import os import gradio as gr import requests import pandas as pd from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import torch # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Agent Definition --- class BasicAgent: def __init__(self): # Change this model to one you have access to model_name = "Qwen/Qwen3-0.6B-MLX-bf16" print(f"Loading model {model_name}") # Load tokenizer and model self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto" ) # Create generation pipeline self.generator = pipeline( "text-generation", model=self.model, tokenizer=self.tokenizer, max_new_tokens=100, temperature=0.0, do_sample=False ) def __call__(self, question: str) -> str: print("Question:", question) prompt = question.strip() output = self.generator(prompt)[0]["generated_text"] # Remove the prompt prefix so only the answer remains if output.startswith(prompt): answer = output[len(prompt):].strip() else: answer = output.strip() # Take first line if multiple lines answer = answer.split("\n")[0].strip() # Optionally strip trailing punctuation answer = answer.rstrip(" .,:;!?") print("Answer:", answer) return answer def run_and_submit_all(profile: gr.OAuthProfile | None): space_id = os.getenv("SPACE_ID") if not profile: return "Please Login to Hugging Face with the button.", None username = profile.username print("User:", username) api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" try: agent = BasicAgent() except Exception as e: return f"Error initializing agent: {e}", None agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" # Fetch questions try: resp = requests.get(questions_url, timeout=15) resp.raise_for_status() questions_data = resp.json() except Exception as e: return f"Error fetching questions: {e}", None results_log = [] answers_payload = [] for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: continue try: ans = agent(question_text) answers_payload.append({"task_id": task_id, "submitted_answer": ans}) results_log.append({ "Task ID": task_id, "Question": question_text, "Submitted Answer": ans }) except Exception as e: results_log.append({ "Task ID": task_id, "Question": question_text, "Submitted Answer": f"ERROR: {e}" }) if not answers_payload: return "Agent did not produce any answers.", pd.DataFrame(results_log) submission_data = { "username": username.strip(), "agent_code": agent_code, "answers": answers_payload } try: post_resp = requests.post(submit_url, json=submission_data, timeout=60) post_resp.raise_for_status() result = post_resp.json() status_text = ( f"Submission Successful!\n" f"User: {result.get('username')}\n" f"Overall Score: {result.get('score', 'N/A')}% " f"({result.get('correct_count', '?')}/{result.get('total_attempted', '?')} correct)\n" f"Message: {result.get('message', '')}" ) return status_text, pd.DataFrame(results_log) except Exception as e: return f"Submission Failed: {e}", pd.DataFrame(results_log) # --- Gradio Interface --- with gr.Blocks() as demo: gr.Markdown("# Agent Evaluation Runner") gr.Markdown( """ 1. Login with Hugging Face 2. Click “Run Evaluation & Submit All Answers” 3. Wait for score and see your answers """ ) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_out = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click(fn=run_and_submit_all, outputs=[status_out, results_table]) if __name__ == "__main__": demo.launch(debug=True, share=False)