Update bert_handler.py
Browse files- bert_handler.py +55 -17
bert_handler.py
CHANGED
|
@@ -38,7 +38,11 @@ class BERTHandler:
|
|
| 38 |
|
| 39 |
def __del__(self):
|
| 40 |
"""Destructor to ensure cleanup when object is deleted"""
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
def _cleanup_model(self):
|
| 44 |
"""
|
|
@@ -48,33 +52,57 @@ class BERTHandler:
|
|
| 48 |
if hasattr(self, 'model') and self.model is not None:
|
| 49 |
print("🧹 Cleaning up existing model from VRAM...")
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
# Move model to CPU first to free GPU memory
|
| 52 |
-
|
| 53 |
-
if next(self.model.parameters())
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
# Delete the model
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
# Force garbage collection
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
# Clear CUDA cache
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
print("✅ Model cleanup complete")
|
| 69 |
|
| 70 |
def _print_vram_usage(self, prefix=""):
|
| 71 |
"""Print current VRAM usage for monitoring"""
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
def load_fresh_model(self, model_name="nomic-ai/nomic-bert-2048"):
|
| 80 |
"""Load fresh model and add special tokens with proper VRAM management"""
|
|
@@ -152,7 +180,17 @@ class BERTHandler:
|
|
| 152 |
print(f" - Embedding size: {self.model.bert.embeddings.word_embeddings.weight.shape[0]}")
|
| 153 |
print(f" - Tokenizer size: {len(self.tokenizer)}")
|
| 154 |
|
| 155 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
# Load training state
|
| 158 |
self._load_training_state(checkpoint_path)
|
|
|
|
| 38 |
|
| 39 |
def __del__(self):
|
| 40 |
"""Destructor to ensure cleanup when object is deleted"""
|
| 41 |
+
try:
|
| 42 |
+
self._cleanup_model()
|
| 43 |
+
except Exception:
|
| 44 |
+
# Ignore cleanup errors during shutdown
|
| 45 |
+
pass
|
| 46 |
|
| 47 |
def _cleanup_model(self):
|
| 48 |
"""
|
|
|
|
| 52 |
if hasattr(self, 'model') and self.model is not None:
|
| 53 |
print("🧹 Cleaning up existing model from VRAM...")
|
| 54 |
|
| 55 |
+
# Check if torch is still available (can be None during shutdown)
|
| 56 |
+
try:
|
| 57 |
+
import torch as torch_module
|
| 58 |
+
if torch_module is None:
|
| 59 |
+
return
|
| 60 |
+
except (ImportError, AttributeError):
|
| 61 |
+
return
|
| 62 |
+
|
| 63 |
# Move model to CPU first to free GPU memory
|
| 64 |
+
try:
|
| 65 |
+
if torch_module.cuda.is_available() and next(self.model.parameters(), None) is not None:
|
| 66 |
+
if next(self.model.parameters()).is_cuda:
|
| 67 |
+
self.model = self.model.cpu()
|
| 68 |
+
except Exception:
|
| 69 |
+
# Continue cleanup even if moving to CPU fails
|
| 70 |
+
pass
|
| 71 |
|
| 72 |
# Delete the model
|
| 73 |
+
try:
|
| 74 |
+
del self.model
|
| 75 |
+
self.model = None
|
| 76 |
+
except Exception:
|
| 77 |
+
pass
|
| 78 |
|
| 79 |
# Force garbage collection
|
| 80 |
+
try:
|
| 81 |
+
gc.collect()
|
| 82 |
+
except Exception:
|
| 83 |
+
pass
|
| 84 |
|
| 85 |
# Clear CUDA cache
|
| 86 |
+
try:
|
| 87 |
+
if torch_module.cuda.is_available():
|
| 88 |
+
torch_module.cuda.empty_cache()
|
| 89 |
+
torch_module.cuda.synchronize() # Ensure all CUDA operations complete
|
| 90 |
+
except Exception:
|
| 91 |
+
pass
|
| 92 |
|
| 93 |
print("✅ Model cleanup complete")
|
| 94 |
|
| 95 |
def _print_vram_usage(self, prefix=""):
|
| 96 |
"""Print current VRAM usage for monitoring"""
|
| 97 |
+
try:
|
| 98 |
+
if torch.cuda.is_available():
|
| 99 |
+
allocated = torch.cuda.memory_allocated() / 1e9
|
| 100 |
+
reserved = torch.cuda.memory_reserved() / 1e9
|
| 101 |
+
print(f"🎯 {prefix}VRAM: {allocated:.2f}GB allocated, {reserved:.2f}GB reserved")
|
| 102 |
+
else:
|
| 103 |
+
print(f"🎯 {prefix}CUDA not available")
|
| 104 |
+
except Exception:
|
| 105 |
+
print(f"🎯 {prefix}VRAM: Could not read CUDA memory")
|
| 106 |
|
| 107 |
def load_fresh_model(self, model_name="nomic-ai/nomic-bert-2048"):
|
| 108 |
"""Load fresh model and add special tokens with proper VRAM management"""
|
|
|
|
| 180 |
print(f" - Embedding size: {self.model.bert.embeddings.word_embeddings.weight.shape[0]}")
|
| 181 |
print(f" - Tokenizer size: {len(self.tokenizer)}")
|
| 182 |
|
| 183 |
+
# Check for vocab size mismatch and warn (but don't auto-fix for checkpoints)
|
| 184 |
+
tokenizer_size = len(self.tokenizer)
|
| 185 |
+
model_vocab_size = self.model.config.vocab_size
|
| 186 |
+
embedding_size = self.model.bert.embeddings.word_embeddings.weight.shape[0]
|
| 187 |
+
|
| 188 |
+
if not (tokenizer_size == model_vocab_size == embedding_size):
|
| 189 |
+
print(f"⚠️ VOCAB SIZE MISMATCH DETECTED:")
|
| 190 |
+
print(f" - Tokenizer size: {tokenizer_size}")
|
| 191 |
+
print(f" - Model config vocab_size: {model_vocab_size}")
|
| 192 |
+
print(f" - Embedding size: {embedding_size}")
|
| 193 |
+
print(f" This might affect inference quality.")
|
| 194 |
|
| 195 |
# Load training state
|
| 196 |
self._load_training_state(checkpoint_path)
|