
+ htmlcov/
55
+ .tox/
56
+ .nox/
57
+ .coverage
58
+ .coverage.*
59
+ .cache
60
+ nosetests.xml
61
+ coverage.xml
62
+ *.cover
63
+ *.py,cover
64
+ .hypothesis/
65
+ .pytest_cache/
66
+
67
+ # Translations
68
+ *.mo
69
+ *.pot
70
+
71
+ # Django stuff:
72
+ *.log
73
+ local_settings.py
74
+ db.sqlite3
75
+ db.sqlite3-journal
76
+
77
+ # Flask stuff:
78
+ instance/
79
+ .webassets-cache
80
+
81
+ # Scrapy stuff:
82
+ .scrapy
83
+
84
+ # Sphinx documentation
85
+ docs/_build/
86
+
87
+ # PyBuilder
88
+ target/
89
+
90
+ # Jupyter Notebook
91
+ .ipynb_checkpoints
92
+
93
+ # IPython
94
+ profile_default/
95
+ ipython_config.py
96
+
97
+ # pyenv
98
+ .python-version
99
+
100
+ # pipenv
101
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
102
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
103
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
104
+ # install all needed dependencies.
105
+ #Pipfile.lock
106
+
107
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow
108
+ __pypackages__/
109
+
110
+ # Celery stuff
111
+ celerybeat-schedule
112
+ celerybeat.pid
113
+
114
+ # SageMath parsed files
115
+ *.sage.py
116
+
117
+ # Environments
118
+ .env
119
+ .venv
120
+ env/
121
+ venv/
122
+ ENV/
123
+ env.bak/
124
+ venv.bak/
125
+
126
+ # Spyder project settings
127
+ .spyderproject
128
+ .spyproject
129
+
130
+ # Rope project settings
131
+ .ropeproject
132
+
133
+ # mkdocs documentation
134
+ /site
135
+
136
+ # mypy
137
+ .mypy_cache/
138
+ .dmypy.json
139
+ dmypy.json
140
+
141
+ # Pyre type checker
142
+ .pyre/
BiRefNet_config.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+ class BiRefNetConfig(PretrainedConfig):
4
+ model_type = "SegformerForSemanticSegmentation"
5
+ def __init__(
6
+ self,
7
+ bb_pretrained=False,
8
+ **kwargs
9
+ ):
10
+ self.bb_pretrained = bb_pretrained
11
+ super().__init__(**kwargs)
README.md ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: birefnet
3
+ tags:
4
+ - background-removal
5
+ - mask-generation
6
+ - Dichotomous Image Segmentation
7
+ - Camouflaged Object Detection
8
+ - Salient Object Detection
9
+ - pytorch_model_hub_mixin
10
+ - model_hub_mixin
11
+ - transformers
12
+ repo_url: https://github.com/ZhengPeng7/BiRefNet
13
+ pipeline_tag: image-segmentation
14
+ license: mit
15
+ ---
16
+ <h1 align="center">Bilateral Reference for High-Resolution Dichotomous Image Segmentation</h1>
17
+
18
+ <div align='center'>
19
+ <a href='https://scholar.google.com/citations?user=TZRzWOsAAAAJ' target='_blank'><strong>Peng Zheng</strong></a><sup> 1,4,5,6</sup>,&thinsp;
20
+ <a href='https://scholar.google.com/citations?user=0uPb8MMAAAAJ' target='_blank'><strong>Dehong Gao</strong></a><sup> 2</sup>,&thinsp;
21
+ <a href='https://scholar.google.com/citations?user=kakwJ5QAAAAJ' target='_blank'><strong>Deng-Ping Fan</strong></a><sup> 1*</sup>,&thinsp;
22
+ <a href='https://scholar.google.com/citations?user=9cMQrVsAAAAJ' target='_blank'><strong>Li Liu</strong></a><sup> 3</sup>,&thinsp;
23
+ <a href='https://scholar.google.com/citations?user=qQP6WXIAAAAJ' target='_blank'><strong>Jorma Laaksonen</strong></a><sup> 4</sup>,&thinsp;
24
+ <a href='https://scholar.google.com/citations?user=pw_0Z_UAAAAJ' target='_blank'><strong>Wanli Ouyang</strong></a><sup> 5</sup>,&thinsp;
25
+ <a href='https://scholar.google.com/citations?user=stFCYOAAAAAJ' target='_blank'><strong>Nicu Sebe</strong></a><sup> 6</sup>
26
+ </div>
27
+
28
+ <div align='center'>
29
+ <sup>1 </sup>Nankai University&ensp; <sup>2 </sup>Northwestern Polytechnical University&ensp; <sup>3 </sup>National University of Defense Technology&ensp; <sup>4 </sup>Aalto University&ensp; <sup>5 </sup>Shanghai AI Laboratory&ensp; <sup>6 </sup>University of Trento&ensp;
30
+ </div>
31
+
32
+ <div align="center" style="display: flex; justify-content: center; flex-wrap: wrap;">
33
+ <a href='https://www.sciopen.com/article/pdf/10.26599/AIR.2024.9150038.pdf'><img src='https://img.shields.io/badge/Journal-Paper-red'></a>&ensp;
34
+ <a href='https://arxiv.org/pdf/2401.03407'><img src='https://img.shields.io/badge/arXiv-BiRefNet-red'></a>&ensp;
35
+ <a href='https://drive.google.com/file/d/1aBnJ_R9lbnC2dm8dqD0-pzP2Cu-U1Xpt/view?usp=drive_link'><img src='https://img.shields.io/badge/中文版-BiRefNet-red'></a>&ensp;
36
+ <a href='https://www.birefnet.top'><img src='https://img.shields.io/badge/Page-BiRefNet-red'></a>&ensp;
37
+ <a href='https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM'><img src='https://img.shields.io/badge/Drive-Stuff-green'></a>&ensp;
38
+ <a href='LICENSE'><img src='https://img.shields.io/badge/License-MIT-yellow'></a>&ensp;
39
+ <a href='https://huggingface.co/spaces/ZhengPeng7/BiRefNet_demo'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Spaces-BiRefNet-blue'></a>&ensp;
40
+ <a href='https://huggingface.co/ZhengPeng7/BiRefNet'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Models-BiRefNet-blue'></a>&ensp;
41
+ <a href='https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link'><img src='https://img.shields.io/badge/Single_Image_Inference-F9AB00?style=for-the-badge&logo=googlecolab&color=525252'></a>&ensp;
42
+ <a href='https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S'><img src='https://img.shields.io/badge/Inference_&_Evaluation-F9AB00?style=for-the-badge&logo=googlecolab&color=525252'></a>&ensp;
43
+ </div>
44
+
45
+
46
+ | *DIS-Sample_1* | *DIS-Sample_2* |
47
+ | :------------------------------: | :-------------------------------: |
48
+ | <img src="https://drive.google.com/thumbnail?id=1ItXaA26iYnE8XQ_GgNLy71MOWePoS2-g&sz=w400" /> | <img src="https://drive.google.com/thumbnail?id=1Z-esCujQF_uEa_YJjkibc3NUrW4aR_d4&sz=w400" /> |
49
+
50
+ This repo is the official implementation of "[**Bilateral Reference for High-Resolution Dichotomous Image Segmentation**](https://arxiv.org/pdf/2401.03407.pdf)" (___CAAI AIR 2024___).
51
+
52
+ Visit our GitHub repo: [https://github.com/ZhengPeng7/BiRefNet](https://github.com/ZhengPeng7/BiRefNet) for more details -- **codes**, **docs**, and **model zoo**!
53
+
54
+ ## How to use
55
+
56
+ ### 0. Install Packages:
57
+ ```
58
+ pip install -qr https://raw.githubusercontent.com/ZhengPeng7/BiRefNet/main/requirements.txt
59
+ ```
60
+
61
+ ### 1. Load BiRefNet:
62
+
63
+ #### Use codes + weights from HuggingFace
64
+ > Only use the weights on HuggingFace -- Pro: No need to download BiRefNet codes manually; Con: Codes on HuggingFace might not be latest version (I'll try to keep them always latest).
65
+
66
+ ```python
67
+ # Load BiRefNet with weights
68
+ from transformers import AutoModelForImageSegmentation
69
+ birefnet = AutoModelForImageSegmentation.from_pretrained('ZhengPeng7/BiRefNet', trust_remote_code=True)
70
+ ```
71
+
72
+ #### Use codes from GitHub + weights from HuggingFace
73
+ > Only use the weights on HuggingFace -- Pro: codes are always latest; Con: Need to clone the BiRefNet repo from my GitHub.
74
+
75
+ ```shell
76
+ # Download codes
77
+ git clone https://github.com/ZhengPeng7/BiRefNet.git
78
+ cd BiRefNet
79
+ ```
80
+
81
+ ```python
82
+ # Use codes locally
83
+ from models.birefnet import BiRefNet
84
+
85
+ # Load weights from Hugging Face Models
86
+ birefnet = BiRefNet.from_pretrained('ZhengPeng7/BiRefNet')
87
+ ```
88
+
89
+ #### Use codes from GitHub + weights from local space
90
+ > Only use the weights and codes both locally.
91
+
92
+ ```python
93
+ # Use codes and weights locally
94
+ import torch
95
+ from utils import check_state_dict
96
+
97
+ birefnet = BiRefNet(bb_pretrained=False)
98
+ state_dict = torch.load(PATH_TO_WEIGHT, map_location='cpu')
99
+ state_dict = check_state_dict(state_dict)
100
+ birefnet.load_state_dict(state_dict)
101
+ ```
102
+
103
+ #### Use the loaded BiRefNet for inference
104
+ ```python
105
+ # Imports
106
+ from PIL import Image
107
+ import matplotlib.pyplot as plt
108
+ import torch
109
+ from torchvision import transforms
110
+ from models.birefnet import BiRefNet
111
+
112
+ birefnet = ... # -- BiRefNet should be loaded with codes above, either way.
113
+ torch.set_float32_matmul_precision(['high', 'highest'][0])
114
+ birefnet.to('cuda')
115
+ birefnet.eval()
116
+ birefnet.half()
117
+
118
+ def extract_object(birefnet, imagepath):
119
+ # Data settings
120
+ image_size = (1024, 1024)
121
+ transform_image = transforms.Compose([
122
+ transforms.Resize(image_size),
123
+ transforms.ToTensor(),
124
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
125
+ ])
126
+
127
+ image = Image.open(imagepath)
128
+ input_images = transform_image(image).unsqueeze(0).to('cuda').half()
129
+
130
+ # Prediction
131
+ with torch.no_grad():
132
+ preds = birefnet(input_images)[-1].sigmoid().cpu()
133
+ pred = preds[0].squeeze()
134
+ pred_pil = transforms.ToPILImage()(pred)
135
+ mask = pred_pil.resize(image.size)
136
+ image.putalpha(mask)
137
+ return image, mask
138
+
139
+ # Visualization
140
+ plt.axis("off")
141
+ plt.imshow(extract_object(birefnet, imagepath='PATH-TO-YOUR_IMAGE.jpg')[0])
142
+ plt.show()
143
+
144
+ ```
145
+
146
+ ### 2. Use inference endpoint locally:
147
+ > You may need to click the *deploy* and set up the endpoint by yourself, which would make some costs.
148
+ ```
149
+ import requests
150
+ import base64
151
+ from io import BytesIO
152
+ from PIL import Image
153
+
154
+
155
+ YOUR_HF_TOKEN = 'xxx'
156
+ API_URL = "xxx"
157
+ headers = {
158
+ "Authorization": "Bearer {}".format(YOUR_HF_TOKEN)
159
+ }
160
+
161
+ def base64_to_bytes(base64_string):
162
+ # Remove the data URI prefix if present
163
+ if "data:image" in base64_string:
164
+ base64_string = base64_string.split(",")[1]
165
+
166
+ # Decode the Base64 string into bytes
167
+ image_bytes = base64.b64decode(base64_string)
168
+ return image_bytes
169
+
170
+ def bytes_to_base64(image_bytes):
171
+ # Create a BytesIO object to handle the image data
172
+ image_stream = BytesIO(image_bytes)
173
+
174
+ # Open the image using Pillow (PIL)
175
+ image = Image.open(image_stream)
176
+ return image
177
+
178
+ def query(payload):
179
+ response = requests.post(API_URL, headers=headers, json=payload)
180
+ return response.json()
181
+
182
+ output = query({
183
+ "inputs": "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg",
184
+ "parameters": {}
185
+ })
186
+
187
+ output_image = bytes_to_base64(base64_to_bytes(output))
188
+ output_image
189
+ ```
190
+
191
+
192
+ > This BiRefNet for standard dichotomous image segmentation (DIS) is trained on **DIS-TR** and validated on **DIS-TEs and DIS-VD**.
193
+
194
+ ## This repo holds the official model weights of "[<ins>Bilateral Reference for High-Resolution Dichotomous Image Segmentation</ins>](https://arxiv.org/pdf/2401.03407)" (_CAAI AIR 2024_).
195
+
196
+ This repo contains the weights of BiRefNet proposed in our paper, which has achieved the SOTA performance on three tasks (DIS, HRSOD, and COD).
197
+
198
+ Go to my GitHub page for BiRefNet codes and the latest updates: https://github.com/ZhengPeng7/BiRefNet :)
199
+
200
+
201
+ #### Try our online demos for inference:
202
+
203
+ + Online **Image Inference** on Colab: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link)
204
+ + **Online Inference with GUI on Hugging Face** with adjustable resolutions: [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/ZhengPeng7/BiRefNet_demo)
205
+ + **Inference and evaluation** of your given weights: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S)
206
+ <img src="https://drive.google.com/thumbnail?id=12XmDhKtO1o2fEvBu4OE4ULVB2BK0ecWi&sz=w1080" />
207
+
208
+ ## Acknowledgement:
209
+
210
+ + Many thanks to @Freepik for their generous support on GPU resources for training higher resolution BiRefNet models and more of my explorations.
211
+ + Many thanks to @fal for their generous support on GPU resources for training better general BiRefNet models.
212
+ + Many thanks to @not-lain for his help on the better deployment of our BiRefNet model on HuggingFace.
213
+
214
+
215
+ ## Citation
216
+
217
+ ```
218
+ @article{zheng2024birefnet,
219
+ title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation},
220
+ author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu},
221
+ journal={CAAI Artificial Intelligence Research},
222
+ volume = {3},
223
+ pages = {9150038},
224
+ year={2024}
225
+ }
226
+ ```
birefnet.py ADDED
@@ -0,0 +1,2246 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### config.py
2
+
3
+ import os
4
+ import math
5
+ from transformers import PretrainedConfig
6
+
7
+
8
+ class Config(PretrainedConfig):
9
+ def __init__(self) -> None:
10
+ # Compatible with the latest version of transformers
11
+ super().__init__()
12
+
13
+ # PATH settings
14
+ self.sys_home_dir = os.path.expanduser('~') # Make up your file system as: SYS_HOME_DIR/codes/dis/BiRefNet, SYS_HOME_DIR/datasets/dis/xx, SYS_HOME_DIR/weights/xx
15
+
16
+ # TASK settings
17
+ self.task = ['DIS5K', 'COD', 'HRSOD', 'DIS5K+HRSOD+HRS10K', 'P3M-10k'][0]
18
+ self.training_set = {
19
+ 'DIS5K': ['DIS-TR', 'DIS-TR+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'][0],
20
+ 'COD': 'TR-COD10K+TR-CAMO',
21
+ 'HRSOD': ['TR-DUTS', 'TR-HRSOD', 'TR-UHRSD', 'TR-DUTS+TR-HRSOD', 'TR-DUTS+TR-UHRSD', 'TR-HRSOD+TR-UHRSD', 'TR-DUTS+TR-HRSOD+TR-UHRSD'][5],
22
+ 'DIS5K+HRSOD+HRS10K': 'DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4+DIS-TR+TE-HRS10K+TE-HRSOD+TE-UHRSD+TR-HRS10K+TR-HRSOD+TR-UHRSD', # leave DIS-VD for evaluation.
23
+ 'P3M-10k': 'TR-P3M-10k',
24
+ }[self.task]
25
+ self.prompt4loc = ['dense', 'sparse'][0]
26
+
27
+ # Faster-Training settings
28
+ self.load_all = True
29
+ self.compile = True # 1. Trigger CPU memory leak in some extend, which is an inherent problem of PyTorch.
30
+ # Machines with > 70GB CPU memory can run the whole training on DIS5K with default setting.
31
+ # 2. Higher PyTorch version may fix it: https://github.com/pytorch/pytorch/issues/119607.
32
+ # 3. But compile in Pytorch > 2.0.1 seems to bring no acceleration for training.
33
+ self.precisionHigh = True
34
+
35
+ # MODEL settings
36
+ self.ms_supervision = True
37
+ self.out_ref = self.ms_supervision and True
38
+ self.dec_ipt = True
39
+ self.dec_ipt_split = True
40
+ self.cxt_num = [0, 3][1] # multi-scale skip connections from encoder
41
+ self.mul_scl_ipt = ['', 'add', 'cat'][2]
42
+ self.dec_att = ['', 'ASPP', 'ASPPDeformable'][2]
43
+ self.squeeze_block = ['', 'BasicDecBlk_x1', 'ResBlk_x4', 'ASPP_x3', 'ASPPDeformable_x3'][1]
44
+ self.dec_blk = ['BasicDecBlk', 'ResBlk', 'HierarAttDecBlk'][0]
45
+
46
+ # TRAINING settings
47
+ self.batch_size = 4
48
+ self.IoU_finetune_last_epochs = [
49
+ 0,
50
+ {
51
+ 'DIS5K': -50,
52
+ 'COD': -20,
53
+ 'HRSOD': -20,
54
+ 'DIS5K+HRSOD+HRS10K': -20,
55
+ 'P3M-10k': -20,
56
+ }[self.task]
57
+ ][1] # choose 0 to skip
58
+ self.lr = (1e-4 if 'DIS5K' in self.task else 1e-5) * math.sqrt(self.batch_size / 4) # DIS needs high lr to converge faster. Adapt the lr linearly
59
+ self.size = 1024
60
+ self.num_workers = max(4, self.batch_size) # will be decrease to min(it, batch_size) at the initialization of the data_loader
61
+
62
+ # Backbone settings
63
+ self.bb = [
64
+ 'vgg16', 'vgg16bn', 'resnet50', # 0, 1, 2
65
+ 'swin_v1_t', 'swin_v1_s', # 3, 4
66
+ 'swin_v1_b', 'swin_v1_l', # 5-bs9, 6-bs4
67
+ 'pvt_v2_b0', 'pvt_v2_b1', # 7, 8
68
+ 'pvt_v2_b2', 'pvt_v2_b5', # 9-bs10, 10-bs5
69
+ ][6]
70
+ self.lateral_channels_in_collection = {
71
+ 'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
72
+ 'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
73
+ 'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
74
+ 'swin_v1_t': [768, 384, 192, 96], 'swin_v1_s': [768, 384, 192, 96],
75
+ 'pvt_v2_b0': [256, 160, 64, 32], 'pvt_v2_b1': [512, 320, 128, 64],
76
+ }[self.bb]
77
+ if self.mul_scl_ipt == 'cat':
78
+ self.lateral_channels_in_collection = [channel * 2 for channel in self.lateral_channels_in_collection]
79
+ self.cxt = self.lateral_channels_in_collection[1:][::-1][-self.cxt_num:] if self.cxt_num else []
80
+
81
+ # MODEL settings - inactive
82
+ self.lat_blk = ['BasicLatBlk'][0]
83
+ self.dec_channels_inter = ['fixed', 'adap'][0]
84
+ self.refine = ['', 'itself', 'RefUNet', 'Refiner', 'RefinerPVTInChannels4'][0]
85
+ self.progressive_ref = self.refine and True
86
+ self.ender = self.progressive_ref and False
87
+ self.scale = self.progressive_ref and 2
88
+ self.auxiliary_classification = False # Only for DIS5K, where class labels are saved in `dataset.py`.
89
+ self.refine_iteration = 1
90
+ self.freeze_bb = False
91
+ self.model = [
92
+ 'BiRefNet',
93
+ ][0]
94
+ if self.dec_blk == 'HierarAttDecBlk':
95
+ self.batch_size = 2 ** [0, 1, 2, 3, 4][2]
96
+
97
+ # TRAINING settings - inactive
98
+ self.preproc_methods = ['flip', 'enhance', 'rotate', 'pepper', 'crop'][:4]
99
+ self.optimizer = ['Adam', 'AdamW'][1]
100
+ self.lr_decay_epochs = [1e5] # Set to negative N to decay the lr in the last N-th epoch.
101
+ self.lr_decay_rate = 0.5
102
+ # Loss
103
+ self.lambdas_pix_last = {
104
+ # not 0 means opening this loss
105
+ # original rate -- 1 : 30 : 1.5 : 0.2, bce x 30
106
+ 'bce': 30 * 1, # high performance
107
+ 'iou': 0.5 * 1, # 0 / 255
108
+ 'iou_patch': 0.5 * 0, # 0 / 255, win_size = (64, 64)
109
+ 'mse': 150 * 0, # can smooth the saliency map
110
+ 'triplet': 3 * 0,
111
+ 'reg': 100 * 0,
112
+ 'ssim': 10 * 1, # help contours,
113
+ 'cnt': 5 * 0, # help contours
114
+ 'structure': 5 * 0, # structure loss from codes of MVANet. A little improvement on DIS-TE[1,2,3], a bit more decrease on DIS-TE4.
115
+ }
116
+ self.lambdas_cls = {
117
+ 'ce': 5.0
118
+ }
119
+ # Adv
120
+ self.lambda_adv_g = 10. * 0 # turn to 0 to avoid adv training
121
+ self.lambda_adv_d = 3. * (self.lambda_adv_g > 0)
122
+
123
+ # PATH settings - inactive
124
+ self.data_root_dir = os.path.join(self.sys_home_dir, 'datasets/dis')
125
+ self.weights_root_dir = os.path.join(self.sys_home_dir, 'weights')
126
+ self.weights = {
127
+ 'pvt_v2_b2': os.path.join(self.weights_root_dir, 'pvt_v2_b2.pth'),
128
+ 'pvt_v2_b5': os.path.join(self.weights_root_dir, ['pvt_v2_b5.pth', 'pvt_v2_b5_22k.pth'][0]),
129
+ 'swin_v1_b': os.path.join(self.weights_root_dir, ['swin_base_patch4_window12_384_22kto1k.pth', 'swin_base_patch4_window12_384_22k.pth'][0]),
130
+ 'swin_v1_l': os.path.join(self.weights_root_dir, ['swin_large_patch4_window12_384_22kto1k.pth', 'swin_large_patch4_window12_384_22k.pth'][0]),
131
+ 'swin_v1_t': os.path.join(self.weights_root_dir, ['swin_tiny_patch4_window7_224_22kto1k_finetune.pth'][0]),
132
+ 'swin_v1_s': os.path.join(self.weights_root_dir, ['swin_small_patch4_window7_224_22kto1k_finetune.pth'][0]),
133
+ 'pvt_v2_b0': os.path.join(self.weights_root_dir, ['pvt_v2_b0.pth'][0]),
134
+ 'pvt_v2_b1': os.path.join(self.weights_root_dir, ['pvt_v2_b1.pth'][0]),
135
+ }
136
+
137
+ # Callbacks - inactive
138
+ self.verbose_eval = True
139
+ self.only_S_MAE = False
140
+ self.use_fp16 = False # Bugs. It may cause nan in training.
141
+ self.SDPA_enabled = False # Bugs. Slower and errors occur in multi-GPUs
142
+
143
+ # others
144
+ self.device = [0, 'cpu'][0] # .to(0) == .to('cuda:0')
145
+
146
+ self.batch_size_valid = 1
147
+ self.rand_seed = 7
148
+ # run_sh_file = [f for f in os.listdir('.') if 'train.sh' == f] + [os.path.join('..', f) for f in os.listdir('..') if 'train.sh' == f]
149
+ # with open(run_sh_file[0], 'r') as f:
150
+ # lines = f.readlines()
151
+ # self.save_last = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'val_last=' in l][0].split('val_last=')[-1].split()[0])
152
+ # self.save_step = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'step=' in l][0].split('step=')[-1].split()[0])
153
+ # self.val_step = [0, self.save_step][0]
154
+
155
+ def print_task(self) -> None:
156
+ # Return task for choosing settings in shell scripts.
157
+ print(self.task)
158
+
159
+
160
+
161
+ ### models/backbones/pvt_v2.py
162
+
163
+ import torch
164
+ import torch.nn as nn
165
+ from functools import partial
166
+
167
+ from timm.layers import DropPath, to_2tuple, trunc_normal_
168
+
169
+
170
+ import math
171
+
172
+ # from config import Config
173
+
174
+ # config = Config()
175
+
176
+ class Mlp(nn.Module):
177
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
178
+ super().__init__()
179
+ out_features = out_features or in_features
180
+ hidden_features = hidden_features or in_features
181
+ self.fc1 = nn.Linear(in_features, hidden_features)
182
+ self.dwconv = DWConv(hidden_features)
183
+ self.act = act_layer()
184
+ self.fc2 = nn.Linear(hidden_features, out_features)
185
+ self.drop = nn.Dropout(drop)
186
+
187
+ self.apply(self._init_weights)
188
+
189
+ def _init_weights(self, m):
190
+ if isinstance(m, nn.Linear):
191
+ trunc_normal_(m.weight, std=.02)
192
+ if isinstance(m, nn.Linear) and m.bias is not None:
193
+ nn.init.constant_(m.bias, 0)
194
+ elif isinstance(m, nn.LayerNorm):
195
+ nn.init.constant_(m.bias, 0)
196
+ nn.init.constant_(m.weight, 1.0)
197
+ elif isinstance(m, nn.Conv2d):
198
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
199
+ fan_out //= m.groups
200
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
201
+ if m.bias is not None:
202
+ m.bias.data.zero_()
203
+
204
+ def forward(self, x, H, W):
205
+ x = self.fc1(x)
206
+ x = self.dwconv(x, H, W)
207
+ x = self.act(x)
208
+ x = self.drop(x)
209
+ x = self.fc2(x)
210
+ x = self.drop(x)
211
+ return x
212
+
213
+
214
+ class Attention(nn.Module):
215
+ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
216
+ super().__init__()
217
+ assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
218
+
219
+ self.dim = dim
220
+ self.num_heads = num_heads
221
+ head_dim = dim // num_heads
222
+ self.scale = qk_scale or head_dim ** -0.5
223
+
224
+ self.q = nn.Linear(dim, dim, bias=qkv_bias)
225
+ self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
226
+ self.attn_drop_prob = attn_drop
227
+ self.attn_drop = nn.Dropout(attn_drop)
228
+ self.proj = nn.Linear(dim, dim)
229
+ self.proj_drop = nn.Dropout(proj_drop)
230
+
231
+ self.sr_ratio = sr_ratio
232
+ if sr_ratio > 1:
233
+ self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
234
+ self.norm = nn.LayerNorm(dim)
235
+
236
+ self.apply(self._init_weights)
237
+
238
+ def _init_weights(self, m):
239
+ if isinstance(m, nn.Linear):
240
+ trunc_normal_(m.weight, std=.02)
241
+ if isinstance(m, nn.Linear) and m.bias is not None:
242
+ nn.init.constant_(m.bias, 0)
243
+ elif isinstance(m, nn.LayerNorm):
244
+ nn.init.constant_(m.bias, 0)
245
+ nn.init.constant_(m.weight, 1.0)
246
+ elif isinstance(m, nn.Conv2d):
247
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
248
+ fan_out //= m.groups
249
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
250
+ if m.bias is not None:
251
+ m.bias.data.zero_()
252
+
253
+ def forward(self, x, H, W):
254
+ B, N, C = x.shape
255
+ q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
256
+
257
+ if self.sr_ratio > 1:
258
+ x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
259
+ x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
260
+ x_ = self.norm(x_)
261
+ kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
262
+ else:
263
+ kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
264
+ k, v = kv[0], kv[1]
265
+
266
+ if config.SDPA_enabled:
267
+ x = torch.nn.functional.scaled_dot_product_attention(
268
+ q, k, v,
269
+ attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
270
+ ).transpose(1, 2).reshape(B, N, C)
271
+ else:
272
+ attn = (q @ k.transpose(-2, -1)) * self.scale
273
+ attn = attn.softmax(dim=-1)
274
+ attn = self.attn_drop(attn)
275
+
276
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
277
+ x = self.proj(x)
278
+ x = self.proj_drop(x)
279
+
280
+ return x
281
+
282
+
283
+ class Block(nn.Module):
284
+
285
+ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
286
+ drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
287
+ super().__init__()
288
+ self.norm1 = norm_layer(dim)
289
+ self.attn = Attention(
290
+ dim,
291
+ num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
292
+ attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
293
+ # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
294
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
295
+ self.norm2 = norm_layer(dim)
296
+ mlp_hidden_dim = int(dim * mlp_ratio)
297
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
298
+
299
+ self.apply(self._init_weights)
300
+
301
+ def _init_weights(self, m):
302
+ if isinstance(m, nn.Linear):
303
+ trunc_normal_(m.weight, std=.02)
304
+ if isinstance(m, nn.Linear) and m.bias is not None:
305
+ nn.init.constant_(m.bias, 0)
306
+ elif isinstance(m, nn.LayerNorm):
307
+ nn.init.constant_(m.bias, 0)
308
+ nn.init.constant_(m.weight, 1.0)
309
+ elif isinstance(m, nn.Conv2d):
310
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
311
+ fan_out //= m.groups
312
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
313
+ if m.bias is not None:
314
+ m.bias.data.zero_()
315
+
316
+ def forward(self, x, H, W):
317
+ x = x + self.drop_path(self.attn(self.norm1(x), H, W))
318
+ x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
319
+
320
+ return x
321
+
322
+
323
+ class OverlapPatchEmbed(nn.Module):
324
+ """ Image to Patch Embedding
325
+ """
326
+
327
+ def __init__(self, img_size=224, patch_size=7, stride=4, in_channels=3, embed_dim=768):
328
+ super().__init__()
329
+ img_size = to_2tuple(img_size)
330
+ patch_size = to_2tuple(patch_size)
331
+
332
+ self.img_size = img_size
333
+ self.patch_size = patch_size
334
+ self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
335
+ self.num_patches = self.H * self.W
336
+ self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=stride,
337
+ padding=(patch_size[0] // 2, patch_size[1] // 2))
338
+ self.norm = nn.LayerNorm(embed_dim)
339
+
340
+ self.apply(self._init_weights)
341
+
342
+ def _init_weights(self, m):
343
+ if isinstance(m, nn.Linear):
344
+ trunc_normal_(m.weight, std=.02)
345
+ if isinstance(m, nn.Linear) and m.bias is not None:
346
+ nn.init.constant_(m.bias, 0)
347
+ elif isinstance(m, nn.LayerNorm):
348
+ nn.init.constant_(m.bias, 0)
349
+ nn.init.constant_(m.weight, 1.0)
350
+ elif isinstance(m, nn.Conv2d):
351
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
352
+ fan_out //= m.groups
353
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
354
+ if m.bias is not None:
355
+ m.bias.data.zero_()
356
+
357
+ def forward(self, x):
358
+ x = self.proj(x)
359
+ _, _, H, W = x.shape
360
+ x = x.flatten(2).transpose(1, 2)
361
+ x = self.norm(x)
362
+
363
+ return x, H, W
364
+
365
+
366
+ class PyramidVisionTransformerImpr(nn.Module):
367
+ def __init__(self, img_size=224, patch_size=16, in_channels=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
368
+ num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
369
+ attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
370
+ depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):
371
+ super().__init__()
372
+ self.num_classes = num_classes
373
+ self.depths = depths
374
+
375
+ # patch_embed
376
+ self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_channels=in_channels,
377
+ embed_dim=embed_dims[0])
378
+ self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_channels=embed_dims[0],
379
+ embed_dim=embed_dims[1])
380
+ self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_channels=embed_dims[1],
381
+ embed_dim=embed_dims[2])
382
+ self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_channels=embed_dims[2],
383
+ embed_dim=embed_dims[3])
384
+
385
+ # transformer encoder
386
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
387
+ cur = 0
388
+ self.block1 = nn.ModuleList([Block(
389
+ dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
390
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
391
+ sr_ratio=sr_ratios[0])
392
+ for i in range(depths[0])])
393
+ self.norm1 = norm_layer(embed_dims[0])
394
+
395
+ cur += depths[0]
396
+ self.block2 = nn.ModuleList([Block(
397
+ dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
398
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
399
+ sr_ratio=sr_ratios[1])
400
+ for i in range(depths[1])])
401
+ self.norm2 = norm_layer(embed_dims[1])
402
+
403
+ cur += depths[1]
404
+ self.block3 = nn.ModuleList([Block(
405
+ dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
406
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
407
+ sr_ratio=sr_ratios[2])
408
+ for i in range(depths[2])])
409
+ self.norm3 = norm_layer(embed_dims[2])
410
+
411
+ cur += depths[2]
412
+ self.block4 = nn.ModuleList([Block(
413
+ dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
414
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
415
+ sr_ratio=sr_ratios[3])
416
+ for i in range(depths[3])])
417
+ self.norm4 = norm_layer(embed_dims[3])
418
+
419
+ # classification head
420
+ # self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
421
+
422
+ self.apply(self._init_weights)
423
+
424
+ def _init_weights(self, m):
425
+ if isinstance(m, nn.Linear):
426
+ trunc_normal_(m.weight, std=.02)
427
+ if isinstance(m, nn.Linear) and m.bias is not None:
428
+ nn.init.constant_(m.bias, 0)
429
+ elif isinstance(m, nn.LayerNorm):
430
+ nn.init.constant_(m.bias, 0)
431
+ nn.init.constant_(m.weight, 1.0)
432
+ elif isinstance(m, nn.Conv2d):
433
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
434
+ fan_out //= m.groups
435
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
436
+ if m.bias is not None:
437
+ m.bias.data.zero_()
438
+
439
+ def init_weights(self, pretrained=None):
440
+ if isinstance(pretrained, str):
441
+ logger = 1
442
+ #load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)
443
+
444
+ def reset_drop_path(self, drop_path_rate):
445
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
446
+ cur = 0
447
+ for i in range(self.depths[0]):
448
+ self.block1[i].drop_path.drop_prob = dpr[cur + i]
449
+
450
+ cur += self.depths[0]
451
+ for i in range(self.depths[1]):
452
+ self.block2[i].drop_path.drop_prob = dpr[cur + i]
453
+
454
+ cur += self.depths[1]
455
+ for i in range(self.depths[2]):
456
+ self.block3[i].drop_path.drop_prob = dpr[cur + i]
457
+
458
+ cur += self.depths[2]
459
+ for i in range(self.depths[3]):
460
+ self.block4[i].drop_path.drop_prob = dpr[cur + i]
461
+
462
+ def freeze_patch_emb(self):
463
+ self.patch_embed1.requires_grad = False
464
+
465
+ @torch.jit.ignore
466
+ def no_weight_decay(self):
467
+ return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} # has pos_embed may be better
468
+
469
+ def get_classifier(self):
470
+ return self.head
471
+
472
+ def reset_classifier(self, num_classes, global_pool=''):
473
+ self.num_classes = num_classes
474
+ self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
475
+
476
+ def forward_features(self, x):
477
+ B = x.shape[0]
478
+ outs = []
479
+
480
+ # stage 1
481
+ x, H, W = self.patch_embed1(x)
482
+ for i, blk in enumerate(self.block1):
483
+ x = blk(x, H, W)
484
+ x = self.norm1(x)
485
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
486
+ outs.append(x)
487
+
488
+ # stage 2
489
+ x, H, W = self.patch_embed2(x)
490
+ for i, blk in enumerate(self.block2):
491
+ x = blk(x, H, W)
492
+ x = self.norm2(x)
493
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
494
+ outs.append(x)
495
+
496
+ # stage 3
497
+ x, H, W = self.patch_embed3(x)
498
+ for i, blk in enumerate(self.block3):
499
+ x = blk(x, H, W)
500
+ x = self.norm3(x)
501
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
502
+ outs.append(x)
503
+
504
+ # stage 4
505
+ x, H, W = self.patch_embed4(x)
506
+ for i, blk in enumerate(self.block4):
507
+ x = blk(x, H, W)
508
+ x = self.norm4(x)
509
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
510
+ outs.append(x)
511
+
512
+ return outs
513
+
514
+ # return x.mean(dim=1)
515
+
516
+ def forward(self, x):
517
+ x = self.forward_features(x)
518
+ # x = self.head(x)
519
+
520
+ return x
521
+
522
+
523
+ class DWConv(nn.Module):
524
+ def __init__(self, dim=768):
525
+ super(DWConv, self).__init__()
526
+ self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
527
+
528
+ def forward(self, x, H, W):
529
+ B, N, C = x.shape
530
+ x = x.transpose(1, 2).view(B, C, H, W).contiguous()
531
+ x = self.dwconv(x)
532
+ x = x.flatten(2).transpose(1, 2)
533
+
534
+ return x
535
+
536
+
537
+ def _conv_filter(state_dict, patch_size=16):
538
+ """ convert patch embedding weight from manual patchify + linear proj to conv"""
539
+ out_dict = {}
540
+ for k, v in state_dict.items():
541
+ if 'patch_embed.proj.weight' in k:
542
+ v = v.reshape((v.shape[0], 3, patch_size, patch_size))
543
+ out_dict[k] = v
544
+
545
+ return out_dict
546
+
547
+
548
+ class pvt_v2_b0(PyramidVisionTransformerImpr):
549
+ def __init__(self, **kwargs):
550
+ super(pvt_v2_b0, self).__init__(
551
+ patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
552
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
553
+ drop_rate=0.0, drop_path_rate=0.1)
554
+
555
+
556
+
557
+ class pvt_v2_b1(PyramidVisionTransformerImpr):
558
+ def __init__(self, **kwargs):
559
+ super(pvt_v2_b1, self).__init__(
560
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
561
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
562
+ drop_rate=0.0, drop_path_rate=0.1)
563
+
564
+ class pvt_v2_b2(PyramidVisionTransformerImpr):
565
+ def __init__(self, in_channels=3, **kwargs):
566
+ super(pvt_v2_b2, self).__init__(
567
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
568
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
569
+ drop_rate=0.0, drop_path_rate=0.1, in_channels=in_channels)
570
+
571
+ class pvt_v2_b3(PyramidVisionTransformerImpr):
572
+ def __init__(self, **kwargs):
573
+ super(pvt_v2_b3, self).__init__(
574
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
575
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
576
+ drop_rate=0.0, drop_path_rate=0.1)
577
+
578
+ class pvt_v2_b4(PyramidVisionTransformerImpr):
579
+ def __init__(self, **kwargs):
580
+ super(pvt_v2_b4, self).__init__(
581
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
582
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
583
+ drop_rate=0.0, drop_path_rate=0.1)
584
+
585
+
586
+ class pvt_v2_b5(PyramidVisionTransformerImpr):
587
+ def __init__(self, **kwargs):
588
+ super(pvt_v2_b5, self).__init__(
589
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
590
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
591
+ drop_rate=0.0, drop_path_rate=0.1)
592
+
593
+
594
+
595
+ ### models/backbones/swin_v1.py
596
+
597
+ # --------------------------------------------------------
598
+ # Swin Transformer
599
+ # Copyright (c) 2021 Microsoft
600
+ # Licensed under The MIT License [see LICENSE for details]
601
+ # Written by Ze Liu, Yutong Lin, Yixuan Wei
602
+ # --------------------------------------------------------
603
+
604
+ import torch
605
+ import torch.nn as nn
606
+ import torch.nn.functional as F
607
+ import torch.utils.checkpoint as checkpoint
608
+ import numpy as np
609
+ from timm.layers import DropPath, to_2tuple, trunc_normal_
610
+
611
+ # from config import Config
612
+
613
+
614
+ # config = Config()
615
+
616
+
617
+ class Mlp(nn.Module):
618
+ """ Multilayer perceptron."""
619
+
620
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
621
+ super().__init__()
622
+ out_features = out_features or in_features
623
+ hidden_features = hidden_features or in_features
624
+ self.fc1 = nn.Linear(in_features, hidden_features)
625
+ self.act = act_layer()
626
+ self.fc2 = nn.Linear(hidden_features, out_features)
627
+ self.drop = nn.Dropout(drop)
628
+
629
+ def forward(self, x):
630
+ x = self.fc1(x)
631
+ x = self.act(x)
632
+ x = self.drop(x)
633
+ x = self.fc2(x)
634
+ x = self.drop(x)
635
+ return x
636
+
637
+
638
+ def window_partition(x, window_size):
639
+ """
640
+ Args:
641
+ x: (B, H, W, C)
642
+ window_size (int): window size
643
+
644
+ Returns:
645
+ windows: (num_windows*B, window_size, window_size, C)
646
+ """
647
+ B, H, W, C = x.shape
648
+ x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
649
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
650
+ return windows
651
+
652
+
653
+ def window_reverse(windows, window_size, H, W):
654
+ """
655
+ Args:
656
+ windows: (num_windows*B, window_size, window_size, C)
657
+ window_size (int): Window size
658
+ H (int): Height of image
659
+ W (int): Width of image
660
+
661
+ Returns:
662
+ x: (B, H, W, C)
663
+ """
664
+ B = int(windows.shape[0] / (H * W / window_size / window_size))
665
+ x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
666
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
667
+ return x
668
+
669
+
670
+ class WindowAttention(nn.Module):
671
+ """ Window based multi-head self attention (W-MSA) module with relative position bias.
672
+ It supports both of shifted and non-shifted window.
673
+
674
+ Args:
675
+ dim (int): Number of input channels.
676
+ window_size (tuple[int]): The height and width of the window.
677
+ num_heads (int): Number of attention heads.
678
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
679
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
680
+ attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
681
+ proj_drop (float, optional): Dropout ratio of output. Default: 0.0
682
+ """
683
+
684
+ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
685
+
686
+ super().__init__()
687
+ self.dim = dim
688
+ self.window_size = window_size # Wh, Ww
689
+ self.num_heads = num_heads
690
+ head_dim = dim // num_heads
691
+ self.scale = qk_scale or head_dim ** -0.5
692
+
693
+ # define a parameter table of relative position bias
694
+ self.relative_position_bias_table = nn.Parameter(
695
+ torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
696
+
697
+ # get pair-wise relative position index for each token inside the window
698
+ coords_h = torch.arange(self.window_size[0])
699
+ coords_w = torch.arange(self.window_size[1])
700
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing='ij')) # 2, Wh, Ww
701
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
702
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
703
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
704
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
705
+ relative_coords[:, :, 1] += self.window_size[1] - 1
706
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
707
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
708
+ self.register_buffer("relative_position_index", relative_position_index)
709
+
710
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
711
+ self.attn_drop_prob = attn_drop
712
+ self.attn_drop = nn.Dropout(attn_drop)
713
+ self.proj = nn.Linear(dim, dim)
714
+ self.proj_drop = nn.Dropout(proj_drop)
715
+
716
+ trunc_normal_(self.relative_position_bias_table, std=.02)
717
+ self.softmax = nn.Softmax(dim=-1)
718
+
719
+ def forward(self, x, mask=None):
720
+ """ Forward function.
721
+
722
+ Args:
723
+ x: input features with shape of (num_windows*B, N, C)
724
+ mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
725
+ """
726
+ B_, N, C = x.shape
727
+ qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
728
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
729
+
730
+ q = q * self.scale
731
+
732
+ if config.SDPA_enabled:
733
+ x = torch.nn.functional.scaled_dot_product_attention(
734
+ q, k, v,
735
+ attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
736
+ ).transpose(1, 2).reshape(B_, N, C)
737
+ else:
738
+ attn = (q @ k.transpose(-2, -1))
739
+
740
+ relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
741
+ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
742
+ ) # Wh*Ww, Wh*Ww, nH
743
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
744
+ attn = attn + relative_position_bias.unsqueeze(0)
745
+
746
+ if mask is not None:
747
+ nW = mask.shape[0]
748
+ attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
749
+ attn = attn.view(-1, self.num_heads, N, N)
750
+ attn = self.softmax(attn)
751
+ else:
752
+ attn = self.softmax(attn)
753
+
754
+ attn = self.attn_drop(attn)
755
+
756
+ x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
757
+ x = self.proj(x)
758
+ x = self.proj_drop(x)
759
+ return x
760
+
761
+
762
+ class SwinTransformerBlock(nn.Module):
763
+ """ Swin Transformer Block.
764
+
765
+ Args:
766
+ dim (int): Number of input channels.
767
+ num_heads (int): Number of attention heads.
768
+ window_size (int): Window size.
769
+ shift_size (int): Shift size for SW-MSA.
770
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
771
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
772
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
773
+ drop (float, optional): Dropout rate. Default: 0.0
774
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
775
+ drop_path (float, optional): Stochastic depth rate. Default: 0.0
776
+ act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
777
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
778
+ """
779
+
780
+ def __init__(self, dim, num_heads, window_size=7, shift_size=0,
781
+ mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
782
+ act_layer=nn.GELU, norm_layer=nn.LayerNorm):
783
+ super().__init__()
784
+ self.dim = dim
785
+ self.num_heads = num_heads
786
+ self.window_size = window_size
787
+ self.shift_size = shift_size
788
+ self.mlp_ratio = mlp_ratio
789
+ assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
790
+
791
+ self.norm1 = norm_layer(dim)
792
+ self.attn = WindowAttention(
793
+ dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
794
+ qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
795
+
796
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
797
+ self.norm2 = norm_layer(dim)
798
+ mlp_hidden_dim = int(dim * mlp_ratio)
799
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
800
+
801
+ self.H = None
802
+ self.W = None
803
+
804
+ def forward(self, x, mask_matrix):
805
+ """ Forward function.
806
+
807
+ Args:
808
+ x: Input feature, tensor size (B, H*W, C).
809
+ H, W: Spatial resolution of the input feature.
810
+ mask_matrix: Attention mask for cyclic shift.
811
+ """
812
+ B, L, C = x.shape
813
+ H, W = self.H, self.W
814
+ assert L == H * W, "input feature has wrong size"
815
+
816
+ shortcut = x
817
+ x = self.norm1(x)
818
+ x = x.view(B, H, W, C)
819
+
820
+ # pad feature maps to multiples of window size
821
+ pad_l = pad_t = 0
822
+ pad_r = (self.window_size - W % self.window_size) % self.window_size
823
+ pad_b = (self.window_size - H % self.window_size) % self.window_size
824
+ x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
825
+ _, Hp, Wp, _ = x.shape
826
+
827
+ # cyclic shift
828
+ if self.shift_size > 0:
829
+ shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
830
+ attn_mask = mask_matrix
831
+ else:
832
+ shifted_x = x
833
+ attn_mask = None
834
+
835
+ # partition windows
836
+ x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
837
+ x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
838
+
839
+ # W-MSA/SW-MSA
840
+ attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
841
+
842
+ # merge windows
843
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
844
+ shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
845
+
846
+ # reverse cyclic shift
847
+ if self.shift_size > 0:
848
+ x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
849
+ else:
850
+ x = shifted_x
851
+
852
+ if pad_r > 0 or pad_b > 0:
853
+ x = x[:, :H, :W, :].contiguous()
854
+
855
+ x = x.view(B, H * W, C)
856
+
857
+ # FFN
858
+ x = shortcut + self.drop_path(x)
859
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
860
+
861
+ return x
862
+
863
+
864
+ class PatchMerging(nn.Module):
865
+ """ Patch Merging Layer
866
+
867
+ Args:
868
+ dim (int): Number of input channels.
869
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
870
+ """
871
+ def __init__(self, dim, norm_layer=nn.LayerNorm):
872
+ super().__init__()
873
+ self.dim = dim
874
+ self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
875
+ self.norm = norm_layer(4 * dim)
876
+
877
+ def forward(self, x, H, W):
878
+ """ Forward function.
879
+
880
+ Args:
881
+ x: Input feature, tensor size (B, H*W, C).
882
+ H, W: Spatial resolution of the input feature.
883
+ """
884
+ B, L, C = x.shape
885
+ assert L == H * W, "input feature has wrong size"
886
+
887
+ x = x.view(B, H, W, C)
888
+
889
+ # padding
890
+ pad_input = (H % 2 == 1) or (W % 2 == 1)
891
+ if pad_input:
892
+ x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
893
+
894
+ x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
895
+ x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
896
+ x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
897
+ x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
898
+ x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
899
+ x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
900
+
901
+ x = self.norm(x)
902
+ x = self.reduction(x)
903
+
904
+ return x
905
+
906
+
907
+ class BasicLayer(nn.Module):
908
+ """ A basic Swin Transformer layer for one stage.
909
+
910
+ Args:
911
+ dim (int): Number of feature channels
912
+ depth (int): Depths of this stage.
913
+ num_heads (int): Number of attention head.
914
+ window_size (int): Local window size. Default: 7.
915
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
916
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
917
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
918
+ drop (float, optional): Dropout rate. Default: 0.0
919
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
920
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
921
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
922
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
923
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
924
+ """
925
+
926
+ def __init__(self,
927
+ dim,
928
+ depth,
929
+ num_heads,
930
+ window_size=7,
931
+ mlp_ratio=4.,
932
+ qkv_bias=True,
933
+ qk_scale=None,
934
+ drop=0.,
935
+ attn_drop=0.,
936
+ drop_path=0.,
937
+ norm_layer=nn.LayerNorm,
938
+ downsample=None,
939
+ use_checkpoint=False):
940
+ super().__init__()
941
+ self.window_size = window_size
942
+ self.shift_size = window_size // 2
943
+ self.depth = depth
944
+ self.use_checkpoint = use_checkpoint
945
+
946
+ # build blocks
947
+ self.blocks = nn.ModuleList([
948
+ SwinTransformerBlock(
949
+ dim=dim,
950
+ num_heads=num_heads,
951
+ window_size=window_size,
952
+ shift_size=0 if (i % 2 == 0) else window_size // 2,
953
+ mlp_ratio=mlp_ratio,
954
+ qkv_bias=qkv_bias,
955
+ qk_scale=qk_scale,
956
+ drop=drop,
957
+ attn_drop=attn_drop,
958
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
959
+ norm_layer=norm_layer)
960
+ for i in range(depth)])
961
+
962
+ # patch merging layer
963
+ if downsample is not None:
964
+ self.downsample = downsample(dim=dim, norm_layer=norm_layer)
965
+ else:
966
+ self.downsample = None
967
+
968
+ def forward(self, x, H, W):
969
+ """ Forward function.
970
+
971
+ Args:
972
+ x: Input feature, tensor size (B, H*W, C).
973
+ H, W: Spatial resolution of the input feature.
974
+ """
975
+
976
+ # calculate attention mask for SW-MSA
977
+ # Turn int to torch.tensor for the compatiability with torch.compile in PyTorch 2.5.
978
+ Hp = torch.ceil(torch.tensor(H) / self.window_size).to(torch.int64) * self.window_size
979
+ Wp = torch.ceil(torch.tensor(W) / self.window_size).to(torch.int64) * self.window_size
980
+ img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
981
+ h_slices = (slice(0, -self.window_size),
982
+ slice(-self.window_size, -self.shift_size),
983
+ slice(-self.shift_size, None))
984
+ w_slices = (slice(0, -self.window_size),
985
+ slice(-self.window_size, -self.shift_size),
986
+ slice(-self.shift_size, None))
987
+ cnt = 0
988
+ for h in h_slices:
989
+ for w in w_slices:
990
+ img_mask[:, h, w, :] = cnt
991
+ cnt += 1
992
+
993
+ mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
994
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
995
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
996
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)).to(x.dtype)
997
+
998
+ for blk in self.blocks:
999
+ blk.H, blk.W = H, W
1000
+ if self.use_checkpoint:
1001
+ x = checkpoint.checkpoint(blk, x, attn_mask)
1002
+ else:
1003
+ x = blk(x, attn_mask)
1004
+ if self.downsample is not None:
1005
+ x_down = self.downsample(x, H, W)
1006
+ Wh, Ww = (H + 1) // 2, (W + 1) // 2
1007
+ return x, H, W, x_down, Wh, Ww
1008
+ else:
1009
+ return x, H, W, x, H, W
1010
+
1011
+
1012
+ class PatchEmbed(nn.Module):
1013
+ """ Image to Patch Embedding
1014
+
1015
+ Args:
1016
+ patch_size (int): Patch token size. Default: 4.
1017
+ in_channels (int): Number of input image channels. Default: 3.
1018
+ embed_dim (int): Number of linear projection output channels. Default: 96.
1019
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
1020
+ """
1021
+
1022
+ def __init__(self, patch_size=4, in_channels=3, embed_dim=96, norm_layer=None):
1023
+ super().__init__()
1024
+ patch_size = to_2tuple(patch_size)
1025
+ self.patch_size = patch_size
1026
+
1027
+ self.in_channels = in_channels
1028
+ self.embed_dim = embed_dim
1029
+
1030
+ self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
1031
+ if norm_layer is not None:
1032
+ self.norm = norm_layer(embed_dim)
1033
+ else:
1034
+ self.norm = None
1035
+
1036
+ def forward(self, x):
1037
+ """Forward function."""
1038
+ # padding
1039
+ _, _, H, W = x.size()
1040
+ if W % self.patch_size[1] != 0:
1041
+ x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
1042
+ if H % self.patch_size[0] != 0:
1043
+ x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
1044
+
1045
+ x = self.proj(x) # B C Wh Ww
1046
+ if self.norm is not None:
1047
+ Wh, Ww = x.size(2), x.size(3)
1048
+ x = x.flatten(2).transpose(1, 2)
1049
+ x = self.norm(x)
1050
+ x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
1051
+
1052
+ return x
1053
+
1054
+
1055
+ class SwinTransformer(nn.Module):
1056
+ """ Swin Transformer backbone.
1057
+ A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
1058
+ https://arxiv.org/pdf/2103.14030
1059
+
1060
+ Args:
1061
+ pretrain_img_size (int): Input image size for training the pretrained model,
1062
+ used in absolute postion embedding. Default 224.
1063
+ patch_size (int | tuple(int)): Patch size. Default: 4.
1064
+ in_channels (int): Number of input image channels. Default: 3.
1065
+ embed_dim (int): Number of linear projection output channels. Default: 96.
1066
+ depths (tuple[int]): Depths of each Swin Transformer stage.
1067
+ num_heads (tuple[int]): Number of attention head of each stage.
1068
+ window_size (int): Window size. Default: 7.
1069
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
1070
+ qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
1071
+ qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
1072
+ drop_rate (float): Dropout rate.
1073
+ attn_drop_rate (float): Attention dropout rate. Default: 0.
1074
+ drop_path_rate (float): Stochastic depth rate. Default: 0.2.
1075
+ norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
1076
+ ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
1077
+ patch_norm (bool): If True, add normalization after patch embedding. Default: True.
1078
+ out_indices (Sequence[int]): Output from which stages.
1079
+ frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
1080
+ -1 means not freezing any parameters.
1081
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
1082
+ """
1083
+
1084
+ def __init__(self,
1085
+ pretrain_img_size=224,
1086
+ patch_size=4,
1087
+ in_channels=3,
1088
+ embed_dim=96,
1089
+ depths=[2, 2, 6, 2],
1090
+ num_heads=[3, 6, 12, 24],
1091
+ window_size=7,
1092
+ mlp_ratio=4.,
1093
+ qkv_bias=True,
1094
+ qk_scale=None,
1095
+ drop_rate=0.,
1096
+ attn_drop_rate=0.,
1097
+ drop_path_rate=0.2,
1098
+ norm_layer=nn.LayerNorm,
1099
+ ape=False,
1100
+ patch_norm=True,
1101
+ out_indices=(0, 1, 2, 3),
1102
+ frozen_stages=-1,
1103
+ use_checkpoint=False):
1104
+ super().__init__()
1105
+
1106
+ self.pretrain_img_size = pretrain_img_size
1107
+ self.num_layers = len(depths)
1108
+ self.embed_dim = embed_dim
1109
+ self.ape = ape
1110
+ self.patch_norm = patch_norm
1111
+ self.out_indices = out_indices
1112
+ self.frozen_stages = frozen_stages
1113
+
1114
+ # split image into non-overlapping patches
1115
+ self.patch_embed = PatchEmbed(
1116
+ patch_size=patch_size, in_channels=in_channels, embed_dim=embed_dim,
1117
+ norm_layer=norm_layer if self.patch_norm else None)
1118
+
1119
+ # absolute position embedding
1120
+ if self.ape:
1121
+ pretrain_img_size = to_2tuple(pretrain_img_size)
1122
+ patch_size = to_2tuple(patch_size)
1123
+ patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]]
1124
+
1125
+ self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]))
1126
+ trunc_normal_(self.absolute_pos_embed, std=.02)
1127
+
1128
+ self.pos_drop = nn.Dropout(p=drop_rate)
1129
+
1130
+ # stochastic depth
1131
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
1132
+
1133
+ # build layers
1134
+ self.layers = nn.ModuleList()
1135
+ for i_layer in range(self.num_layers):
1136
+ layer = BasicLayer(
1137
+ dim=int(embed_dim * 2 ** i_layer),
1138
+ depth=depths[i_layer],
1139
+ num_heads=num_heads[i_layer],
1140
+ window_size=window_size,
1141
+ mlp_ratio=mlp_ratio,
1142
+ qkv_bias=qkv_bias,
1143
+ qk_scale=qk_scale,
1144
+ drop=drop_rate,
1145
+ attn_drop=attn_drop_rate,
1146
+ drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
1147
+ norm_layer=norm_layer,
1148
+ downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
1149
+ use_checkpoint=use_checkpoint)
1150
+ self.layers.append(layer)
1151
+
1152
+ num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
1153
+ self.num_features = num_features
1154
+
1155
+ # add a norm layer for each output
1156
+ for i_layer in out_indices:
1157
+ layer = norm_layer(num_features[i_layer])
1158
+ layer_name = f'norm{i_layer}'
1159
+ self.add_module(layer_name, layer)
1160
+
1161
+ self._freeze_stages()
1162
+
1163
+ def _freeze_stages(self):
1164
+ if self.frozen_stages >= 0:
1165
+ self.patch_embed.eval()
1166
+ for param in self.patch_embed.parameters():
1167
+ param.requires_grad = False
1168
+
1169
+ if self.frozen_stages >= 1 and self.ape:
1170
+ self.absolute_pos_embed.requires_grad = False
1171
+
1172
+ if self.frozen_stages >= 2:
1173
+ self.pos_drop.eval()
1174
+ for i in range(0, self.frozen_stages - 1):
1175
+ m = self.layers[i]
1176
+ m.eval()
1177
+ for param in m.parameters():
1178
+ param.requires_grad = False
1179
+
1180
+
1181
+ def forward(self, x):
1182
+ """Forward function."""
1183
+ x = self.patch_embed(x)
1184
+
1185
+ Wh, Ww = x.size(2), x.size(3)
1186
+ if self.ape:
1187
+ # interpolate the position embedding to the corresponding size
1188
+ absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
1189
+ x = (x + absolute_pos_embed) # B Wh*Ww C
1190
+
1191
+ outs = []#x.contiguous()]
1192
+ x = x.flatten(2).transpose(1, 2)
1193
+ x = self.pos_drop(x)
1194
+ for i in range(self.num_layers):
1195
+ layer = self.layers[i]
1196
+ x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
1197
+
1198
+ if i in self.out_indices:
1199
+ norm_layer = getattr(self, f'norm{i}')
1200
+ x_out = norm_layer(x_out)
1201
+
1202
+ out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
1203
+ outs.append(out)
1204
+
1205
+ return tuple(outs)
1206
+
1207
+ def train(self, mode=True):
1208
+ """Convert the model into training mode while keep layers freezed."""
1209
+ super(SwinTransformer, self).train(mode)
1210
+ self._freeze_stages()
1211
+
1212
+ def swin_v1_t():
1213
+ model = SwinTransformer(embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7)
1214
+ return model
1215
+
1216
+ def swin_v1_s():
1217
+ model = SwinTransformer(embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7)
1218
+ return model
1219
+
1220
+ def swin_v1_b():
1221
+ model = SwinTransformer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12)
1222
+ return model
1223
+
1224
+ def swin_v1_l():
1225
+ model = SwinTransformer(embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12)
1226
+ return model
1227
+
1228
+
1229
+
1230
+ ### models/modules/deform_conv.py
1231
+
1232
+ import torch
1233
+ import torch.nn as nn
1234
+ from torchvision.ops import deform_conv2d
1235
+
1236
+
1237
+ class DeformableConv2d(nn.Module):
1238
+ def __init__(self,
1239
+ in_channels,
1240
+ out_channels,
1241
+ kernel_size=3,
1242
+ stride=1,
1243
+ padding=1,
1244
+ bias=False):
1245
+
1246
+ super(DeformableConv2d, self).__init__()
1247
+
1248
+ assert type(kernel_size) == tuple or type(kernel_size) == int
1249
+
1250
+ kernel_size = kernel_size if type(kernel_size) == tuple else (kernel_size, kernel_size)
1251
+ self.stride = stride if type(stride) == tuple else (stride, stride)
1252
+ self.padding = padding
1253
+
1254
+ self.offset_conv = nn.Conv2d(in_channels,
1255
+ 2 * kernel_size[0] * kernel_size[1],
1256
+ kernel_size=kernel_size,
1257
+ stride=stride,
1258
+ padding=self.padding,
1259
+ bias=True)
1260
+
1261
+ nn.init.constant_(self.offset_conv.weight, 0.)
1262
+ nn.init.constant_(self.offset_conv.bias, 0.)
1263
+
1264
+ self.modulator_conv = nn.Conv2d(in_channels,
1265
+ 1 * kernel_size[0] * kernel_size[1],
1266
+ kernel_size=kernel_size,
1267
+ stride=stride,
1268
+ padding=self.padding,
1269
+ bias=True)
1270
+
1271
+ nn.init.constant_(self.modulator_conv.weight, 0.)
1272
+ nn.init.constant_(self.modulator_conv.bias, 0.)
1273
+
1274
+ self.regular_conv = nn.Conv2d(in_channels,
1275
+ out_channels=out_channels,
1276
+ kernel_size=kernel_size,
1277
+ stride=stride,
1278
+ padding=self.padding,
1279
+ bias=bias)
1280
+
1281
+ def forward(self, x):
1282
+ #h, w = x.shape[2:]
1283
+ #max_offset = max(h, w)/4.
1284
+
1285
+ offset = self.offset_conv(x)#.clamp(-max_offset, max_offset)
1286
+ modulator = 2. * torch.sigmoid(self.modulator_conv(x))
1287
+
1288
+ x = deform_conv2d(
1289
+ input=x,
1290
+ offset=offset,
1291
+ weight=self.regular_conv.weight,
1292
+ bias=self.regular_conv.bias,
1293
+ padding=self.padding,
1294
+ mask=modulator,
1295
+ stride=self.stride,
1296
+ )
1297
+ return x
1298
+
1299
+
1300
+
1301
+
1302
+ ### utils.py
1303
+
1304
+ import torch.nn as nn
1305
+
1306
+
1307
+ def build_act_layer(act_layer):
1308
+ if act_layer == 'ReLU':
1309
+ return nn.ReLU(inplace=True)
1310
+ elif act_layer == 'SiLU':
1311
+ return nn.SiLU(inplace=True)
1312
+ elif act_layer == 'GELU':
1313
+ return nn.GELU()
1314
+
1315
+ raise NotImplementedError(f'build_act_layer does not support {act_layer}')
1316
+
1317
+
1318
+ def build_norm_layer(dim,
1319
+ norm_layer,
1320
+ in_format='channels_last',
1321
+ out_format='channels_last',
1322
+ eps=1e-6):
1323
+ layers = []
1324
+ if norm_layer == 'BN':
1325
+ if in_format == 'channels_last':
1326
+ layers.append(to_channels_first())
1327
+ layers.append(nn.BatchNorm2d(dim))
1328
+ if out_format == 'channels_last':
1329
+ layers.append(to_channels_last())
1330
+ elif norm_layer == 'LN':
1331
+ if in_format == 'channels_first':
1332
+ layers.append(to_channels_last())
1333
+ layers.append(nn.LayerNorm(dim, eps=eps))
1334
+ if out_format == 'channels_first':
1335
+ layers.append(to_channels_first())
1336
+ else:
1337
+ raise NotImplementedError(
1338
+ f'build_norm_layer does not support {norm_layer}')
1339
+ return nn.Sequential(*layers)
1340
+
1341
+
1342
+ class to_channels_first(nn.Module):
1343
+
1344
+ def __init__(self):
1345
+ super().__init__()
1346
+
1347
+ def forward(self, x):
1348
+ return x.permute(0, 3, 1, 2)
1349
+
1350
+
1351
+ class to_channels_last(nn.Module):
1352
+
1353
+ def __init__(self):
1354
+ super().__init__()
1355
+
1356
+ def forward(self, x):
1357
+ return x.permute(0, 2, 3, 1)
1358
+
1359
+
1360
+
1361
+ ### dataset.py
1362
+
1363
+ _class_labels_TR_sorted = (
1364
+ 'Airplane, Ant, Antenna, Archery, Axe, BabyCarriage, Bag, BalanceBeam, Balcony, Balloon, Basket, BasketballHoop, Beatle, Bed, Bee, Bench, Bicycle, '
1365
+ 'BicycleFrame, BicycleStand, Boat, Bonsai, BoomLift, Bridge, BunkBed, Butterfly, Button, Cable, CableLift, Cage, Camcorder, Cannon, Canoe, Car, '
1366
+ 'CarParkDropArm, Carriage, Cart, Caterpillar, CeilingLamp, Centipede, Chair, Clip, Clock, Clothes, CoatHanger, Comb, ConcretePumpTruck, Crack, Crane, '
1367
+ 'Cup, DentalChair, Desk, DeskChair, Diagram, DishRack, DoorHandle, Dragonfish, Dragonfly, Drum, Earphone, Easel, ElectricIron, Excavator, Eyeglasses, '
1368
+ 'Fan, Fence, Fencing, FerrisWheel, FireExtinguisher, Fishing, Flag, FloorLamp, Forklift, GasStation, Gate, Gear, Goal, Golf, GymEquipment, Hammock, '
1369
+ 'Handcart, Handcraft, Handrail, HangGlider, Harp, Harvester, Headset, Helicopter, Helmet, Hook, HorizontalBar, Hydrovalve, IroningTable, Jewelry, Key, '
1370
+ 'KidsPlayground, Kitchenware, Kite, Knife, Ladder, LaundryRack, Lightning, Lobster, Locust, Machine, MachineGun, MagazineRack, Mantis, Medal, MemorialArchway, '
1371
+ 'Microphone, Missile, MobileHolder, Monitor, Mosquito, Motorcycle, MovingTrolley, Mower, MusicPlayer, MusicStand, ObservationTower, Octopus, OilWell, '
1372
+ 'OlympicLogo, OperatingTable, OutdoorFitnessEquipment, Parachute, Pavilion, Piano, Pipe, PlowHarrow, PoleVault, Punchbag, Rack, Racket, Rifle, Ring, Robot, '
1373
+ 'RockClimbing, Rope, Sailboat, Satellite, Scaffold, Scale, Scissor, Scooter, Sculpture, Seadragon, Seahorse, Seal, SewingMachine, Ship, Shoe, ShoppingCart, '
1374
+ 'ShoppingTrolley, Shower, Shrimp, Signboard, Skateboarding, Skeleton, Skiing, Spade, SpeedBoat, Spider, Spoon, Stair, Stand, Stationary, SteeringWheel, '
1375
+ 'Stethoscope, Stool, Stove, StreetLamp, SweetStand, Swing, Sword, TV, Table, TableChair, TableLamp, TableTennis, Tank, Tapeline, Teapot, Telescope, Tent, '
1376
+ 'TobaccoPipe, Toy, Tractor, TrafficLight, TrafficSign, Trampoline, TransmissionTower, Tree, Tricycle, TrimmerCover, Tripod, Trombone, Truck, Trumpet, Tuba, '
1377
+ 'UAV, Umbrella, UnevenBars, UtilityPole, VacuumCleaner, Violin, Wakesurfing, Watch, WaterTower, WateringPot, Well, WellLid, Wheel, Wheelchair, WindTurbine, Windmill, WineGlass, WireWhisk, Yacht'
1378
+ )
1379
+ class_labels_TR_sorted = _class_labels_TR_sorted.split(', ')
1380
+
1381
+
1382
+ ### models/backbones/build_backbones.py
1383
+
1384
+ import torch
1385
+ import torch.nn as nn
1386
+ from collections import OrderedDict
1387
+ from torchvision.models import vgg16, vgg16_bn, VGG16_Weights, VGG16_BN_Weights, resnet50, ResNet50_Weights
1388
+ # from models.pvt_v2 import pvt_v2_b0, pvt_v2_b1, pvt_v2_b2, pvt_v2_b5
1389
+ # from models.swin_v1 import swin_v1_t, swin_v1_s, swin_v1_b, swin_v1_l
1390
+ # from config import Config
1391
+
1392
+
1393
+ config = Config()
1394
+
1395
+ def build_backbone(bb_name, pretrained=True, params_settings=''):
1396
+ if bb_name == 'vgg16':
1397
+ bb_net = list(vgg16(pretrained=VGG16_Weights.DEFAULT if pretrained else None).children())[0]
1398
+ bb = nn.Sequential(OrderedDict({'conv1': bb_net[:4], 'conv2': bb_net[4:9], 'conv3': bb_net[9:16], 'conv4': bb_net[16:23]}))
1399
+ elif bb_name == 'vgg16bn':
1400
+ bb_net = list(vgg16_bn(pretrained=VGG16_BN_Weights.DEFAULT if pretrained else None).children())[0]
1401
+ bb = nn.Sequential(OrderedDict({'conv1': bb_net[:6], 'conv2': bb_net[6:13], 'conv3': bb_net[13:23], 'conv4': bb_net[23:33]}))
1402
+ elif bb_name == 'resnet50':
1403
+ bb_net = list(resnet50(pretrained=ResNet50_Weights.DEFAULT if pretrained else None).children())
1404
+ bb = nn.Sequential(OrderedDict({'conv1': nn.Sequential(*bb_net[0:3]), 'conv2': bb_net[4], 'conv3': bb_net[5], 'conv4': bb_net[6]}))
1405
+ else:
1406
+ bb = eval('{}({})'.format(bb_name, params_settings))
1407
+ if pretrained:
1408
+ bb = load_weights(bb, bb_name)
1409
+ return bb
1410
+
1411
+ def load_weights(model, model_name):
1412
+ save_model = torch.load(config.weights[model_name], map_location='cpu')
1413
+ model_dict = model.state_dict()
1414
+ state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model.items() if k in model_dict.keys()}
1415
+ # to ignore the weights with mismatched size when I modify the backbone itself.
1416
+ if not state_dict:
1417
+ save_model_keys = list(save_model.keys())
1418
+ sub_item = save_model_keys[0] if len(save_model_keys) == 1 else None
1419
+ state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model[sub_item].items() if k in model_dict.keys()}
1420
+ if not state_dict or not sub_item:
1421
+ print('Weights are not successully loaded. Check the state dict of weights file.')
1422
+ return None
1423
+ else:
1424
+ print('Found correct weights in the "{}" item of loaded state_dict.'.format(sub_item))
1425
+ model_dict.update(state_dict)
1426
+ model.load_state_dict(model_dict)
1427
+ return model
1428
+
1429
+
1430
+
1431
+ ### models/modules/decoder_blocks.py
1432
+
1433
+ import torch
1434
+ import torch.nn as nn
1435
+ # from models.aspp import ASPP, ASPPDeformable
1436
+ # from config import Config
1437
+
1438
+
1439
+ # config = Config()
1440
+
1441
+
1442
+ class BasicDecBlk(nn.Module):
1443
+ def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
1444
+ super(BasicDecBlk, self).__init__()
1445
+ inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
1446
+ self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
1447
+ self.relu_in = nn.ReLU(inplace=True)
1448
+ if config.dec_att == 'ASPP':
1449
+ self.dec_att = ASPP(in_channels=inter_channels)
1450
+ elif config.dec_att == 'ASPPDeformable':
1451
+ self.dec_att = ASPPDeformable(in_channels=inter_channels)
1452
+ self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
1453
+ self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
1454
+ self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
1455
+
1456
+ def forward(self, x):
1457
+ x = self.conv_in(x)
1458
+ x = self.bn_in(x)
1459
+ x = self.relu_in(x)
1460
+ if hasattr(self, 'dec_att'):
1461
+ x = self.dec_att(x)
1462
+ x = self.conv_out(x)
1463
+ x = self.bn_out(x)
1464
+ return x
1465
+
1466
+
1467
+ class ResBlk(nn.Module):
1468
+ def __init__(self, in_channels=64, out_channels=None, inter_channels=64):
1469
+ super(ResBlk, self).__init__()
1470
+ if out_channels is None:
1471
+ out_channels = in_channels
1472
+ inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
1473
+
1474
+ self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
1475
+ self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
1476
+ self.relu_in = nn.ReLU(inplace=True)
1477
+
1478
+ if config.dec_att == 'ASPP':
1479
+ self.dec_att = ASPP(in_channels=inter_channels)
1480
+ elif config.dec_att == 'ASPPDeformable':
1481
+ self.dec_att = ASPPDeformable(in_channels=inter_channels)
1482
+
1483
+ self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
1484
+ self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
1485
+
1486
+ self.conv_resi = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
1487
+
1488
+ def forward(self, x):
1489
+ _x = self.conv_resi(x)
1490
+ x = self.conv_in(x)
1491
+ x = self.bn_in(x)
1492
+ x = self.relu_in(x)
1493
+ if hasattr(self, 'dec_att'):
1494
+ x = self.dec_att(x)
1495
+ x = self.conv_out(x)
1496
+ x = self.bn_out(x)
1497
+ return x + _x
1498
+
1499
+
1500
+
1501
+ ### models/modules/lateral_blocks.py
1502
+
1503
+ import numpy as np
1504
+ import torch
1505
+ import torch.nn as nn
1506
+ import torch.nn.functional as F
1507
+ from functools import partial
1508
+
1509
+ # from config import Config
1510
+
1511
+
1512
+ # config = Config()
1513
+
1514
+
1515
+ class BasicLatBlk(nn.Module):
1516
+ def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
1517
+ super(BasicLatBlk, self).__init__()
1518
+ inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
1519
+ self.conv = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
1520
+
1521
+ def forward(self, x):
1522
+ x = self.conv(x)
1523
+ return x
1524
+
1525
+
1526
+
1527
+ ### models/modules/aspp.py
1528
+
1529
+ import torch
1530
+ import torch.nn as nn
1531
+ import torch.nn.functional as F
1532
+ # from models.deform_conv import DeformableConv2d
1533
+ # from config import Config
1534
+
1535
+
1536
+ # config = Config()
1537
+
1538
+
1539
+ class _ASPPModule(nn.Module):
1540
+ def __init__(self, in_channels, planes, kernel_size, padding, dilation):
1541
+ super(_ASPPModule, self).__init__()
1542
+ self.atrous_conv = nn.Conv2d(in_channels, planes, kernel_size=kernel_size,
1543
+ stride=1, padding=padding, dilation=dilation, bias=False)
1544
+ self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
1545
+ self.relu = nn.ReLU(inplace=True)
1546
+
1547
+ def forward(self, x):
1548
+ x = self.atrous_conv(x)
1549
+ x = self.bn(x)
1550
+
1551
+ return self.relu(x)
1552
+
1553
+
1554
+ class ASPP(nn.Module):
1555
+ def __init__(self, in_channels=64, out_channels=None, output_stride=16):
1556
+ super(ASPP, self).__init__()
1557
+ self.down_scale = 1
1558
+ if out_channels is None:
1559
+ out_channels = in_channels
1560
+ self.in_channelster = 256 // self.down_scale
1561
+ if output_stride == 16:
1562
+ dilations = [1, 6, 12, 18]
1563
+ elif output_stride == 8:
1564
+ dilations = [1, 12, 24, 36]
1565
+ else:
1566
+ raise NotImplementedError
1567
+
1568
+ self.aspp1 = _ASPPModule(in_channels, self.in_channelster, 1, padding=0, dilation=dilations[0])
1569
+ self.aspp2 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[1], dilation=dilations[1])
1570
+ self.aspp3 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[2], dilation=dilations[2])
1571
+ self.aspp4 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[3], dilation=dilations[3])
1572
+
1573
+ self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
1574
+ nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
1575
+ nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
1576
+ nn.ReLU(inplace=True))
1577
+ self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False)
1578
+ self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
1579
+ self.relu = nn.ReLU(inplace=True)
1580
+ self.dropout = nn.Dropout(0.5)
1581
+
1582
+ def forward(self, x):
1583
+ x1 = self.aspp1(x)
1584
+ x2 = self.aspp2(x)
1585
+ x3 = self.aspp3(x)
1586
+ x4 = self.aspp4(x)
1587
+ x5 = self.global_avg_pool(x)
1588
+ x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
1589
+ x = torch.cat((x1, x2, x3, x4, x5), dim=1)
1590
+
1591
+ x = self.conv1(x)
1592
+ x = self.bn1(x)
1593
+ x = self.relu(x)
1594
+
1595
+ return self.dropout(x)
1596
+
1597
+
1598
+ ##################### Deformable
1599
+ class _ASPPModuleDeformable(nn.Module):
1600
+ def __init__(self, in_channels, planes, kernel_size, padding):
1601
+ super(_ASPPModuleDeformable, self).__init__()
1602
+ self.atrous_conv = DeformableConv2d(in_channels, planes, kernel_size=kernel_size,
1603
+ stride=1, padding=padding, bias=False)
1604
+ self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
1605
+ self.relu = nn.ReLU(inplace=True)
1606
+
1607
+ def forward(self, x):
1608
+ x = self.atrous_conv(x)
1609
+ x = self.bn(x)
1610
+
1611
+ return self.relu(x)
1612
+
1613
+
1614
+ class ASPPDeformable(nn.Module):
1615
+ def __init__(self, in_channels, out_channels=None, parallel_block_sizes=[1, 3, 7]):
1616
+ super(ASPPDeformable, self).__init__()
1617
+ self.down_scale = 1
1618
+ if out_channels is None:
1619
+ out_channels = in_channels
1620
+ self.in_channelster = 256 // self.down_scale
1621
+
1622
+ self.aspp1 = _ASPPModuleDeformable(in_channels, self.in_channelster, 1, padding=0)
1623
+ self.aspp_deforms = nn.ModuleList([
1624
+ _ASPPModuleDeformable(in_channels, self.in_channelster, conv_size, padding=int(conv_size//2)) for conv_size in parallel_block_sizes
1625
+ ])
1626
+
1627
+ self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
1628
+ nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
1629
+ nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
1630
+ nn.ReLU(inplace=True))
1631
+ self.conv1 = nn.Conv2d(self.in_channelster * (2 + len(self.aspp_deforms)), out_channels, 1, bias=False)
1632
+ self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
1633
+ self.relu = nn.ReLU(inplace=True)
1634
+ self.dropout = nn.Dropout(0.5)
1635
+
1636
+ def forward(self, x):
1637
+ x1 = self.aspp1(x)
1638
+ x_aspp_deforms = [aspp_deform(x) for aspp_deform in self.aspp_deforms]
1639
+ x5 = self.global_avg_pool(x)
1640
+ x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
1641
+ x = torch.cat((x1, *x_aspp_deforms, x5), dim=1)
1642
+
1643
+ x = self.conv1(x)
1644
+ x = self.bn1(x)
1645
+ x = self.relu(x)
1646
+
1647
+ return self.dropout(x)
1648
+
1649
+
1650
+
1651
+ ### models/refinement/refiner.py
1652
+
1653
+ import torch
1654
+ import torch.nn as nn
1655
+ from collections import OrderedDict
1656
+ import torch
1657
+ import torch.nn as nn
1658
+ import torch.nn.functional as F
1659
+ from torchvision.models import vgg16, vgg16_bn
1660
+ from torchvision.models import resnet50
1661
+
1662
+ # from config import Config
1663
+ # from dataset import class_labels_TR_sorted
1664
+ # from models.build_backbone import build_backbone
1665
+ # from models.decoder_blocks import BasicDecBlk
1666
+ # from models.lateral_blocks import BasicLatBlk
1667
+ # from models.ing import *
1668
+ # from models.stem_layer import StemLayer
1669
+
1670
+
1671
+ class RefinerPVTInChannels4(nn.Module):
1672
+ def __init__(self, in_channels=3+1):
1673
+ super(RefinerPVTInChannels4, self).__init__()
1674
+ self.config = Config()
1675
+ self.epoch = 1
1676
+ self.bb = build_backbone(self.config.bb, params_settings='in_channels=4')
1677
+
1678
+ lateral_channels_in_collection = {
1679
+ 'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
1680
+ 'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
1681
+ 'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
1682
+ }
1683
+ channels = lateral_channels_in_collection[self.config.bb]
1684
+ self.squeeze_module = BasicDecBlk(channels[0], channels[0])
1685
+
1686
+ self.decoder = Decoder(channels)
1687
+
1688
+ if 0:
1689
+ for key, value in self.named_parameters():
1690
+ if 'bb.' in key:
1691
+ value.requires_grad = False
1692
+
1693
+ def forward(self, x):
1694
+ if isinstance(x, list):
1695
+ x = torch.cat(x, dim=1)
1696
+ ########## Encoder ##########
1697
+ if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
1698
+ x1 = self.bb.conv1(x)
1699
+ x2 = self.bb.conv2(x1)
1700
+ x3 = self.bb.conv3(x2)
1701
+ x4 = self.bb.conv4(x3)
1702
+ else:
1703
+ x1, x2, x3, x4 = self.bb(x)
1704
+
1705
+ x4 = self.squeeze_module(x4)
1706
+
1707
+ ########## Decoder ##########
1708
+
1709
+ features = [x, x1, x2, x3, x4]
1710
+ scaled_preds = self.decoder(features)
1711
+
1712
+ return scaled_preds
1713
+
1714
+
1715
+ class Refiner(nn.Module):
1716
+ def __init__(self, in_channels=3+1):
1717
+ super(Refiner, self).__init__()
1718
+ self.config = Config()
1719
+ self.epoch = 1
1720
+ self.stem_layer = StemLayer(in_channels=in_channels, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
1721
+ self.bb = build_backbone(self.config.bb)
1722
+
1723
+ lateral_channels_in_collection = {
1724
+ 'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
1725
+ 'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
1726
+ 'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
1727
+ }
1728
+ channels = lateral_channels_in_collection[self.config.bb]
1729
+ self.squeeze_module = BasicDecBlk(channels[0], channels[0])
1730
+
1731
+ self.decoder = Decoder(channels)
1732
+
1733
+ if 0:
1734
+ for key, value in self.named_parameters():
1735
+ if 'bb.' in key:
1736
+ value.requires_grad = False
1737
+
1738
+ def forward(self, x):
1739
+ if isinstance(x, list):
1740
+ x = torch.cat(x, dim=1)
1741
+ x = self.stem_layer(x)
1742
+ ########## Encoder ##########
1743
+ if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
1744
+ x1 = self.bb.conv1(x)
1745
+ x2 = self.bb.conv2(x1)
1746
+ x3 = self.bb.conv3(x2)
1747
+ x4 = self.bb.conv4(x3)
1748
+ else:
1749
+ x1, x2, x3, x4 = self.bb(x)
1750
+
1751
+ x4 = self.squeeze_module(x4)
1752
+
1753
+ ########## Decoder ##########
1754
+
1755
+ features = [x, x1, x2, x3, x4]
1756
+ scaled_preds = self.decoder(features)
1757
+
1758
+ return scaled_preds
1759
+
1760
+
1761
+ class Decoder(nn.Module):
1762
+ def __init__(self, channels):
1763
+ super(Decoder, self).__init__()
1764
+ self.config = Config()
1765
+ DecoderBlock = eval('BasicDecBlk')
1766
+ LateralBlock = eval('BasicLatBlk')
1767
+
1768
+ self.decoder_block4 = DecoderBlock(channels[0], channels[1])
1769
+ self.decoder_block3 = DecoderBlock(channels[1], channels[2])
1770
+ self.decoder_block2 = DecoderBlock(channels[2], channels[3])
1771
+ self.decoder_block1 = DecoderBlock(channels[3], channels[3]//2)
1772
+
1773
+ self.lateral_block4 = LateralBlock(channels[1], channels[1])
1774
+ self.lateral_block3 = LateralBlock(channels[2], channels[2])
1775
+ self.lateral_block2 = LateralBlock(channels[3], channels[3])
1776
+
1777
+ if self.config.ms_supervision:
1778
+ self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
1779
+ self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
1780
+ self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
1781
+ self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2, 1, 1, 1, 0))
1782
+
1783
+ def forward(self, features):
1784
+ x, x1, x2, x3, x4 = features
1785
+ outs = []
1786
+ p4 = self.decoder_block4(x4)
1787
+ _p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
1788
+ _p3 = _p4 + self.lateral_block4(x3)
1789
+
1790
+ p3 = self.decoder_block3(_p3)
1791
+ _p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
1792
+ _p2 = _p3 + self.lateral_block3(x2)
1793
+
1794
+ p2 = self.decoder_block2(_p2)
1795
+ _p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
1796
+ _p1 = _p2 + self.lateral_block2(x1)
1797
+
1798
+ _p1 = self.decoder_block1(_p1)
1799
+ _p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
1800
+ p1_out = self.conv_out1(_p1)
1801
+
1802
+ if self.config.ms_supervision:
1803
+ outs.append(self.conv_ms_spvn_4(p4))
1804
+ outs.append(self.conv_ms_spvn_3(p3))
1805
+ outs.append(self.conv_ms_spvn_2(p2))
1806
+ outs.append(p1_out)
1807
+ return outs
1808
+
1809
+
1810
+ class RefUNet(nn.Module):
1811
+ # Refinement
1812
+ def __init__(self, in_channels=3+1):
1813
+ super(RefUNet, self).__init__()
1814
+ self.encoder_1 = nn.Sequential(
1815
+ nn.Conv2d(in_channels, 64, 3, 1, 1),
1816
+ nn.Conv2d(64, 64, 3, 1, 1),
1817
+ nn.BatchNorm2d(64),
1818
+ nn.ReLU(inplace=True)
1819
+ )
1820
+
1821
+ self.encoder_2 = nn.Sequential(
1822
+ nn.MaxPool2d(2, 2, ceil_mode=True),
1823
+ nn.Conv2d(64, 64, 3, 1, 1),
1824
+ nn.BatchNorm2d(64),
1825
+ nn.ReLU(inplace=True)
1826
+ )
1827
+
1828
+ self.encoder_3 = nn.Sequential(
1829
+ nn.MaxPool2d(2, 2, ceil_mode=True),
1830
+ nn.Conv2d(64, 64, 3, 1, 1),
1831
+ nn.BatchNorm2d(64),
1832
+ nn.ReLU(inplace=True)
1833
+ )
1834
+
1835
+ self.encoder_4 = nn.Sequential(
1836
+ nn.MaxPool2d(2, 2, ceil_mode=True),
1837
+ nn.Conv2d(64, 64, 3, 1, 1),
1838
+ nn.BatchNorm2d(64),
1839
+ nn.ReLU(inplace=True)
1840
+ )
1841
+
1842
+ self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True)
1843
+ #####
1844
+ self.decoder_5 = nn.Sequential(
1845
+ nn.Conv2d(64, 64, 3, 1, 1),
1846
+ nn.BatchNorm2d(64),
1847
+ nn.ReLU(inplace=True)
1848
+ )
1849
+ #####
1850
+ self.decoder_4 = nn.Sequential(
1851
+ nn.Conv2d(128, 64, 3, 1, 1),
1852
+ nn.BatchNorm2d(64),
1853
+ nn.ReLU(inplace=True)
1854
+ )
1855
+
1856
+ self.decoder_3 = nn.Sequential(
1857
+ nn.Conv2d(128, 64, 3, 1, 1),
1858
+ nn.BatchNorm2d(64),
1859
+ nn.ReLU(inplace=True)
1860
+ )
1861
+
1862
+ self.decoder_2 = nn.Sequential(
1863
+ nn.Conv2d(128, 64, 3, 1, 1),
1864
+ nn.BatchNorm2d(64),
1865
+ nn.ReLU(inplace=True)
1866
+ )
1867
+
1868
+ self.decoder_1 = nn.Sequential(
1869
+ nn.Conv2d(128, 64, 3, 1, 1),
1870
+ nn.BatchNorm2d(64),
1871
+ nn.ReLU(inplace=True)
1872
+ )
1873
+
1874
+ self.conv_d0 = nn.Conv2d(64, 1, 3, 1, 1)
1875
+
1876
+ self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
1877
+
1878
+ def forward(self, x):
1879
+ outs = []
1880
+ if isinstance(x, list):
1881
+ x = torch.cat(x, dim=1)
1882
+ hx = x
1883
+
1884
+ hx1 = self.encoder_1(hx)
1885
+ hx2 = self.encoder_2(hx1)
1886
+ hx3 = self.encoder_3(hx2)
1887
+ hx4 = self.encoder_4(hx3)
1888
+
1889
+ hx = self.decoder_5(self.pool4(hx4))
1890
+ hx = torch.cat((self.upscore2(hx), hx4), 1)
1891
+
1892
+ d4 = self.decoder_4(hx)
1893
+ hx = torch.cat((self.upscore2(d4), hx3), 1)
1894
+
1895
+ d3 = self.decoder_3(hx)
1896
+ hx = torch.cat((self.upscore2(d3), hx2), 1)
1897
+
1898
+ d2 = self.decoder_2(hx)
1899
+ hx = torch.cat((self.upscore2(d2), hx1), 1)
1900
+
1901
+ d1 = self.decoder_1(hx)
1902
+
1903
+ x = self.conv_d0(d1)
1904
+ outs.append(x)
1905
+ return outs
1906
+
1907
+
1908
+
1909
+ ### models/stem_layer.py
1910
+
1911
+ import torch.nn as nn
1912
+ # from utils import build_act_layer, build_norm_layer
1913
+
1914
+
1915
+ class StemLayer(nn.Module):
1916
+ r""" Stem layer of InternImage
1917
+ Args:
1918
+ in_channels (int): number of input channels
1919
+ out_channels (int): number of output channels
1920
+ act_layer (str): activation layer
1921
+ norm_layer (str): normalization layer
1922
+ """
1923
+
1924
+ def __init__(self,
1925
+ in_channels=3+1,
1926
+ inter_channels=48,
1927
+ out_channels=96,
1928
+ act_layer='GELU',
1929
+ norm_layer='BN'):
1930
+ super().__init__()
1931
+ self.conv1 = nn.Conv2d(in_channels,
1932
+ inter_channels,
1933
+ kernel_size=3,
1934
+ stride=1,
1935
+ padding=1)
1936
+ self.norm1 = build_norm_layer(
1937
+ inter_channels, norm_layer, 'channels_first', 'channels_first'
1938
+ )
1939
+ self.act = build_act_layer(act_layer)
1940
+ self.conv2 = nn.Conv2d(inter_channels,
1941
+ out_channels,
1942
+ kernel_size=3,
1943
+ stride=1,
1944
+ padding=1)
1945
+ self.norm2 = build_norm_layer(
1946
+ out_channels, norm_layer, 'channels_first', 'channels_first'
1947
+ )
1948
+
1949
+ def forward(self, x):
1950
+ x = self.conv1(x)
1951
+ x = self.norm1(x)
1952
+ x = self.act(x)
1953
+ x = self.conv2(x)
1954
+ x = self.norm2(x)
1955
+ return x
1956
+
1957
+
1958
+ ### models/birefnet.py
1959
+
1960
+ import torch
1961
+ import torch.nn as nn
1962
+ import torch.nn.functional as F
1963
+ from kornia.filters import laplacian
1964
+ from transformers import PreTrainedModel
1965
+ from einops import rearrange
1966
+
1967
+ # from config import Config
1968
+ # from dataset import class_labels_TR_sorted
1969
+ # from models.build_backbone import build_backbone
1970
+ # from models.decoder_blocks import BasicDecBlk, ResBlk, HierarAttDecBlk
1971
+ # from models.lateral_blocks import BasicLatBlk
1972
+ # from models.aspp import ASPP, ASPPDeformable
1973
+ # from models.ing import *
1974
+ # from models.refiner import Refiner, RefinerPVTInChannels4, RefUNet
1975
+ # from models.stem_layer import StemLayer
1976
+ from .BiRefNet_config import BiRefNetConfig
1977
+
1978
+
1979
+ def image2patches(image, grid_h=2, grid_w=2, patch_ref=None, transformation='b c (hg h) (wg w) -> (b hg wg) c h w'):
1980
+ if patch_ref is not None:
1981
+ grid_h, grid_w = image.shape[-2] // patch_ref.shape[-2], image.shape[-1] // patch_ref.shape[-1]
1982
+ patches = rearrange(image, transformation, hg=grid_h, wg=grid_w)
1983
+ return patches
1984
+
1985
+ def patches2image(patches, grid_h=2, grid_w=2, patch_ref=None, transformation='(b hg wg) c h w -> b c (hg h) (wg w)'):
1986
+ if patch_ref is not None:
1987
+ grid_h, grid_w = patch_ref.shape[-2] // patches[0].shape[-2], patch_ref.shape[-1] // patches[0].shape[-1]
1988
+ image = rearrange(patches, transformation, hg=grid_h, wg=grid_w)
1989
+ return image
1990
+
1991
+ class BiRefNet(
1992
+ PreTrainedModel
1993
+ ):
1994
+ config_class = BiRefNetConfig
1995
+ def __init__(self, bb_pretrained=True, config=BiRefNetConfig()):
1996
+ super(BiRefNet, self).__init__(config)
1997
+ bb_pretrained = config.bb_pretrained
1998
+ self.config = Config()
1999
+ self.epoch = 1
2000
+ self.bb = build_backbone(self.config.bb, pretrained=bb_pretrained)
2001
+
2002
+ channels = self.config.lateral_channels_in_collection
2003
+
2004
+ if self.config.auxiliary_classification:
2005
+ self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
2006
+ self.cls_head = nn.Sequential(
2007
+ nn.Linear(channels[0], len(class_labels_TR_sorted))
2008
+ )
2009
+
2010
+ if self.config.squeeze_block:
2011
+ self.squeeze_module = nn.Sequential(*[
2012
+ eval(self.config.squeeze_block.split('_x')[0])(channels[0]+sum(self.config.cxt), channels[0])
2013
+ for _ in range(eval(self.config.squeeze_block.split('_x')[1]))
2014
+ ])
2015
+
2016
+ self.decoder = Decoder(channels)
2017
+
2018
+ if self.config.ender:
2019
+ self.dec_end = nn.Sequential(
2020
+ nn.Conv2d(1, 16, 3, 1, 1),
2021
+ nn.Conv2d(16, 1, 3, 1, 1),
2022
+ nn.ReLU(inplace=True),
2023
+ )
2024
+
2025
+ # refine patch-level segmentation
2026
+ if self.config.refine:
2027
+ if self.config.refine == 'itself':
2028
+ self.stem_layer = StemLayer(in_channels=3+1, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
2029
+ else:
2030
+ self.refiner = eval('{}({})'.format(self.config.refine, 'in_channels=3+1'))
2031
+
2032
+ if self.config.freeze_bb:
2033
+ # Freeze the backbone...
2034
+ print(self.named_parameters())
2035
+ for key, value in self.named_parameters():
2036
+ if 'bb.' in key and 'refiner.' not in key:
2037
+ value.requires_grad = False
2038
+
2039
+ def forward_enc(self, x):
2040
+ if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
2041
+ x1 = self.bb.conv1(x); x2 = self.bb.conv2(x1); x3 = self.bb.conv3(x2); x4 = self.bb.conv4(x3)
2042
+ else:
2043
+ x1, x2, x3, x4 = self.bb(x)
2044
+ if self.config.mul_scl_ipt == 'cat':
2045
+ B, C, H, W = x.shape
2046
+ x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
2047
+ x1 = torch.cat([x1, F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)], dim=1)
2048
+ x2 = torch.cat([x2, F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)], dim=1)
2049
+ x3 = torch.cat([x3, F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)], dim=1)
2050
+ x4 = torch.cat([x4, F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)], dim=1)
2051
+ elif self.config.mul_scl_ipt == 'add':
2052
+ B, C, H, W = x.shape
2053
+ x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
2054
+ x1 = x1 + F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)
2055
+ x2 = x2 + F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)
2056
+ x3 = x3 + F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)
2057
+ x4 = x4 + F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)
2058
+ class_preds = self.cls_head(self.avgpool(x4).view(x4.shape[0], -1)) if self.training and self.config.auxiliary_classification else None
2059
+ if self.config.cxt:
2060
+ x4 = torch.cat(
2061
+ (
2062
+ *[
2063
+ F.interpolate(x1, size=x4.shape[2:], mode='bilinear', align_corners=True),
2064
+ F.interpolate(x2, size=x4.shape[2:], mode='bilinear', align_corners=True),
2065
+ F.interpolate(x3, size=x4.shape[2:], mode='bilinear', align_corners=True),
2066
+ ][-len(self.config.cxt):],
2067
+ x4
2068
+ ),
2069
+ dim=1
2070
+ )
2071
+ return (x1, x2, x3, x4), class_preds
2072
+
2073
+ def forward_ori(self, x):
2074
+ ########## Encoder ##########
2075
+ (x1, x2, x3, x4), class_preds = self.forward_enc(x)
2076
+ if self.config.squeeze_block:
2077
+ x4 = self.squeeze_module(x4)
2078
+ ########## Decoder ##########
2079
+ features = [x, x1, x2, x3, x4]
2080
+ if self.training and self.config.out_ref:
2081
+ features.append(laplacian(torch.mean(x, dim=1).unsqueeze(1), kernel_size=5))
2082
+ scaled_preds = self.decoder(features)
2083
+ return scaled_preds, class_preds
2084
+
2085
+ def forward(self, x):
2086
+ scaled_preds, class_preds = self.forward_ori(x)
2087
+ class_preds_lst = [class_preds]
2088
+ return [scaled_preds, class_preds_lst] if self.training else scaled_preds
2089
+
2090
+
2091
+ class Decoder(nn.Module):
2092
+ def __init__(self, channels):
2093
+ super(Decoder, self).__init__()
2094
+ self.config = Config()
2095
+ DecoderBlock = eval(self.config.dec_blk)
2096
+ LateralBlock = eval(self.config.lat_blk)
2097
+
2098
+ if self.config.dec_ipt:
2099
+ self.split = self.config.dec_ipt_split
2100
+ N_dec_ipt = 64
2101
+ DBlock = SimpleConvs
2102
+ ic = 64
2103
+ ipt_cha_opt = 1
2104
+ self.ipt_blk5 = DBlock(2**10*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
2105
+ self.ipt_blk4 = DBlock(2**8*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
2106
+ self.ipt_blk3 = DBlock(2**6*3 if self.split else 3, [N_dec_ipt, channels[1]//8][ipt_cha_opt], inter_channels=ic)
2107
+ self.ipt_blk2 = DBlock(2**4*3 if self.split else 3, [N_dec_ipt, channels[2]//8][ipt_cha_opt], inter_channels=ic)
2108
+ self.ipt_blk1 = DBlock(2**0*3 if self.split else 3, [N_dec_ipt, channels[3]//8][ipt_cha_opt], inter_channels=ic)
2109
+ else:
2110
+ self.split = None
2111
+
2112
+ self.decoder_block4 = DecoderBlock(channels[0]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[1])
2113
+ self.decoder_block3 = DecoderBlock(channels[1]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[2])
2114
+ self.decoder_block2 = DecoderBlock(channels[2]+([N_dec_ipt, channels[1]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3])
2115
+ self.decoder_block1 = DecoderBlock(channels[3]+([N_dec_ipt, channels[2]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]//2)
2116
+ self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2+([N_dec_ipt, channels[3]//8][ipt_cha_opt] if self.config.dec_ipt else 0), 1, 1, 1, 0))
2117
+
2118
+ self.lateral_block4 = LateralBlock(channels[1], channels[1])
2119
+ self.lateral_block3 = LateralBlock(channels[2], channels[2])
2120
+ self.lateral_block2 = LateralBlock(channels[3], channels[3])
2121
+
2122
+ if self.config.ms_supervision:
2123
+ self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
2124
+ self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
2125
+ self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
2126
+
2127
+ if self.config.out_ref:
2128
+ _N = 16
2129
+ self.gdt_convs_4 = nn.Sequential(nn.Conv2d(channels[1], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
2130
+ self.gdt_convs_3 = nn.Sequential(nn.Conv2d(channels[2], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
2131
+ self.gdt_convs_2 = nn.Sequential(nn.Conv2d(channels[3], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
2132
+
2133
+ self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
2134
+ self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
2135
+ self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
2136
+
2137
+ self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
2138
+ self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
2139
+ self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
2140
+
2141
+ def forward(self, features):
2142
+ if self.training and self.config.out_ref:
2143
+ outs_gdt_pred = []
2144
+ outs_gdt_label = []
2145
+ x, x1, x2, x3, x4, gdt_gt = features
2146
+ else:
2147
+ x, x1, x2, x3, x4 = features
2148
+ outs = []
2149
+
2150
+ if self.config.dec_ipt:
2151
+ patches_batch = image2patches(x, patch_ref=x4, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
2152
+ x4 = torch.cat((x4, self.ipt_blk5(F.interpolate(patches_batch, size=x4.shape[2:], mode='bilinear', align_corners=True))), 1)
2153
+ p4 = self.decoder_block4(x4)
2154
+ m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision and self.training else None
2155
+ if self.config.out_ref:
2156
+ p4_gdt = self.gdt_convs_4(p4)
2157
+ if self.training:
2158
+ # >> GT:
2159
+ m4_dia = m4
2160
+ gdt_label_main_4 = gdt_gt * F.interpolate(m4_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
2161
+ outs_gdt_label.append(gdt_label_main_4)
2162
+ # >> Pred:
2163
+ gdt_pred_4 = self.gdt_convs_pred_4(p4_gdt)
2164
+ outs_gdt_pred.append(gdt_pred_4)
2165
+ gdt_attn_4 = self.gdt_convs_attn_4(p4_gdt).sigmoid()
2166
+ # >> Finally:
2167
+ p4 = p4 * gdt_attn_4
2168
+ _p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
2169
+ _p3 = _p4 + self.lateral_block4(x3)
2170
+
2171
+ if self.config.dec_ipt:
2172
+ patches_batch = image2patches(x, patch_ref=_p3, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
2173
+ _p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1)
2174
+ p3 = self.decoder_block3(_p3)
2175
+ m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision and self.training else None
2176
+ if self.config.out_ref:
2177
+ p3_gdt = self.gdt_convs_3(p3)
2178
+ if self.training:
2179
+ # >> GT:
2180
+ # m3 --dilation--> m3_dia
2181
+ # G_3^gt * m3_dia --> G_3^m, which is the label of gradient
2182
+ m3_dia = m3
2183
+ gdt_label_main_3 = gdt_gt * F.interpolate(m3_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
2184
+ outs_gdt_label.append(gdt_label_main_3)
2185
+ # >> Pred:
2186
+ # p3 --conv--BN--> F_3^G, where F_3^G predicts the \hat{G_3} with xx
2187
+ # F_3^G --sigmoid--> A_3^G
2188
+ gdt_pred_3 = self.gdt_convs_pred_3(p3_gdt)
2189
+ outs_gdt_pred.append(gdt_pred_3)
2190
+ gdt_attn_3 = self.gdt_convs_attn_3(p3_gdt).sigmoid()
2191
+ # >> Finally:
2192
+ # p3 = p3 * A_3^G
2193
+ p3 = p3 * gdt_attn_3
2194
+ _p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
2195
+ _p2 = _p3 + self.lateral_block3(x2)
2196
+
2197
+ if self.config.dec_ipt:
2198
+ patches_batch = image2patches(x, patch_ref=_p2, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
2199
+ _p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1)
2200
+ p2 = self.decoder_block2(_p2)
2201
+ m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision and self.training else None
2202
+ if self.config.out_ref:
2203
+ p2_gdt = self.gdt_convs_2(p2)
2204
+ if self.training:
2205
+ # >> GT:
2206
+ m2_dia = m2
2207
+ gdt_label_main_2 = gdt_gt * F.interpolate(m2_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
2208
+ outs_gdt_label.append(gdt_label_main_2)
2209
+ # >> Pred:
2210
+ gdt_pred_2 = self.gdt_convs_pred_2(p2_gdt)
2211
+ outs_gdt_pred.append(gdt_pred_2)
2212
+ gdt_attn_2 = self.gdt_convs_attn_2(p2_gdt).sigmoid()
2213
+ # >> Finally:
2214
+ p2 = p2 * gdt_attn_2
2215
+ _p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
2216
+ _p1 = _p2 + self.lateral_block2(x1)
2217
+
2218
+ if self.config.dec_ipt:
2219
+ patches_batch = image2patches(x, patch_ref=_p1, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
2220
+ _p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1)
2221
+ _p1 = self.decoder_block1(_p1)
2222
+ _p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
2223
+
2224
+ if self.config.dec_ipt:
2225
+ patches_batch = image2patches(x, patch_ref=_p1, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
2226
+ _p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1)
2227
+ p1_out = self.conv_out1(_p1)
2228
+
2229
+ if self.config.ms_supervision and self.training:
2230
+ outs.append(m4)
2231
+ outs.append(m3)
2232
+ outs.append(m2)
2233
+ outs.append(p1_out)
2234
+ return outs if not (self.config.out_ref and self.training) else ([outs_gdt_pred, outs_gdt_label], outs)
2235
+
2236
+
2237
+ class SimpleConvs(nn.Module):
2238
+ def __init__(
2239
+ self, in_channels: int, out_channels: int, inter_channels=64
2240
+ ) -> None:
2241
+ super().__init__()
2242
+ self.conv1 = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
2243
+ self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1)
2244
+
2245
+ def forward(self, x):
2246
+ return self.conv_out(self.conv1(x))
config.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "ZhengPeng7/BiRefNet",
3
+ "architectures": [
4
+ "BiRefNet"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "BiRefNet_config.BiRefNetConfig",
8
+ "AutoModelForImageSegmentation": "birefnet.BiRefNet"
9
+ },
10
+ "custom_pipelines": {
11
+ "image-segmentation": {
12
+ "pt": [
13
+ "AutoModelForImageSegmentation"
14
+ ],
15
+ "tf": [],
16
+ "type": "image"
17
+ }
18
+ },
19
+ "bb_pretrained": false
20
+ }
handler.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # These HF deployment codes refer to https://huggingface.co/not-lain/BiRefNet/raw/main/handler.py.
2
+ from typing import Dict, List, Any, Tuple
3
+ import os
4
+ import requests
5
+ from io import BytesIO
6
+ import cv2
7
+ import numpy as np
8
+ from PIL import Image
9
+ import torch
10
+ from torchvision import transforms
11
+ from transformers import AutoModelForImageSegmentation
12
+
13
+ torch.set_float32_matmul_precision(["high", "highest"][0])
14
+
15
+ device = "cuda" if torch.cuda.is_available() else "cpu"
16
+
17
+ ### image_proc.py
18
+ def refine_foreground(image, mask, r=90):
19
+ if mask.size != image.size:
20
+ mask = mask.resize(image.size)
21
+ image = np.array(image) / 255.0
22
+ mask = np.array(mask) / 255.0
23
+ estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
24
+ image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
25
+ return image_masked
26
+
27
+
28
+ def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
29
+ # Thanks to the source: https://github.com/Photoroom/fast-foreground-estimation
30
+ alpha = alpha[:, :, None]
31
+ F, blur_B = FB_blur_fusion_foreground_estimator(image, image, image, alpha, r)
32
+ return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
33
+
34
+
35
+ def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
36
+ if isinstance(image, Image.Image):
37
+ image = np.array(image) / 255.0
38
+ blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
39
+
40
+ blurred_FA = cv2.blur(F * alpha, (r, r))
41
+ blurred_F = blurred_FA / (blurred_alpha + 1e-5)
42
+
43
+ blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
44
+ blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
45
+ F = blurred_F + alpha * \
46
+ (image - alpha * blurred_F - (1 - alpha) * blurred_B)
47
+ F = np.clip(F, 0, 1)
48
+ return F, blurred_B
49
+
50
+
51
+ class ImagePreprocessor():
52
+ def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None:
53
+ self.transform_image = transforms.Compose([
54
+ transforms.Resize(resolution),
55
+ transforms.ToTensor(),
56
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
57
+ ])
58
+
59
+ def proc(self, image: Image.Image) -> torch.Tensor:
60
+ image = self.transform_image(image)
61
+ return image
62
+
63
+ usage_to_weights_file = {
64
+ 'General': 'BiRefNet',
65
+ 'General-HR': 'BiRefNet_HR',
66
+ 'General-Lite': 'BiRefNet_lite',
67
+ 'General-Lite-2K': 'BiRefNet_lite-2K',
68
+ 'General-reso_512': 'BiRefNet-reso_512',
69
+ 'Matting': 'BiRefNet-matting',
70
+ 'Matting-HR': 'BiRefNet_HR-Matting',
71
+ 'Portrait': 'BiRefNet-portrait',
72
+ 'DIS': 'BiRefNet-DIS5K',
73
+ 'HRSOD': 'BiRefNet-HRSOD',
74
+ 'COD': 'BiRefNet-COD',
75
+ 'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs',
76
+ 'General-legacy': 'BiRefNet-legacy'
77
+ }
78
+
79
+ # Choose the version of BiRefNet here.
80
+ usage = 'General'
81
+
82
+ # Set resolution
83
+ if usage in ['General-Lite-2K']:
84
+ resolution = (2560, 1440)
85
+ elif usage in ['General-reso_512']:
86
+ resolution = (512, 512)
87
+ elif usage in ['General-HR', 'Matting-HR']:
88
+ resolution = (2048, 2048)
89
+ else:
90
+ resolution = (1024, 1024)
91
+
92
+ half_precision = True
93
+
94
+ class EndpointHandler():
95
+ def __init__(self, path=''):
96
+ self.birefnet = AutoModelForImageSegmentation.from_pretrained(
97
+ '/'.join(('zhengpeng7', usage_to_weights_file[usage])), trust_remote_code=True
98
+ )
99
+ self.birefnet.to(device)
100
+ self.birefnet.eval()
101
+ if half_precision:
102
+ self.birefnet.half()
103
+
104
+ def __call__(self, data: Dict[str, Any]):
105
+ """
106
+ data args:
107
+ inputs (:obj: `str`)
108
+ date (:obj: `str`)
109
+ Return:
110
+ A :obj:`list` | `dict`: will be serialized and returned
111
+ """
112
+ print('data["inputs"] = ', data["inputs"])
113
+ image_src = data["inputs"]
114
+ if isinstance(image_src, str):
115
+ if os.path.isfile(image_src):
116
+ image_ori = Image.open(image_src)
117
+ else:
118
+ response = requests.get(image_src)
119
+ image_data = BytesIO(response.content)
120
+ image_ori = Image.open(image_data)
121
+ else:
122
+ image_ori = Image.fromarray(image_src)
123
+
124
+ image = image_ori.convert('RGB')
125
+ # Preprocess the image
126
+ image_preprocessor = ImagePreprocessor(resolution=tuple(resolution))
127
+ image_proc = image_preprocessor.proc(image)
128
+ image_proc = image_proc.unsqueeze(0)
129
+
130
+ # Prediction
131
+ with torch.no_grad():
132
+ preds = self.birefnet(image_proc.to(device).half() if half_precision else image_proc.to(device))[-1].sigmoid().cpu()
133
+ pred = preds[0].squeeze()
134
+
135
+ # Show Results
136
+ pred_pil = transforms.ToPILImage()(pred)
137
+ image_masked = refine_foreground(image, pred_pil)
138
+ image_masked.putalpha(pred_pil.resize(image.size))
139
+ return image_masked
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ab37426bf4de0567af6b5d21b16151357149139362e6e8992021b8ce356a154
3
+ size 444473596
requirements.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ torch==2.5.1
2
+ torchvision
3
+ numpy<2
4
+ opencv-python
5
+ timm
6
+ scipy
7
+ scikit-image
8
+ kornia
9
+ einops
10
+
11
+ tqdm
12
+ prettytable
13
+
14
+ transformers
15
+ huggingface-hub>0.25
16
+ accelerate