05simran's picture
Update app.py
97fb162 verified
import os
import gradio as gr
import requests
import pandas as pd
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Agent Definition ---
class BasicAgent:
def __init__(self):
# Change this model to one you have access to
model_name = "Qwen/Qwen3-0.6B-MLX-bf16"
print(f"Loading model {model_name}")
# Load tokenizer and model
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto"
)
# Create generation pipeline
self.generator = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
max_new_tokens=100,
temperature=0.0,
do_sample=False
)
def __call__(self, question: str) -> str:
print("Question:", question)
prompt = question.strip()
output = self.generator(prompt)[0]["generated_text"]
# Remove the prompt prefix so only the answer remains
if output.startswith(prompt):
answer = output[len(prompt):].strip()
else:
answer = output.strip()
# Take first line if multiple lines
answer = answer.split("\n")[0].strip()
# Optionally strip trailing punctuation
answer = answer.rstrip(" .,:;!?")
print("Answer:", answer)
return answer
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if not profile:
return "Please Login to Hugging Face with the button.", None
username = profile.username
print("User:", username)
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = BasicAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
# Fetch questions
try:
resp = requests.get(questions_url, timeout=15)
resp.raise_for_status()
questions_data = resp.json()
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
ans = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": ans})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": ans
})
except Exception as e:
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"ERROR: {e}"
})
if not answers_payload:
return "Agent did not produce any answers.", pd.DataFrame(results_log)
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
try:
post_resp = requests.post(submit_url, json=submission_data, timeout=60)
post_resp.raise_for_status()
result = post_resp.json()
status_text = (
f"Submission Successful!\n"
f"User: {result.get('username')}\n"
f"Overall Score: {result.get('score', 'N/A')}% "
f"({result.get('correct_count', '?')}/{result.get('total_attempted', '?')} correct)\n"
f"Message: {result.get('message', '')}"
)
return status_text, pd.DataFrame(results_log)
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Agent Evaluation Runner")
gr.Markdown(
"""
1. Login with Hugging Face
2. Click “Run Evaluation & Submit All Answers”
3. Wait for score and see your answers
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_out = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_out, results_table])
if __name__ == "__main__":
demo.launch(debug=True, share=False)