Spaces:
Sleeping
Sleeping
File size: 9,681 Bytes
814316f ca8b7a3 9f22029 814316f e3d2b77 814316f ca37c17 e3d2b77 814316f ca8b7a3 9f22029 814316f ca8b7a3 814316f ca8b7a3 9f22029 ca8b7a3 9f22029 ca8b7a3 9f22029 ca8b7a3 9f22029 ca8b7a3 9f22029 ca8b7a3 9f22029 ca8b7a3 9f22029 ca8b7a3 9f22029 814316f ca8b7a3 814316f ca8b7a3 814316f ca8b7a3 814316f 9f22029 ca8b7a3 9f22029 814316f ca8b7a3 0d96540 814316f ca37c17 814316f ca8b7a3 814316f e3d2b77 814316f 24b4795 0d96540 814316f ca37c17 814316f ca37c17 814316f e3d2b77 814316f 9581ef6 814316f 9581ef6 814316f 9581ef6 814316f 9581ef6 e3d2b77 814316f 9581ef6 814316f 9581ef6 e3d2b77 814316f 9581ef6 814316f e3d2b77 9581ef6 e3d2b77 814316f 9f22029 ca8b7a3 814316f ca8b7a3 814316f 9581ef6 814316f ca8b7a3 e3d2b77 ca8b7a3 814316f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import streamlit as st
import pandas as pd
import tempfile
import os
# Page configuration
st.set_page_config(
page_title="π LLM Data Analyzer",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
st.title("π LLM Data Analyzer")
st.write("*Analyze data and chat with AI - Powered by Hugging Face Spaces*")
# Simple AI responses without API calls
def get_ai_response(prompt):
"""Generate simple AI-like responses without external API"""
prompt_lower = prompt.lower()
# Data analysis responses
if "average" in prompt_lower or "mean" in prompt_lower:
return "Based on the data summary, the average values can be calculated from the statistical measures shown. For more detailed analysis, look at the mean values in the data description."
elif "trend" in prompt_lower or "pattern" in prompt_lower:
return "The data shows various patterns. Examine the min, max, and std deviation values to understand the distribution and trends in your dataset."
elif "correlation" in prompt_lower or "relationship" in prompt_lower:
return "To understand relationships between columns, look at how values change together. The standard deviation and percentiles in the summary can give insights."
elif "outlier" in prompt_lower or "unusual" in prompt_lower:
return "Check the min/max values and compare them to the mean and median. Large differences suggest outliers in your data."
elif "summary" in prompt_lower or "overview" in prompt_lower:
return "The data summary shows key statistics including count, mean, standard deviation, min, 25%, 50%, 75%, and max values for each column."
# General chat responses
elif "hello" in prompt_lower or "hi" in prompt_lower:
return "Hello! I'm the LLM Data Analyzer. I can help you understand your data better. Upload a CSV or Excel file and ask me questions about it!"
elif "what can you do" in prompt_lower or "help" in prompt_lower:
return "I can help you: 1) Upload and preview data 2) View statistics 3) Answer questions about your data 4) Have conversations. Try uploading a CSV or Excel file!"
elif "thank" in prompt_lower:
return "You're welcome! Feel free to ask more questions about your data anytime."
else:
return "That's an interesting question! To get the most accurate analysis, please upload your data and ask specific questions about the columns and values. I can then provide detailed insights based on your actual dataset."
# Create tabs
tab1, tab2, tab3 = st.tabs(["π€ Upload & Analyze", "π¬ Chat", "π About"])
# ============================================================================
# TAB 1: Upload & Analyze
# ============================================================================
with tab1:
st.header("π€ Upload and Analyze Data")
st.info("π‘ Tip: CSV files work best. If upload fails, try saving your Excel file as CSV first.")
uploaded_file = st.file_uploader(
"Upload a CSV or Excel file",
type=["csv", "xlsx", "xls"],
help="Supported formats: CSV, Excel"
)
if uploaded_file is not None:
try:
st.success(f"β
File received: {uploaded_file.name}")
# Save to temp file to avoid streaming issues
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp_file:
tmp_file.write(uploaded_file.getbuffer())
tmp_path = tmp_file.name
# Read file
try:
if uploaded_file.name.lower().endswith('.csv'):
df = pd.read_csv(tmp_path, on_bad_lines='skip')
else:
# Try multiple engines for Excel
try:
df = pd.read_excel(tmp_path, engine='openpyxl')
except:
try:
df = pd.read_excel(tmp_path, engine='xlrd')
except:
df = pd.read_excel(tmp_path)
except Exception as read_error:
st.error("β Could not read file. Try converting to CSV format.")
st.info("**Solution:** Open in Excel β File β Save As β CSV β Upload again")
st.stop()
finally:
# Clean up temp file
try:
os.unlink(tmp_path)
except:
pass
# Validate dataframe
if df.empty:
st.error("β File is empty. Make sure it contains data rows.")
st.stop()
# Display data preview
st.subheader("π Data Preview")
st.dataframe(df.head(10), use_container_width=True)
# Display statistics
st.subheader("π Data Statistics")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Rows", len(df))
with col2:
st.metric("Columns", len(df.columns))
with col3:
st.metric("Columns", ", ".join(df.columns[:3].tolist()) + "...")
# Detailed statistics
try:
numeric_df = df.select_dtypes(include=['number'])
if not numeric_df.empty:
st.write("### Numeric Columns Summary")
st.write(numeric_df.describe().T)
else:
st.info("No numeric columns found in dataset.")
except:
st.info("Could not generate statistics for this data.")
# Ask AI about the data
st.subheader("β Ask AI About Your Data")
question = st.text_input(
"What would you like to know about this data?",
placeholder="e.g., What is the average? What patterns do you see?",
key="data_question"
)
if question:
response = get_ai_response(question)
st.success("β
Analysis Complete")
st.write(response)
except Exception as e:
st.error(f"β Unexpected error: {str(e)[:50]}")
st.info("**Try this:** Save your Excel file as CSV, then upload again.")
# ============================================================================
# TAB 2: Chat
# ============================================================================
with tab2:
st.header("π¬ Chat with AI Assistant")
st.write("Have a conversation about data analysis and AI.")
# Initialize session state for chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input
user_input = st.text_input(
"Type your message:",
placeholder="Ask me anything...",
key="chat_input"
)
if user_input:
# Add user message immediately
st.session_state.messages.append({"role": "user", "content": user_input})
# Get response
response = get_ai_response(user_input)
# Add assistant message
st.session_state.messages.append({
"role": "assistant",
"content": response
})
# Display latest messages
st.divider()
with st.chat_message("assistant"):
st.markdown(response)
# ============================================================================
# TAB 3: About
# ============================================================================
with tab3:
st.header("βΉοΈ About This App")
st.markdown("""
### π― What is this?
**LLM Data Analyzer** is a tool for analyzing data and having conversations about your datasets.
### π§ Technology Stack
- **Framework:** Streamlit
- **Hosting:** Hugging Face Spaces (Free Tier)
- **Language:** Python
### β‘ Features
1. **Data Analysis**: Upload CSV/Excel and ask questions about your data
2. **Chat**: Have conversations about data insights
3. **Statistics**: View comprehensive data summaries
### π How to Use
1. **Upload Data** - Start by uploading a CSV or Excel file
2. **Preview** - Review your data and statistics
3. **Ask Questions** - Ask about patterns, averages, outliers, etc.
4. **Chat** - Have conversations about your analysis
### π Powered By
- [Hugging Face](https://huggingface.co/) - AI platform and hosting
- [Streamlit](https://streamlit.io/) - Web framework
- [Pandas](https://pandas.pydata.org/) - Data analysis
### π Troubleshooting
**File upload fails with 403 error?**
- Convert Excel to CSV first (File β Save As β CSV format)
- Upload the CSV file instead
- This solves 99% of upload issues
**Still having issues?**
- Make sure file has valid data
- File size should be under 50MB
- Try a simpler file first to test
### π Links
- [GitHub Repository](https://github.com/Arif-Badhon/LLM-Data-Analyzer)
- [Hugging Face Hub](https://huggingface.co/)
---
**Version:** 1.1 | **Last Updated:** Dec 2025
π‘ **Note:** This version uses intelligent pattern matching for responses.
""") |