Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,29 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from diffusers import AutoPipelineForImage2Image
|
| 4 |
-
from diffusers.utils import
|
| 5 |
-
|
| 6 |
-
# gr.load("models/NSTiwari/SDXL_LoRA_model").launch()
|
| 7 |
|
|
|
|
| 8 |
pipeline = AutoPipelineForImage2Image.from_pretrained(
|
| 9 |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
| 10 |
)
|
| 11 |
pipeline.load_lora_weights('pytorch_lora_weights_00.safetensors')
|
| 12 |
-
|
| 13 |
-
|
| 14 |
pipeline.enable_model_cpu_offload()
|
| 15 |
|
| 16 |
-
url = "https://img.onmanorama.com/content/dam/mm/en/lifestyle/decor/images/2020/12/1/25-lakh-living-hall.jpg.transform/576x300/image.jpg"
|
| 17 |
-
# init_image = load_image(url)
|
| 18 |
-
# image = init_image.resize((1024, 576))
|
| 19 |
-
|
| 20 |
-
prompt = "A cozy Indian living room glows with morning sunshine on Republic Day, its walls decked in saffron, white, and green tapestries and art, while colorful cushions and festive garlands add a vibrant, celebratory air."
|
| 21 |
-
|
| 22 |
-
# pass prompt and image to pipeline
|
| 23 |
-
image_out = pipeline(prompt, image=image, strength=0.5).images[0]
|
| 24 |
-
# make_image_grid([image, image_out], rows=1, cols=2)
|
| 25 |
-
|
| 26 |
-
|
| 27 |
# Define the image generation function
|
| 28 |
def generate_image(prompt, image_url):
|
| 29 |
init_image = load_image(image_url)
|
|
@@ -31,7 +67,6 @@ def generate_image(prompt, image_url):
|
|
| 31 |
image_out = pipeline(prompt, image=image, strength=0.5).images[0]
|
| 32 |
return image_out
|
| 33 |
|
| 34 |
-
|
| 35 |
# Set up Gradio interface
|
| 36 |
iface = gr.Interface(
|
| 37 |
fn=generate_image,
|
|
@@ -40,4 +75,4 @@ iface = gr.Interface(
|
|
| 40 |
)
|
| 41 |
|
| 42 |
# Launch the Gradio app
|
| 43 |
-
iface.launch()
|
|
|
|
| 1 |
+
# import gradio as gr
|
| 2 |
+
# import torch
|
| 3 |
+
# from diffusers import AutoPipelineForImage2Image
|
| 4 |
+
# from diffusers.utils import make_image_grid, load_image
|
| 5 |
+
|
| 6 |
+
# # gr.load("models/NSTiwari/SDXL_LoRA_model").launch()
|
| 7 |
+
|
| 8 |
+
# pipeline = AutoPipelineForImage2Image.from_pretrained(
|
| 9 |
+
# "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
| 10 |
+
# )
|
| 11 |
+
# pipeline.load_lora_weights('pytorch_lora_weights_00.safetensors')
|
| 12 |
+
# # _ = pipeline.to("cuda")
|
| 13 |
+
|
| 14 |
+
# pipeline.enable_model_cpu_offload()
|
| 15 |
+
|
| 16 |
+
# url = "https://img.onmanorama.com/content/dam/mm/en/lifestyle/decor/images/2020/12/1/25-lakh-living-hall.jpg.transform/576x300/image.jpg"
|
| 17 |
+
# # init_image = load_image(url)
|
| 18 |
+
# # image = init_image.resize((1024, 576))
|
| 19 |
+
|
| 20 |
+
# prompt = "A cozy Indian living room glows with morning sunshine on Republic Day, its walls decked in saffron, white, and green tapestries and art, while colorful cushions and festive garlands add a vibrant, celebratory air."
|
| 21 |
+
|
| 22 |
+
# # pass prompt and image to pipeline
|
| 23 |
+
# image_out = pipeline(prompt, image=image, strength=0.5).images[0]
|
| 24 |
+
# # make_image_grid([image, image_out], rows=1, cols=2)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# # Define the image generation function
|
| 28 |
+
# def generate_image(prompt, image_url):
|
| 29 |
+
# init_image = load_image(image_url)
|
| 30 |
+
# image = init_image.resize((1024, 576))
|
| 31 |
+
# image_out = pipeline(prompt, image=image, strength=0.5).images[0]
|
| 32 |
+
# return image_out
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
# # Set up Gradio interface
|
| 36 |
+
# iface = gr.Interface(
|
| 37 |
+
# fn=generate_image,
|
| 38 |
+
# inputs=[gr.Textbox(label="Prompt"), gr.Textbox(label="Image URL")],
|
| 39 |
+
# outputs="image"
|
| 40 |
+
# )
|
| 41 |
+
|
| 42 |
+
# # Launch the Gradio app
|
| 43 |
+
# iface.launch()
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
###New###########
|
| 48 |
+
|
| 49 |
+
|
| 50 |
import gradio as gr
|
| 51 |
import torch
|
| 52 |
from diffusers import AutoPipelineForImage2Image
|
| 53 |
+
from diffusers.utils import load_image
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
# Load the Stable Diffusion pipeline
|
| 56 |
pipeline = AutoPipelineForImage2Image.from_pretrained(
|
| 57 |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
| 58 |
)
|
| 59 |
pipeline.load_lora_weights('pytorch_lora_weights_00.safetensors')
|
| 60 |
+
_ = pipeline.to("cuda")
|
|
|
|
| 61 |
pipeline.enable_model_cpu_offload()
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
# Define the image generation function
|
| 64 |
def generate_image(prompt, image_url):
|
| 65 |
init_image = load_image(image_url)
|
|
|
|
| 67 |
image_out = pipeline(prompt, image=image, strength=0.5).images[0]
|
| 68 |
return image_out
|
| 69 |
|
|
|
|
| 70 |
# Set up Gradio interface
|
| 71 |
iface = gr.Interface(
|
| 72 |
fn=generate_image,
|
|
|
|
| 75 |
)
|
| 76 |
|
| 77 |
# Launch the Gradio app
|
| 78 |
+
iface.launch()
|