Spaces:
Runtime error
Runtime error
| # import gradio as gr | |
| # import torch | |
| # from diffusers import AutoPipelineForImage2Image | |
| # from diffusers.utils import make_image_grid, load_image | |
| # # gr.load("models/NSTiwari/SDXL_LoRA_model").launch() | |
| # pipeline = AutoPipelineForImage2Image.from_pretrained( | |
| # "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True | |
| # ) | |
| # pipeline.load_lora_weights('pytorch_lora_weights_00.safetensors') | |
| # # _ = pipeline.to("cuda") | |
| # pipeline.enable_model_cpu_offload() | |
| # url = "https://img.onmanorama.com/content/dam/mm/en/lifestyle/decor/images/2020/12/1/25-lakh-living-hall.jpg.transform/576x300/image.jpg" | |
| # # init_image = load_image(url) | |
| # # image = init_image.resize((1024, 576)) | |
| # prompt = "A cozy Indian living room glows with morning sunshine on Republic Day, its walls decked in saffron, white, and green tapestries and art, while colorful cushions and festive garlands add a vibrant, celebratory air." | |
| # # pass prompt and image to pipeline | |
| # image_out = pipeline(prompt, image=image, strength=0.5).images[0] | |
| # # make_image_grid([image, image_out], rows=1, cols=2) | |
| # # Define the image generation function | |
| # def generate_image(prompt, image_url): | |
| # init_image = load_image(image_url) | |
| # image = init_image.resize((1024, 576)) | |
| # image_out = pipeline(prompt, image=image, strength=0.5).images[0] | |
| # return image_out | |
| # # Set up Gradio interface | |
| # iface = gr.Interface( | |
| # fn=generate_image, | |
| # inputs=[gr.Textbox(label="Prompt"), gr.Textbox(label="Image URL")], | |
| # outputs="image" | |
| # ) | |
| # # Launch the Gradio app | |
| # iface.launch() | |
| ###New########### | |
| import gradio as gr | |
| import torch | |
| from diffusers import AutoPipelineForImage2Image | |
| from diffusers.utils import load_image | |
| # Load the Stable Diffusion pipeline | |
| pipeline = AutoPipelineForImage2Image.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True | |
| ) | |
| pipeline.load_lora_weights('pytorch_lora_weights_00.safetensors') | |
| _ = pipeline.to("cuda") | |
| pipeline.enable_model_cpu_offload() | |
| # Define the image generation function | |
| def generate_image(prompt, image_url): | |
| init_image = load_image(image_url) | |
| image = init_image.resize((1024, 576)) | |
| image_out = pipeline(prompt, image=image, strength=0.5).images[0] | |
| return image_out | |
| # Set up Gradio interface | |
| iface = gr.Interface( | |
| fn=generate_image, | |
| inputs=[gr.Textbox(label="Prompt"), gr.Textbox(label="Image URL")], | |
| outputs="image" | |
| ) | |
| # Launch the Gradio app | |
| iface.launch() | |