- JPEG Information Regularized Deep Image Prior for Denoising Image denoising is a representative image restoration task in computer vision. Recent progress of image denoising from only noisy images has attracted much attention. Deep image prior (DIP) demonstrated successful image denoising from only a noisy image by inductive bias of convolutional neural network architectures without any pre-training. The major challenge of DIP based image denoising is that DIP would completely recover the original noisy image unless applying early stopping. For early stopping without a ground-truth clean image, we propose to monitor JPEG file size of the recovered image during optimization as a proxy metric of noise levels in the recovered image. Our experiments show that the compressed image file size works as an effective metric for early stopping. 3 authors · Oct 2, 2023
- The Devil is in the Upsampling: Architectural Decisions Made Simpler for Denoising with Deep Image Prior Deep Image Prior (DIP) shows that some network architectures naturally bias towards smooth images and resist noises, a phenomenon known as spectral bias. Image denoising is an immediate application of this property. Although DIP has removed the requirement of large training sets, it still presents two practical challenges for denoising: architectural design and noise-fitting, which are often intertwined. Existing methods mostly handcraft or search for the architecture from a large design space, due to the lack of understanding on how the architectural choice corresponds to the image. In this study, we analyze from a frequency perspective to demonstrate that the unlearnt upsampling is the main driving force behind the denoising phenomenon in DIP. This finding then leads to strategies for estimating a suitable architecture for every image without a laborious search. Extensive experiments show that the estimated architectures denoise and preserve the textural details better than current methods with up to 95% fewer parameters. The under-parameterized nature also makes them especially robust to a higher level of noise. 5 authors · Apr 22, 2023
- Blind Image Deconvolution by Generative-based Kernel Prior and Initializer via Latent Encoding Blind image deconvolution (BID) is a classic yet challenging problem in the field of image processing. Recent advances in deep image prior (DIP) have motivated a series of DIP-based approaches, demonstrating remarkable success in BID. However, due to the high non-convexity of the inherent optimization process, these methods are notorious for their sensitivity to the initialized kernel. To alleviate this issue and further improve their performance, we propose a new framework for BID that better considers the prior modeling and the initialization for blur kernels, leveraging a deep generative model. The proposed approach pre-trains a generative adversarial network-based kernel generator that aptly characterizes the kernel priors and a kernel initializer that facilitates a well-informed initialization for the blur kernel through latent space encoding. With the pre-trained kernel generator and initializer, one can obtain a high-quality initialization of the blur kernel, and enable optimization within a compact latent kernel manifold. Such a framework results in an evident performance improvement over existing DIP-based BID methods. Extensive experiments on different datasets demonstrate the effectiveness of the proposed method. 5 authors · Jul 20, 2024
- Improved Image Generation via Sparse Modeling The interest of the deep learning community in image synthesis has grown massively in recent years. Nowadays, deep generative methods, and especially Generative Adversarial Networks (GANs), are leading to state-of-the-art performance, capable of synthesizing images that appear realistic. While the efforts for improving the quality of the generated images are extensive, most attempts still consider the generator part as an uncorroborated "black-box". In this paper, we aim to provide a better understanding and design of the image generation process. We interpret existing generators as implicitly relying on sparsity-inspired models. More specifically, we show that generators can be viewed as manifestations of the Convolutional Sparse Coding (CSC) and its Multi-Layered version (ML-CSC) synthesis processes. We leverage this observation by explicitly enforcing a sparsifying regularization on appropriately chosen activation layers in the generator, and demonstrate that this leads to improved image synthesis. Furthermore, we show that the same rationale and benefits apply to generators serving inverse problems, demonstrated on the Deep Image Prior (DIP) method. 2 authors · Apr 1, 2021
- An Internal Learning Approach to Video Inpainting We propose a novel video inpainting algorithm that simultaneously hallucinates missing appearance and motion (optical flow) information, building upon the recent 'Deep Image Prior' (DIP) that exploits convolutional network architectures to enforce plausible texture in static images. In extending DIP to video we make two important contributions. First, we show that coherent video inpainting is possible without a priori training. We take a generative approach to inpainting based on internal (within-video) learning without reliance upon an external corpus of visual data to train a one-size-fits-all model for the large space of general videos. Second, we show that such a framework can jointly generate both appearance and flow, whilst exploiting these complementary modalities to ensure mutual consistency. We show that leveraging appearance statistics specific to each video achieves visually plausible results whilst handling the challenging problem of long-term consistency. 6 authors · Sep 17, 2019