Corey Morris
commited on
Commit
·
ee9e25e
1
Parent(s):
9f7d306
Added basic structure of details data processing and testing. For downloading huggingface details dataset files
Browse files- details_data_processor.py +155 -0
- test_details_data_processing.py +18 -0
details_data_processor.py
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import os
|
| 3 |
+
import fnmatch
|
| 4 |
+
import json
|
| 5 |
+
import re
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
class DetailsDataProcessor:
|
| 9 |
+
|
| 10 |
+
def __init__(self, directory='results', pattern='results*.json'):
|
| 11 |
+
self.directory = directory
|
| 12 |
+
self.pattern = pattern
|
| 13 |
+
# self.data = self.process_data()
|
| 14 |
+
# self.ranked_data = self.rank_data()
|
| 15 |
+
|
| 16 |
+
# @staticmethod
|
| 17 |
+
# def _find_files(directory, pattern):
|
| 18 |
+
# for root, dirs, files in os.walk(directory):
|
| 19 |
+
# for basename in files:
|
| 20 |
+
# if fnmatch.fnmatch(basename, pattern):
|
| 21 |
+
# filename = os.path.join(root, basename)
|
| 22 |
+
# yield filename
|
| 23 |
+
|
| 24 |
+
# def _read_and_transform_data(self, filename):
|
| 25 |
+
# with open(filename) as f:
|
| 26 |
+
# data = json.load(f)
|
| 27 |
+
# df = pd.DataFrame(data['results']).T
|
| 28 |
+
# return df
|
| 29 |
+
|
| 30 |
+
# def _cleanup_dataframe(self, df, model_name):
|
| 31 |
+
# df = df.rename(columns={'acc': model_name})
|
| 32 |
+
# df.index = (df.index.str.replace('hendrycksTest-', 'MMLU_', regex=True)
|
| 33 |
+
# .str.replace('harness\|', '', regex=True)
|
| 34 |
+
# .str.replace('\|5', '', regex=True))
|
| 35 |
+
# return df[[model_name]]
|
| 36 |
+
|
| 37 |
+
# def _extract_mc1(self, df, model_name):
|
| 38 |
+
# df = df.rename(columns={'mc1': model_name})
|
| 39 |
+
# # rename row harness|truthfulqa:mc|0 to truthfulqa:mc1
|
| 40 |
+
# df.index = (df.index.str.replace('mc\|0', 'mc1', regex=True))
|
| 41 |
+
# # just return the harness|truthfulqa:mc1 row
|
| 42 |
+
# df = df.loc[['harness|truthfulqa:mc1']]
|
| 43 |
+
# return df[[model_name]]
|
| 44 |
+
|
| 45 |
+
# def _extract_mc2(self, df, model_name):
|
| 46 |
+
# # rename row harness|truthfulqa:mc|0 to truthfulqa:mc2
|
| 47 |
+
# df = df.rename(columns={'mc2': model_name})
|
| 48 |
+
# df.index = (df.index.str.replace('mc\|0', 'mc2', regex=True))
|
| 49 |
+
# df = df.loc[['harness|truthfulqa:mc2']]
|
| 50 |
+
# return df[[model_name]]
|
| 51 |
+
|
| 52 |
+
# # remove extreme outliers from column harness|truthfulqa:mc1
|
| 53 |
+
# def _remove_mc1_outliers(self, df):
|
| 54 |
+
# mc1 = df['harness|truthfulqa:mc1']
|
| 55 |
+
# # Identify the outliers
|
| 56 |
+
# # outliers_condition = mc1 > mc1.quantile(.95)
|
| 57 |
+
# outliers_condition = mc1 == 1.0
|
| 58 |
+
# # Replace the outliers with NaN
|
| 59 |
+
# df.loc[outliers_condition, 'harness|truthfulqa:mc1'] = np.nan
|
| 60 |
+
# return df
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
# @staticmethod
|
| 65 |
+
# def _extract_parameters(model_name):
|
| 66 |
+
# """
|
| 67 |
+
# Function to extract parameters from model name.
|
| 68 |
+
# It handles names with 'b/B' for billions and 'm/M' for millions.
|
| 69 |
+
# """
|
| 70 |
+
# # pattern to match a number followed by 'b' (representing billions) or 'm' (representing millions)
|
| 71 |
+
# pattern = re.compile(r'(\d+\.?\d*)([bBmM])')
|
| 72 |
+
|
| 73 |
+
# match = pattern.search(model_name)
|
| 74 |
+
|
| 75 |
+
# if match:
|
| 76 |
+
# num, magnitude = match.groups()
|
| 77 |
+
# num = float(num)
|
| 78 |
+
|
| 79 |
+
# # convert millions to billions
|
| 80 |
+
# if magnitude.lower() == 'm':
|
| 81 |
+
# num /= 1000
|
| 82 |
+
|
| 83 |
+
# return num
|
| 84 |
+
|
| 85 |
+
# # return NaN if no match
|
| 86 |
+
# return np.nan
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
# def process_data(self):
|
| 90 |
+
|
| 91 |
+
# dataframes = []
|
| 92 |
+
# organization_names = []
|
| 93 |
+
# for filename in self._find_files(self.directory, self.pattern):
|
| 94 |
+
# raw_data = self._read_and_transform_data(filename)
|
| 95 |
+
# split_path = filename.split('/')
|
| 96 |
+
# model_name = split_path[2]
|
| 97 |
+
# organization_name = split_path[1]
|
| 98 |
+
# cleaned_data = self._cleanup_dataframe(raw_data, model_name)
|
| 99 |
+
# mc1 = self._extract_mc1(raw_data, model_name)
|
| 100 |
+
# mc2 = self._extract_mc2(raw_data, model_name)
|
| 101 |
+
# cleaned_data = pd.concat([cleaned_data, mc1])
|
| 102 |
+
# cleaned_data = pd.concat([cleaned_data, mc2])
|
| 103 |
+
# organization_names.append(organization_name)
|
| 104 |
+
# dataframes.append(cleaned_data)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
# data = pd.concat(dataframes, axis=1).transpose()
|
| 108 |
+
|
| 109 |
+
# # Add organization column
|
| 110 |
+
# data['organization'] = organization_names
|
| 111 |
+
|
| 112 |
+
# # Add Model Name and rearrange columns
|
| 113 |
+
# data['Model Name'] = data.index
|
| 114 |
+
# cols = data.columns.tolist()
|
| 115 |
+
# cols = cols[-1:] + cols[:-1]
|
| 116 |
+
# data = data[cols]
|
| 117 |
+
|
| 118 |
+
# # Remove the 'Model Name' column
|
| 119 |
+
# data = data.drop(columns=['Model Name'])
|
| 120 |
+
|
| 121 |
+
# # Add average column
|
| 122 |
+
# data['MMLU_average'] = data.filter(regex='MMLU').mean(axis=1)
|
| 123 |
+
|
| 124 |
+
# # Reorder columns to move 'MMLU_average' to the third position
|
| 125 |
+
# cols = data.columns.tolist()
|
| 126 |
+
# cols = cols[:2] + cols[-1:] + cols[2:-1]
|
| 127 |
+
# data = data[cols]
|
| 128 |
+
|
| 129 |
+
# # Drop specific columns
|
| 130 |
+
# data = data.drop(columns=['all', 'truthfulqa:mc|0'])
|
| 131 |
+
|
| 132 |
+
# # Add parameter count column using extract_parameters function
|
| 133 |
+
# data['Parameters'] = data.index.to_series().apply(self._extract_parameters)
|
| 134 |
+
|
| 135 |
+
# # move the parameters column to the front of the dataframe
|
| 136 |
+
# cols = data.columns.tolist()
|
| 137 |
+
# cols = cols[-1:] + cols[:-1]
|
| 138 |
+
# data = data[cols]
|
| 139 |
+
|
| 140 |
+
# # remove extreme outliers from column harness|truthfulqa:mc1
|
| 141 |
+
# data = self._remove_mc1_outliers(data)
|
| 142 |
+
|
| 143 |
+
# return data
|
| 144 |
+
|
| 145 |
+
# def rank_data(self):
|
| 146 |
+
# # add rank for each column to the dataframe
|
| 147 |
+
# # copy the data dataframe to avoid modifying the original dataframe
|
| 148 |
+
# rank_data = self.data.copy()
|
| 149 |
+
# for col in list(rank_data.columns):
|
| 150 |
+
# rank_data[col + "_rank"] = rank_data[col].rank(ascending=False, method='min')
|
| 151 |
+
|
| 152 |
+
# return rank_data
|
| 153 |
+
|
| 154 |
+
# def get_data(self, selected_models):
|
| 155 |
+
# return self.data[self.data.index.isin(selected_models)]
|
test_details_data_processing.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import unittest
|
| 2 |
+
from details_data_processor import DetailsDataProcessor
|
| 3 |
+
import pandas as pd
|
| 4 |
+
|
| 5 |
+
class TestDetailsDataProcessor(unittest.TestCase):
|
| 6 |
+
|
| 7 |
+
def setUp(self):
|
| 8 |
+
self.processor = DetailsDataProcessor()
|
| 9 |
+
|
| 10 |
+
# check that the result is a pandas dataframe
|
| 11 |
+
def test_process_data(self):
|
| 12 |
+
pass
|
| 13 |
+
# data = self.processor.data
|
| 14 |
+
# self.assertIsInstance(data, pd.DataFrame)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
if __name__ == '__main__':
|
| 18 |
+
unittest.main()
|