Spaces:
Runtime error
Runtime error
DEV: first
Browse files- .gitignore +1 -0
- README.md +1 -2
- app.py +48 -48
- modal_setup.py +99 -0
- requirements.txt +4 -1
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
__pycache__
|
README.md
CHANGED
|
@@ -11,7 +11,6 @@ license: apache-2.0
|
|
| 11 |
short_description: Podcast Generator MCP Server
|
| 12 |
tags:
|
| 13 |
- Agents-MCP-Hackathon
|
|
|
|
| 14 |
- mcp-server-track
|
| 15 |
---
|
| 16 |
-
|
| 17 |
-
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
|
|
|
| 11 |
short_description: Podcast Generator MCP Server
|
| 12 |
tags:
|
| 13 |
- Agents-MCP-Hackathon
|
| 14 |
+
- agent-demo-track
|
| 15 |
- mcp-server-track
|
| 16 |
---
|
|
|
|
|
|
app.py
CHANGED
|
@@ -1,64 +1,64 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from huggingface_hub import InferenceClient
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
message,
|
| 12 |
-
history: list[tuple[str, str]],
|
| 13 |
-
system_message,
|
| 14 |
-
max_tokens,
|
| 15 |
-
temperature,
|
| 16 |
-
top_p,
|
| 17 |
-
):
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
messages.append({"role": "user", "content": val[0]})
|
| 23 |
-
if val[1]:
|
| 24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
|
| 26 |
-
|
|
|
|
| 27 |
|
| 28 |
response = ""
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
response
|
| 40 |
-
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
"""
|
| 44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
-
"""
|
| 46 |
demo = gr.ChatInterface(
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
gr.Slider(
|
| 53 |
-
minimum=0.1,
|
| 54 |
-
maximum=1.0,
|
| 55 |
-
value=0.95,
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
-
],
|
| 60 |
)
|
| 61 |
|
| 62 |
-
|
| 63 |
if __name__ == "__main__":
|
| 64 |
-
demo.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
import gradio as gr
|
|
|
|
| 4 |
|
| 5 |
+
from smolagents import CodeAgent, ToolCallingAgent, MCPClient, InferenceClientModel
|
| 6 |
+
from openai import OpenAI
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
model_name = None
|
| 10 |
+
workspace = "imessam"
|
| 11 |
+
environment = None
|
| 12 |
+
app_name = "example-vllm-openai-compatible"
|
| 13 |
+
function_name = "serve"
|
| 14 |
+
|
| 15 |
+
api_key = os.getenv("MODAL_API_KEY")
|
| 16 |
|
| 17 |
+
client = OpenAI(api_key=api_key)
|
| 18 |
+
|
| 19 |
+
prefix = workspace + (f"-{environment}" if environment else "")
|
| 20 |
+
|
| 21 |
+
client.base_url = (
|
| 22 |
+
f"https://{prefix}--{app_name}-{function_name}.modal.run/v1"
|
| 23 |
+
)
|
| 24 |
|
| 25 |
+
print(str(client.base_url.host))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
model = client.models.list().data[0]
|
| 28 |
+
model_id = model.id
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
|
| 31 |
+
def generate_podcast(prompt : str, history: list) -> str:
|
| 32 |
|
| 33 |
response = ""
|
| 34 |
|
| 35 |
+
try:
|
| 36 |
+
mcp_client = MCPClient([
|
| 37 |
+
{"url": "https://agents-mcp-hackathon-websearch.hf.space/gradio_api/mcp/sse", "transport": "sse"},
|
| 38 |
+
{"url": "https://agents-mcp-hackathon-footballmatchesbydate.hf.space/gradio_api/mcp/sse", "transport": "sse"}] # This is the MCP Server we created in the previous section
|
| 39 |
+
)
|
| 40 |
+
tools = mcp_client.get_tools()
|
| 41 |
+
|
| 42 |
+
model = InferenceClientModel()
|
| 43 |
+
agent = CodeAgent(tools=[*tools], model=model)
|
| 44 |
+
|
| 45 |
|
| 46 |
+
response = str(agent.run(prompt))
|
| 47 |
+
|
| 48 |
|
| 49 |
+
finally:
|
| 50 |
+
mcp_client.disconnect()
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
return response
|
| 54 |
|
|
|
|
|
|
|
|
|
|
| 55 |
demo = gr.ChatInterface(
|
| 56 |
+
fn=generate_podcast,
|
| 57 |
+
type="messages",
|
| 58 |
+
examples=["Generate a podcast about AI"],
|
| 59 |
+
title="Podcast Generator Agent and MCP Server",
|
| 60 |
+
description="This is an agent that uses MCP tools to generate a podcast, and can be used as an MCP server.",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
)
|
| 62 |
|
|
|
|
| 63 |
if __name__ == "__main__":
|
| 64 |
+
demo.launch(mcp_server=True)
|
modal_setup.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import modal
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
app_name : str = "example-vllm-openai-compatible"
|
| 6 |
+
|
| 7 |
+
app = modal.App(name=app_name)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
print(f"setting up container image ...")
|
| 12 |
+
|
| 13 |
+
vllm_image = (
|
| 14 |
+
modal.Image.debian_slim(python_version="3.12")
|
| 15 |
+
.pip_install(
|
| 16 |
+
"vllm==0.7.2",
|
| 17 |
+
"huggingface_hub[hf_transfer]==0.26.2",
|
| 18 |
+
"flashinfer-python==0.2.0.post2", # pinning, very unstable
|
| 19 |
+
extra_index_url="https://flashinfer.ai/whl/cu124/torch2.5",
|
| 20 |
+
)
|
| 21 |
+
.env({"HF_HUB_ENABLE_HF_TRANSFER": "1"}) # faster model transfers
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
vllm_image = vllm_image.env({"VLLM_USE_V1": "1"})
|
| 25 |
+
|
| 26 |
+
print(f" done setting up container image.")
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
MODELS_DIR = "/llamas",
|
| 32 |
+
MODEL_NAME = "neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16"
|
| 33 |
+
MODEL_REVISION = "a7c09948d9a632c2c840722f519672cd94af885d"
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
print(f" downloading model weights...")
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
hf_cache_vol = modal.Volume.from_name("huggingface-cache", create_if_missing=True)
|
| 40 |
+
vllm_cache_vol = modal.Volume.from_name("vllm-cache", create_if_missing=True)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
print(f" done downloading model weights.")
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
print(f"building engine...")
|
| 48 |
+
|
| 49 |
+
N_GPU = 1 # tip: for best results, first upgrade to more powerful GPUs, and only then increase GPU count
|
| 50 |
+
|
| 51 |
+
MINUTES = 60 # seconds
|
| 52 |
+
|
| 53 |
+
VLLM_PORT = 8000
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
@app.function(
|
| 57 |
+
image = vllm_image,
|
| 58 |
+
secrets=[modal.Secret.from_name("api_key")],
|
| 59 |
+
gpu=f"H100:{N_GPU}",
|
| 60 |
+
scaledown_window=15 * MINUTES, # how long should we stay up with no requests?
|
| 61 |
+
timeout=10 * MINUTES, # how long should we wait for container start?
|
| 62 |
+
volumes={
|
| 63 |
+
"/root/.cache/huggingface": hf_cache_vol,
|
| 64 |
+
"/root/.cache/vllm": vllm_cache_vol,
|
| 65 |
+
},
|
| 66 |
+
)
|
| 67 |
+
@modal.concurrent(
|
| 68 |
+
max_inputs=100
|
| 69 |
+
) # how many requests can one replica handle? tune carefully!
|
| 70 |
+
@modal.web_server(port=VLLM_PORT, startup_timeout=50 * MINUTES)
|
| 71 |
+
def serve():
|
| 72 |
+
import subprocess
|
| 73 |
+
|
| 74 |
+
API_KEY = os.environ["MODAL_API_KEY"]
|
| 75 |
+
|
| 76 |
+
cmd = [
|
| 77 |
+
"vllm",
|
| 78 |
+
"serve",
|
| 79 |
+
"--uvicorn-log-level=info",
|
| 80 |
+
MODEL_NAME,
|
| 81 |
+
"--revision",
|
| 82 |
+
MODEL_REVISION,
|
| 83 |
+
"--host",
|
| 84 |
+
"0.0.0.0",
|
| 85 |
+
"--port",
|
| 86 |
+
str(VLLM_PORT),
|
| 87 |
+
"--api-key",
|
| 88 |
+
API_KEY,
|
| 89 |
+
"--enable-auto-tool-choice"
|
| 90 |
+
" ",
|
| 91 |
+
"--tool-call-parser",
|
| 92 |
+
"llama3_json"
|
| 93 |
+
]
|
| 94 |
+
|
| 95 |
+
subprocess.Popen(" ".join(cmd), shell=True)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
print(f"done building engine.")
|
| 99 |
+
|
requirements.txt
CHANGED
|
@@ -1 +1,4 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio[mcp]
|
| 2 |
+
modal
|
| 3 |
+
openai
|
| 4 |
+
openai-agents
|