Spaces:
Sleeping
Sleeping
File size: 15,168 Bytes
08c9a0c d47898a 08c9a0c d47898a 08c9a0c d47898a 08c9a0c d47898a 08c9a0c 0dc6920 d47898a 08c9a0c 1b96412 08c9a0c 1b96412 08c9a0c 1b96412 08c9a0c 1b96412 08c9a0c d47898a 08c9a0c d47898a 08c9a0c d47898a 206b900 1cf5a55 206b900 1cf5a55 206b900 d47898a 206b900 1cf5a55 d47898a f8fd37e 1cf5a55 206b900 f8fd37e d47898a 08c9a0c d47898a 08c9a0c f8fd37e 206b900 08c9a0c d47898a 08c9a0c 206b900 d47898a 08c9a0c d47898a 08c9a0c d47898a 08c9a0c d47898a 08c9a0c d47898a 08c9a0c d47898a 08c9a0c f8fd37e 08c9a0c d47898a 08c9a0c 1b96412 08c9a0c 1b96412 08c9a0c d47898a 08c9a0c a1700ac 08c9a0c d47898a 4febcec d47898a 08c9a0c 1b96412 08c9a0c a97f141 08c9a0c 2be93d1 a1700ac 2be93d1 d47898a 2be93d1 08c9a0c 2be93d1 08c9a0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
"""
Gradio demo application for the GigaAM-v3 speech recognition models.
"""
from __future__ import annotations
import os
import tempfile
import threading
import time
from contextlib import contextmanager
from typing import Callable, Dict, List, Optional, Tuple
import gradio as gr
import numpy as np
import soundfile as sf
import torch
import torchaudio
from transformers import AutoModel
REPO_ID = "ai-sage/GigaAM-v3"
MODEL_VARIANTS: Dict[str, str] = {
"e2e_rnnt": "End-to-end RNN-T • punctuation + normalization (best quality)",
"e2e_ctc": "End-to-end CTC • punctuation + normalization (faster)",
"rnnt": "RNN-T decoder • raw text without normalization",
"ctc": "CTC decoder • fastest baseline",
}
DEFAULT_VARIANT = "e2e_rnnt"
MAX_SHORT_SECONDS = float(os.getenv("MAX_AUDIO_DURATION_SECONDS", 150))
MAX_LONG_SECONDS = float(os.getenv("MAX_LONGFORM_DURATION_SECONDS", 600))
SHORTFORM_MODEL_LIMIT_SECONDS = float(os.getenv("SHORTFORM_MODEL_LIMIT_SECONDS", 25.0))
TARGET_SAMPLE_RATE = int(os.getenv("TARGET_SAMPLE_RATE", 16_000))
OUTPUT_MODES = {
f"Short clip (<={str(int(SHORTFORM_MODEL_LIMIT_SECONDS))} s)": {
"id": "short",
"longform": False,
"max_duration": MAX_SHORT_SECONDS,
"limit_msg": f"Запись длиннее {str(int(SHORTFORM_MODEL_LIMIT_SECONDS))} секунд. Выберите режим 'Segmented long-form' для более длинных файлов.",
"description": "Single call to `model.transcribe`; best latency for concise utterances.",
"requires_token": False,
},
f"Segmented long-form (<={str(int(MAX_LONG_SECONDS))} s)": {
"id": "longform",
"longform": True,
"max_duration": MAX_LONG_SECONDS,
"limit_msg": f"Длина аудио превышает {str(int(SHORTFORM_MODEL_LIMIT_SECONDS))} секунд. Сократите запись для сегментированного режима.",
"description": "Calls `model.transcribe_longform` to obtain timestamped segments.",
"requires_token": True,
},
}
DEFAULT_MODE_LABEL = next(iter(OUTPUT_MODES))
DEFAULT_HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACEHUB_API_TOKEN")
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
MODEL_CACHE: Dict[str, AutoModel] = {}
MODEL_LOCKS = {variant: threading.Lock() for variant in MODEL_VARIANTS}
def _format_seconds(value: float) -> str:
return f"{value:.2f}s"
def _prepare_audio(audio_path: str) -> Tuple[str, float, int, Callable[[], None]]:
"""
Convert the incoming audio to mono 16 kHz PCM WAV that GigaAM expects.
Returns a tuple of (normalized_path, duration_seconds, sample_rate, cleanup_fn).
"""
data, sample_rate = sf.read(audio_path, dtype="float32", always_2d=False)
if data.ndim > 1:
data = data.mean(axis=1)
duration = len(data) / float(sample_rate)
waveform = torch.from_numpy(np.copy(data))
if waveform.ndim > 1:
waveform = waveform.mean(dim=0)
if sample_rate != TARGET_SAMPLE_RATE:
waveform = torchaudio.functional.resample(
waveform.unsqueeze(0),
orig_freq=sample_rate,
new_freq=TARGET_SAMPLE_RATE,
).squeeze(0)
sample_rate = TARGET_SAMPLE_RATE
normalized = waveform.clamp(min=-1.0, max=1.0).numpy()
tmp = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
tmp.close()
sf.write(tmp.name, normalized, sample_rate, subtype="PCM_16")
def cleanup() -> None:
try:
os.remove(tmp.name)
except OSError:
pass
return tmp.name, duration, sample_rate, cleanup
def _extract_token_from_oauth(oauth_token: gr.OAuthToken | None) -> Optional[str]:
"""Extract access token from Gradio OAuthToken."""
if not oauth_token:
return None
return oauth_token.token
def _resolve_access_token(oauth_token: gr.OAuthToken | None) -> Optional[str]:
"""Prefer the OAuth-issued token, fall back to the space-level secret."""
user_token = _extract_token_from_oauth(oauth_token)
if user_token:
return user_token
return DEFAULT_HF_TOKEN
@contextmanager
def _temporary_token(token: Optional[str]):
if not token:
yield
return
previous_hf = os.environ.get("HF_TOKEN")
previous_hub = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
os.environ["HF_TOKEN"] = token
os.environ["HUGGINGFACEHUB_API_TOKEN"] = token
try:
yield
finally:
if previous_hf is None:
os.environ.pop("HF_TOKEN", None)
else:
os.environ["HF_TOKEN"] = previous_hf
if previous_hub is None:
os.environ.pop("HUGGINGFACEHUB_API_TOKEN", None)
else:
os.environ["HUGGINGFACEHUB_API_TOKEN"] = previous_hub
def _describe_token_source(
profile: gr.OAuthProfile | None,
oauth_token: gr.OAuthToken | None,
) -> str:
"""Describe where the HF token came from."""
if _extract_token_from_oauth(oauth_token):
username = profile.username if profile else "user"
return f"{username} (OAuth)"
if DEFAULT_HF_TOKEN:
return "space secret"
return "not configured"
def _run_longform(model: AutoModel, audio_path: str, token: Optional[str]) -> Tuple[str, List[List[float | str]]]:
if not token:
raise gr.Error(
"Для сегментированного режима требуется авторизация через Hugging Face OAuth "
"или переменная окружения HF_TOKEN с доступом к 'pyannote/segmentation-3.0'."
)
with _temporary_token(token):
utterances = model.transcribe_longform(audio_path)
segments: List[List[float | str]] = []
assembled_text_parts: List[str] = []
for utt in utterances:
text = _normalize_text(utt)
if isinstance(utt, dict):
boundaries = utt.get("boundaries") or utt.get("timestamps")
else:
boundaries = None
if not boundaries:
boundaries = (0.0, 0.0)
start, end = boundaries
segments.append([round(float(start), 2), round(float(end), 2), text])
assembled_text_parts.append(text)
transcription_text = "\n".join(filter(None, assembled_text_parts)).strip()
return transcription_text, segments
def _normalize_text(text: object) -> str:
if text is None:
return ""
if isinstance(text, str):
return text.strip()
if isinstance(text, dict):
for key in ("transcription", "text"):
if key in text and isinstance(text[key], str):
return text[key].strip()
return str(text)
def load_model(variant: str) -> AutoModel:
if variant not in MODEL_VARIANTS:
raise gr.Error(f"Вариант модели '{variant}' не поддерживается.")
if variant in MODEL_CACHE:
return MODEL_CACHE[variant]
lock = MODEL_LOCKS[variant]
with lock:
if variant in MODEL_CACHE:
return MODEL_CACHE[variant]
load_kwargs = dict(revision=variant, trust_remote_code=True)
if DEFAULT_HF_TOKEN:
load_kwargs["token"] = DEFAULT_HF_TOKEN
model = AutoModel.from_pretrained(REPO_ID, **load_kwargs)
try:
model.to(DEVICE)
except Exception:
# Some remote implementations manage their own device placement.
pass
MODEL_CACHE[variant] = model
return model
def transcribe_audio(
audio_path: Optional[str],
variant: str,
mode_label: str,
profile: gr.OAuthProfile | None,
oauth_token: gr.OAuthToken | None,
) -> tuple[str, List[List[float | str]], str]:
if not audio_path or not os.path.exists(audio_path):
raise gr.Error("Загрузите или запишите аудиофайл, чтобы начать распознавание.")
if mode_label not in OUTPUT_MODES:
raise gr.Error("Выберите режим транскрипции.")
mode_cfg = OUTPUT_MODES[mode_label]
prepared_path, duration, sample_rate, cleanup = _prepare_audio(audio_path)
if duration < 0.3:
raise gr.Error("Запись слишком короткая (<300 мс).")
if duration > mode_cfg["max_duration"]:
raise gr.Error(mode_cfg["limit_msg"])
effective_token = _resolve_access_token(oauth_token)
if mode_cfg["requires_token"] and not effective_token:
raise gr.Error(
"Для сегментированного режима требуется авторизация через Hugging Face OAuth "
"или переменная окружения HF_TOKEN с доступом к модели 'pyannote/segmentation-3.0'."
)
progress = gr.Progress(track_tqdm=False)
progress(0.1, desc="Загрузка модели")
model = load_model(variant)
start_ts = time.perf_counter()
progress(0.55, desc="Распознавание речи")
auto_switched = False
try:
if mode_cfg["longform"]:
transcription_text, segments = _run_longform(model, prepared_path, effective_token)
else:
if duration > SHORTFORM_MODEL_LIMIT_SECONDS:
if not effective_token:
raise gr.Error(
"Аудио длиннее лимита короткого режима (~25 секунд). "
"Авторизуйтесь через Hugging Face OAuth или добавьте HF_TOKEN, "
"чтобы использовать сегментированное распознавание."
)
auto_switched = True
transcription_text, segments = _run_longform(model, prepared_path, effective_token)
else:
try:
result = model.transcribe(prepared_path)
transcription_text = _normalize_text(result)
segments = []
except ValueError as exc:
if "too long" in str(exc).lower():
if not effective_token:
raise gr.Error(
"GigaAM потребовала режим transcribe_longform. "
"Войдите через OAuth или добавьте HF_TOKEN и повторите попытку."
)
auto_switched = True
transcription_text, segments = _run_longform(model, prepared_path, effective_token)
else:
raise
finally:
cleanup()
latency = time.perf_counter() - start_ts
progress(1.0, desc="Готово")
mode_description = mode_cfg["description"]
if auto_switched:
mode_description += " · auto switched to segmented"
metadata_lines = [
f"- **Model variant:** {MODEL_VARIANTS[variant]}",
f"- **Transcription mode:** {mode_description}",
f"- **Audio duration:** {_format_seconds(duration)} @ {sample_rate} Hz",
f"- **Latency:** {_format_seconds(latency)} on `{DEVICE}`",
f"- **Token source:** {_describe_token_source(profile, oauth_token)}",
]
return transcription_text, segments, "\n".join(metadata_lines)
DESCRIPTION_MD = """
# GigaAM-v3 · Russian ASR demo
This Space showcases the [`ai-sage/GigaAM-v3`](https://huggingface.co/ai-sage/GigaAM-v3) Conformer-based models.
- Upload or record Russian audio (WAV/MP3/FLAC, mono preferred).
- Pick the model variant and transcription mode that matches your latency/quality needs.
- Clips are resampled to mono 16 kHz automatically for best compatibility.
- Sign in with Hugging Face OAuth to unlock segmented long-form transcription (requires access to `pyannote/segmentation-3.0`).
"""
FOOTER_MD = f"""
**Tips**
- Short clips (<{str(int(SHORTFORM_MODEL_LIMIT_SECONDS))}s) work best with the E2E variants (they include punctuation and normalization).
- Long recordings can take several minutes on CPU-only Spaces; switch to GPU hardware if available.
- `model.transcribe` is limited to ~25 s internally; longer clips will auto-switch to segmented mode when a token is available.
- Source: [salute-developers/GigaAM](https://github.com/salute-developers/GigaAM)
"""
def build_interface() -> gr.Blocks:
with gr.Blocks(title="GigaAM-v3 ASR demo") as demo:
gr.Markdown(DESCRIPTION_MD)
with gr.Row():
login_button = gr.LoginButton(min_width=200)
with gr.Row(equal_height=True):
audio_input = gr.Audio(
sources=["microphone", "upload"],
type="filepath",
label="Russian audio",
waveform_options=gr.WaveformOptions(
waveform_color="#f97316",
skip_length=2,
),
)
with gr.Column():
variant_dropdown = gr.Dropdown(
choices=list(MODEL_VARIANTS.keys()),
value=DEFAULT_VARIANT,
label="Model variant",
info="End-to-end variants add punctuation; base CTC/RNNT are lighter but raw.",
)
mode_radio = gr.Radio(
choices=list(OUTPUT_MODES.keys()),
value=DEFAULT_MODE_LABEL,
label="Transcription mode",
info=f"Select segmented mode for >{str(int(SHORTFORM_MODEL_LIMIT_SECONDS))} second clips (requires HF token).",
)
transcribe_btn = gr.Button("Transcribe", variant="primary")
transcript_output = gr.Textbox(
label="Transcript",
placeholder="Model output will appear here…",
lines=8,
)
segments_output = gr.Dataframe(
headers=["Start (s)", "End (s)", "Utterance"],
datatype=["number", "number", "str"],
label="Segments (long-form mode)",
interactive=False,
)
metadata_output = gr.Markdown()
gr.Markdown(FOOTER_MD)
transcribe_btn.click(
fn=transcribe_audio,
inputs=[audio_input, variant_dropdown, mode_radio],
outputs=[transcript_output, segments_output, metadata_output],
)
return demo
demo = build_interface()
def _launch_app() -> None:
"""Launch the Gradio app with sensible defaults for HF Spaces and local runs."""
is_space = bool(os.getenv("SPACE_ID"))
launch_kwargs = {
"server_name": os.getenv("GRADIO_SERVER_NAME", "0.0.0.0" if is_space else "127.0.0.1"),
"server_port": int(os.getenv("GRADIO_SERVER_PORT", "7860")),
"theme": gr.themes.Ocean(),
}
if not is_space and os.getenv("GRADIO_SHARE", "0") == "1":
launch_kwargs["share"] = True
enable_queue = os.getenv("ENABLE_GRADIO_QUEUE", "1") != "0"
app = demo.queue(max_size=8) if enable_queue else demo
app.launch(**launch_kwargs)
if __name__ == "__main__":
_launch_app()
|