Upload 8 files
Browse files- README.md +134 -0
- added_tokens.json +6 -0
- gliner_config.json +124 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +51 -0
- spm.model +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +86 -0
README.md
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
library_name: gliner
|
| 6 |
+
datasets:
|
| 7 |
+
- nvidia/Nemotron-PII
|
| 8 |
+
pipeline_tag: token-classification
|
| 9 |
+
tags:
|
| 10 |
+
- PII
|
| 11 |
+
- PHI
|
| 12 |
+
- GLiNER
|
| 13 |
+
- information extraction
|
| 14 |
+
- encoder
|
| 15 |
+
- entity recognition
|
| 16 |
+
- privacy
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# GLiNER-PII: Fine-Tuned Model for PII/PHI Detection
|
| 20 |
+
|
| 21 |
+
The GLiNER-PII is a fine-tuned successor to the Gretel GLiNER PII models. Built on the GLiNER bi-large base (`knowledgator/gliner-bi-large-v1.0`), it detects and classifies a broad range of Personally Identifiable Information (PII) and Protected Health Information (PHI) in **English text**. The model works with both structured and unstructured text and is non-generative, producing span-level entity annotations with confidence scores across 55+ categories.
|
| 22 |
+
|
| 23 |
+
This model is intended for privacy-preserving NLP workflows such as de-identification, redaction, and compliance checks in healthcare, finance, legal, and enterprise data pipelines.
|
| 24 |
+
|
| 25 |
+
For more information about the base GLiNER model, including its architecture and general capabilities, please refer to the [GLiNER Model Card](https://huggingface.co/knowledgator/gliner-bi-large-v1.0).
|
| 26 |
+
|
| 27 |
+
## Training Data
|
| 28 |
+
|
| 29 |
+
The model was fine-tuned on the `nvidia/Nemotron-PII` dataset, a synthetic, persona-grounded dataset containing 100,000 records across 50+ industries with span-level annotations for 55+ PII/PHI categories. The dataset was generated with NVIDIA NeMo Data Designer using synthetic personas grounded in U.S. Census data to ensure demographic realism and contextual consistency.
|
| 30 |
+
|
| 31 |
+
**Dataset Details:**
|
| 32 |
+
- **Size:** 100,000 records (50k train / 50k test)
|
| 33 |
+
- **Domains:** 50+ industries (healthcare, finance, cybersecurity, etc.)
|
| 34 |
+
- **Entity Types:** 55+ PII/PHI categories
|
| 35 |
+
- **Locale Coverage:** US and international formats
|
| 36 |
+
- **Content Types:** Both structured (forms, invoices) and unstructured (emails, notes) documents
|
| 37 |
+
|
| 38 |
+
For detailed statistics on the dataset, visit the [dataset documentation on Hugging Face](https://huggingface.co/datasets/nvidia/Nemotron-PII).
|
| 39 |
+
|
| 40 |
+
## Use Cases
|
| 41 |
+
|
| 42 |
+
The GLiNER-PII supports detection and redaction of sensitive information across regulated and enterprise scenarios:
|
| 43 |
+
|
| 44 |
+
- **Healthcare**: Redact PHI in clinical notes, reports, and medical documents
|
| 45 |
+
- **Finance**: Identify account numbers, SSNs, and transaction details in banking and insurance documents
|
| 46 |
+
- **Legal**: Protect client information in contracts, filings, and discovery materials
|
| 47 |
+
- **Enterprise Data Governance**: Scan documents, emails, and data stores for sensitive information
|
| 48 |
+
- **Data Privacy Compliance**: Support GDPR, HIPAA, and CCPA workflows across varied document types
|
| 49 |
+
- **Cybersecurity**: Detect sensitive data in logs, security reports, and incident records
|
| 50 |
+
- **Content Moderation**: Flag personal information in user-generated content
|
| 51 |
+
|
| 52 |
+
Note: performance varies by domain, format, and threshold, so validation and human review are recommended for high-stakes deployments.
|
| 53 |
+
|
| 54 |
+
## Installation & Usage
|
| 55 |
+
|
| 56 |
+
Ensure you have Python installed. Then, install or update the `gliner` package:
|
| 57 |
+
|
| 58 |
+
```python
|
| 59 |
+
import json
|
| 60 |
+
from gliner import GLiNER
|
| 61 |
+
|
| 62 |
+
# Load the fine-tuned GLiNER model
|
| 63 |
+
model = GLiNER.from_pretrained("nvidia/gliner-pii")
|
| 64 |
+
|
| 65 |
+
# Sample text containing PII/PHI entities
|
| 66 |
+
text = """
|
| 67 |
+
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
# Define the labels for PII/PHI entities
|
| 71 |
+
labels = [
|
| 72 |
+
"certificate_license_number",
|
| 73 |
+
"first_name",
|
| 74 |
+
"date_of_birth",
|
| 75 |
+
"ssn",
|
| 76 |
+
"medical_record_number",
|
| 77 |
+
"password",
|
| 78 |
+
"unique_id",
|
| 79 |
+
"phone_number",
|
| 80 |
+
"national_id",
|
| 81 |
+
"swift_bic",
|
| 82 |
+
"company_name",
|
| 83 |
+
"country",
|
| 84 |
+
"license_plate",
|
| 85 |
+
"tax_id",
|
| 86 |
+
"employee_id",
|
| 87 |
+
"pin" ,
|
| 88 |
+
"state",
|
| 89 |
+
"email",
|
| 90 |
+
"date_time",
|
| 91 |
+
"api_key",
|
| 92 |
+
"biometric_identifier",
|
| 93 |
+
"credit_debit_card",
|
| 94 |
+
"coordinate",
|
| 95 |
+
"device_identifier",
|
| 96 |
+
"city",
|
| 97 |
+
"postcode",
|
| 98 |
+
"bank_routing_number",
|
| 99 |
+
"vehicle_identifier",
|
| 100 |
+
"health_plan_beneficiary_number",
|
| 101 |
+
"url",
|
| 102 |
+
"ipv4",
|
| 103 |
+
"last_name",
|
| 104 |
+
"cvv" ,
|
| 105 |
+
"customer_id",
|
| 106 |
+
"date",
|
| 107 |
+
"user_name",
|
| 108 |
+
"street_address",
|
| 109 |
+
"ipv6",
|
| 110 |
+
"account_number",
|
| 111 |
+
"time",
|
| 112 |
+
"age",
|
| 113 |
+
"fax_number",
|
| 114 |
+
"county",
|
| 115 |
+
"gender",
|
| 116 |
+
"sexuality",
|
| 117 |
+
"political_view",
|
| 118 |
+
"race_ethnicity",
|
| 119 |
+
"religious_belief",
|
| 120 |
+
"language",
|
| 121 |
+
"blood_type",
|
| 122 |
+
"mac_address",
|
| 123 |
+
"http_cookie",
|
| 124 |
+
"employment_status",
|
| 125 |
+
"education_level",
|
| 126 |
+
"occupation"
|
| 127 |
+
]
|
| 128 |
+
|
| 129 |
+
# Predict entities with a confidence threshold of 0.7
|
| 130 |
+
entities = model.predict_entities(text, labels, threshold=0.3)
|
| 131 |
+
|
| 132 |
+
# Display the detected entities
|
| 133 |
+
print(json.dumps(entities, indent=2))
|
| 134 |
+
```
|
added_tokens.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"<<ENT>>": 128002,
|
| 3 |
+
"<<SEP>>": 128003,
|
| 4 |
+
"[FLERT]": 128001,
|
| 5 |
+
"[MASK]": 128000
|
| 6 |
+
}
|
gliner_config.json
ADDED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"class_token_index": 128002,
|
| 3 |
+
"dropout": 0.4,
|
| 4 |
+
"embed_ent_token": true,
|
| 5 |
+
"encoder_config": {
|
| 6 |
+
"_name_or_path": "microsoft/deberta-v3-large",
|
| 7 |
+
"add_cross_attention": false,
|
| 8 |
+
"architectures": null,
|
| 9 |
+
"attention_probs_dropout_prob": 0.1,
|
| 10 |
+
"bad_words_ids": null,
|
| 11 |
+
"begin_suppress_tokens": null,
|
| 12 |
+
"bos_token_id": null,
|
| 13 |
+
"chunk_size_feed_forward": 0,
|
| 14 |
+
"cross_attention_hidden_size": null,
|
| 15 |
+
"decoder_start_token_id": null,
|
| 16 |
+
"diversity_penalty": 0.0,
|
| 17 |
+
"do_sample": false,
|
| 18 |
+
"early_stopping": false,
|
| 19 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 20 |
+
"eos_token_id": null,
|
| 21 |
+
"exponential_decay_length_penalty": null,
|
| 22 |
+
"finetuning_task": null,
|
| 23 |
+
"forced_bos_token_id": null,
|
| 24 |
+
"forced_eos_token_id": null,
|
| 25 |
+
"hidden_act": "gelu",
|
| 26 |
+
"hidden_dropout_prob": 0.1,
|
| 27 |
+
"hidden_size": 1024,
|
| 28 |
+
"id2label": {
|
| 29 |
+
"0": "LABEL_0",
|
| 30 |
+
"1": "LABEL_1"
|
| 31 |
+
},
|
| 32 |
+
"initializer_range": 0.02,
|
| 33 |
+
"intermediate_size": 4096,
|
| 34 |
+
"is_decoder": false,
|
| 35 |
+
"is_encoder_decoder": false,
|
| 36 |
+
"label2id": {
|
| 37 |
+
"LABEL_0": 0,
|
| 38 |
+
"LABEL_1": 1
|
| 39 |
+
},
|
| 40 |
+
"layer_norm_eps": 1e-07,
|
| 41 |
+
"length_penalty": 1.0,
|
| 42 |
+
"max_length": 20,
|
| 43 |
+
"max_position_embeddings": 512,
|
| 44 |
+
"max_relative_positions": -1,
|
| 45 |
+
"min_length": 0,
|
| 46 |
+
"model_type": "deberta-v2",
|
| 47 |
+
"no_repeat_ngram_size": 0,
|
| 48 |
+
"norm_rel_ebd": "layer_norm",
|
| 49 |
+
"num_attention_heads": 16,
|
| 50 |
+
"num_beam_groups": 1,
|
| 51 |
+
"num_beams": 1,
|
| 52 |
+
"num_hidden_layers": 24,
|
| 53 |
+
"num_return_sequences": 1,
|
| 54 |
+
"output_attentions": false,
|
| 55 |
+
"output_hidden_states": false,
|
| 56 |
+
"output_scores": false,
|
| 57 |
+
"pad_token_id": 0,
|
| 58 |
+
"pooler_dropout": 0,
|
| 59 |
+
"pooler_hidden_act": "gelu",
|
| 60 |
+
"pooler_hidden_size": 1024,
|
| 61 |
+
"pos_att_type": [
|
| 62 |
+
"p2c",
|
| 63 |
+
"c2p"
|
| 64 |
+
],
|
| 65 |
+
"position_biased_input": false,
|
| 66 |
+
"position_buckets": 256,
|
| 67 |
+
"prefix": null,
|
| 68 |
+
"problem_type": null,
|
| 69 |
+
"pruned_heads": {},
|
| 70 |
+
"relative_attention": true,
|
| 71 |
+
"remove_invalid_values": false,
|
| 72 |
+
"repetition_penalty": 1.0,
|
| 73 |
+
"return_dict": true,
|
| 74 |
+
"return_dict_in_generate": false,
|
| 75 |
+
"sep_token_id": null,
|
| 76 |
+
"share_att_key": true,
|
| 77 |
+
"suppress_tokens": null,
|
| 78 |
+
"task_specific_params": null,
|
| 79 |
+
"temperature": 1.0,
|
| 80 |
+
"tf_legacy_loss": false,
|
| 81 |
+
"tie_encoder_decoder": false,
|
| 82 |
+
"tie_word_embeddings": true,
|
| 83 |
+
"tokenizer_class": null,
|
| 84 |
+
"top_k": 50,
|
| 85 |
+
"top_p": 1.0,
|
| 86 |
+
"torch_dtype": null,
|
| 87 |
+
"torchscript": false,
|
| 88 |
+
"type_vocab_size": 0,
|
| 89 |
+
"typical_p": 1.0,
|
| 90 |
+
"use_bfloat16": false,
|
| 91 |
+
"vocab_size": 128004
|
| 92 |
+
},
|
| 93 |
+
"ent_token": "<<ENT>>",
|
| 94 |
+
"eval_every": 5000,
|
| 95 |
+
"fine_tune": true,
|
| 96 |
+
"fuse_layers": false,
|
| 97 |
+
"has_rnn": true,
|
| 98 |
+
"hidden_size": 512,
|
| 99 |
+
"labels_encoder": null,
|
| 100 |
+
"labels_encoder_config": null,
|
| 101 |
+
"lr_encoder": "1e-5",
|
| 102 |
+
"lr_others": "5e-5",
|
| 103 |
+
"max_len": 384,
|
| 104 |
+
"max_neg_type_ratio": 1,
|
| 105 |
+
"max_types": 25,
|
| 106 |
+
"max_width": 12,
|
| 107 |
+
"model_name": "microsoft/deberta-v3-large",
|
| 108 |
+
"model_type": "gliner",
|
| 109 |
+
"name": "correct",
|
| 110 |
+
"num_post_fusion_layers": 1,
|
| 111 |
+
"num_steps": 30000,
|
| 112 |
+
"post_fusion_schema": "",
|
| 113 |
+
"random_drop": true,
|
| 114 |
+
"sep_token": "<<SEP>>",
|
| 115 |
+
"shuffle_types": true,
|
| 116 |
+
"size_sup": -1,
|
| 117 |
+
"span_mode": "markerV0",
|
| 118 |
+
"subtoken_pooling": "first",
|
| 119 |
+
"train_batch_size": 8,
|
| 120 |
+
"transformers_version": "4.45.2",
|
| 121 |
+
"vocab_size": 128004,
|
| 122 |
+
"warmup_ratio": 3000,
|
| 123 |
+
"words_splitter_type": "whitespace"
|
| 124 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a4dfd0dcbd718acc86dca65fa99f1097d2796c8d7a681e1bc42f40f946c03802
|
| 3 |
+
size 1782000995
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "[CLS]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "[SEP]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "[MASK]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "[PAD]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "[SEP]",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "[UNK]",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": true,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
spm.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
|
| 3 |
+
size 2464616
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "[CLS]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "[SEP]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "[UNK]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": true,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"128000": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"128001": {
|
| 44 |
+
"content": "[FLERT]",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": true,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": false
|
| 50 |
+
},
|
| 51 |
+
"128002": {
|
| 52 |
+
"content": "<<ENT>>",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": true,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": false
|
| 58 |
+
},
|
| 59 |
+
"128003": {
|
| 60 |
+
"content": "<<SEP>>",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": true,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": false
|
| 66 |
+
}
|
| 67 |
+
},
|
| 68 |
+
"bos_token": "[CLS]",
|
| 69 |
+
"clean_up_tokenization_spaces": false,
|
| 70 |
+
"cls_token": "[CLS]",
|
| 71 |
+
"do_lower_case": false,
|
| 72 |
+
"eos_token": "[SEP]",
|
| 73 |
+
"mask_token": "[MASK]",
|
| 74 |
+
"max_length": null,
|
| 75 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 76 |
+
"pad_to_multiple_of": null,
|
| 77 |
+
"pad_token": "[PAD]",
|
| 78 |
+
"pad_token_type_id": 0,
|
| 79 |
+
"padding_side": "right",
|
| 80 |
+
"sep_token": "[SEP]",
|
| 81 |
+
"sp_model_kwargs": {},
|
| 82 |
+
"split_by_punct": false,
|
| 83 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
| 84 |
+
"unk_token": "[UNK]",
|
| 85 |
+
"vocab_type": "spm"
|
| 86 |
+
}
|