Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,579 Bytes
0b4562b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2025 Apple Inc. All Rights Reserved.
#
"""
Inference utilities for STARFlow.
"""
import torch
import datetime
from typing import List
from torchmetrics.image.fid import FrechetInceptionDistance, _compute_fid
from torchmetrics.image.inception import InceptionScore
from torchmetrics.multimodal.clip_score import CLIPScore
from torchmetrics.utilities.data import dim_zero_cat
# Import Distributed from training module
from .training import Distributed
# ==== Metrics ====
class FID(FrechetInceptionDistance):
def __init__(self, feature=2048, reset_real_features=True, normalize=False, input_img_size=..., **kwargs):
super().__init__(feature, reset_real_features, normalize, input_img_size, **kwargs)
self.reset_real_features = reset_real_features
def add_state(self, name, default, *args, **kwargs):
self.register_buffer(name, default)
def manual_compute(self, dist):
# manually gather the features
self.fake_features_num_samples = dist.reduce(self.fake_features_num_samples)
self.fake_features_sum = dist.reduce(self.fake_features_sum)
self.fake_features_cov_sum = dist.reduce(self.fake_features_cov_sum)
if self.reset_real_features:
self.real_features_num_samples = dist.reduce(self.real_features_num_samples)
self.real_features_sum = dist.reduce(self.real_features_sum)
self.real_features_cov_sum = dist.reduce(self.real_features_cov_sum)
print(f'Gathered {self.fake_features_num_samples} samples for FID computation')
# compute FID
mean_real = (self.real_features_sum / self.real_features_num_samples).unsqueeze(0)
mean_fake = (self.fake_features_sum / self.fake_features_num_samples).unsqueeze(0)
cov_real_num = self.real_features_cov_sum - self.real_features_num_samples * mean_real.t().mm(mean_real)
cov_real = cov_real_num / (self.real_features_num_samples - 1)
cov_fake_num = self.fake_features_cov_sum - self.fake_features_num_samples * mean_fake.t().mm(mean_fake)
cov_fake = cov_fake_num / (self.fake_features_num_samples - 1)
if dist.rank == 0:
fid_score = _compute_fid(mean_real.squeeze(0), cov_real, mean_fake.squeeze(0), cov_fake).to(
dtype=self.orig_dtype, device=self.real_features_sum.device)
print(f'FID: {fid_score.item()} DONE')
else:
fid_score = torch.tensor(0.0, dtype=self.orig_dtype, device=self.real_features_sum.device)
dist.barrier()
# reset the state
self.fake_features_num_samples *= 0
self.fake_features_sum *= 0
self.fake_features_cov_sum *= 0
if self.reset_real_features:
self.real_features_num_samples *= 0
self.real_features_sum *= 0
self.real_features_cov_sum *= 0
return fid_score
class IS(InceptionScore):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def manual_compute(self, dist):
# manually gather the features
self.features = dim_zero_cat(self.features)
features = dist.gather_concat(self.features)
print(f'Gathered {features.shape[0]} samples for IS computation')
if dist.rank == 0:
idx = torch.randperm(features.shape[0])
features = features[idx]
# calculate probs and logits
prob = features.softmax(dim=1)
log_prob = features.log_softmax(dim=1)
# split into groups
prob = prob.chunk(self.splits, dim=0)
log_prob = log_prob.chunk(self.splits, dim=0)
# calculate score per split
mean_prob = [p.mean(dim=0, keepdim=True) for p in prob]
kl_ = [p * (log_p - m_p.log()) for p, log_p, m_p in zip(prob, log_prob, mean_prob)]
kl_ = [k.sum(dim=1).mean().exp() for k in kl_]
kl = torch.stack(kl_)
mean = kl.mean()
std = kl.std()
else:
mean = torch.tensor(0.0, device=self.features.device)
std = torch.tensor(0.0, device=self.features.device)
dist.barrier()
return mean, std
class CLIP(CLIPScore):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def manual_compute(self, dist):
# manually gather the features
self.n_samples = dist.reduce(self.n_samples)
self.score = dist.reduce(self.score)
print(f'Gathered {self.n_samples} samples for CLIP computation')
# compute CLIP
clip_score = torch.max(self.score / self.n_samples, torch.zeros_like(self.score))
print(f'CLIP: {clip_score.item()} DONE')
# reset the state
self.n_samples *= 0
self.score *= 0
return clip_score
class Metrics:
def __init__(self):
self.metrics: dict[str, list[float]] = {}
def update(self, metrics: dict[str, torch.Tensor | float]):
for k, v in metrics.items():
if isinstance(v, torch.Tensor):
v = v.item()
if k in self.metrics:
self.metrics[k].append(v)
else:
self.metrics[k] = [v]
def compute(self, dist: Distributed | None) -> dict[str, float]:
out: dict[str, float] = {}
for k, v in self.metrics.items():
v = sum(v) / len(v)
if dist is not None:
v = dist.gather_concat(torch.tensor(v, device='cuda').view(1)).mean().item()
out[k] = v
return out
@staticmethod
def print(metrics: dict[str, float], epoch: int):
print(f'Epoch {epoch} Time {datetime.datetime.now()}')
print('\n'.join((f'\t{k:40s}: {v: .4g}' for k, v in sorted(metrics.items()))))
# ==== Denoising Functions (from starflow_utils.py) ====
def apply_denoising(model, x_chunk: torch.Tensor, y_batch,
text_encoder, tokenizer, args,
text_encoder_kwargs: dict, sigma_curr: float, sigma_next: float = 0) -> torch.Tensor:
"""Apply denoising to a chunk of data."""
from .common import encode_text # Import here to avoid circular imports
noise_std_const = 0.3 # a constant used for noise levels.
# Handle both encoded tensors and raw captions
if isinstance(y_batch, torch.Tensor):
y_ = y_batch
elif y_batch is not None:
y_ = encode_text(text_encoder, tokenizer, y_batch, args.txt_size,
text_encoder.device, **text_encoder_kwargs)
else:
y_ = None
if getattr(args, 'disable_learnable_denoiser', False) or not hasattr(model, 'learnable_self_denoiser'):
return self_denoise(
model, x_chunk, y_,
noise_std=sigma_curr,
steps=1,
disable_learnable_denoiser=getattr(args, 'disable_learnable_denoiser', False)
)
else:
# Learnable denoiser
if sigma_curr is not None and isinstance(y_batch, (list, type(None))):
text_encoder_kwargs['noise_std'] = sigma_curr
denoiser_output = model(x_chunk, y_, denoiser=True)
return x_chunk - denoiser_output * noise_std_const * (sigma_curr - sigma_next) / sigma_curr
def self_denoise(model, samples, y, noise_std=0.1, lr=1, steps=1, disable_learnable_denoiser=False):
"""Self-denoising function - same as in train.py"""
if steps == 0:
return samples
outputs = []
x = samples.clone()
lr = noise_std ** 2 * lr
with torch.enable_grad():
x.requires_grad = True
model.train()
z, _, _, logdets = model(x, y)
loss = model.get_loss(z, logdets)['loss'] * 65536
grad = float(samples.numel()) / 65536 * torch.autograd.grad(loss, [x])[0]
outputs += [(x - grad * lr).detach()]
x = torch.cat(outputs, -1)
return x
def process_denoising(samples: torch.Tensor, y: List[str], args,
model, text_encoder, tokenizer, text_encoder_kwargs: dict,
noise_std: float) -> torch.Tensor:
"""Process samples through denoising if enabled."""
if not (args.finetuned_vae == 'none' and
getattr(args, 'vae_adapter', None) is None and
getattr(args, 'return_sequence', 0) == 0):
# Denoising not enabled or not applicable
return samples
torch.cuda.empty_cache()
assert isinstance(samples, torch.Tensor)
samples = samples.cpu()
# Use smaller batch size for training to avoid memory issues
b = samples.size(0)
db = min(getattr(args, 'denoising_batch_size', 1), b)
denoised_samples = []
is_video = samples.dim() == 5
for j in range(b // db):
x_all = torch.clone(samples[j * db : (j + 1) * db]).detach().cuda()
y_batch = y[j * db : (j + 1) * db] if y is not None else None
if is_video:
# Chunk-wise denoising for videos
s_idx, overlap = 0, 0
steps = x_all.size(1) if getattr(args, 'local_attn_window', None) is None else args.local_attn_window
while s_idx < x_all.size(1):
x_chunk = x_all[:, s_idx : s_idx + steps].detach().clone()
x_denoised = apply_denoising(
model, x_chunk, y_batch, text_encoder, tokenizer,
args, text_encoder_kwargs, noise_std
)
x_all[:, s_idx + overlap: s_idx + steps] = x_denoised[:, overlap:]
overlap = steps - 1 if getattr(args, 'denoiser_window', None) is None else args.denoiser_window
s_idx += steps - overlap
else:
# Process entire batch for images
x_all = apply_denoising(
model, x_all, y_batch, text_encoder, tokenizer,
args, text_encoder_kwargs, noise_std
)
torch.cuda.empty_cache()
denoised_samples.append(x_all.detach().cpu())
return torch.cat(denoised_samples, dim=0).cuda()
def simple_denoising(model, samples: torch.Tensor, y_encoded,
text_encoder, tokenizer, args, noise_std: float) -> torch.Tensor:
"""Simplified denoising for training - reuses apply_denoising without chunking."""
if args.finetuned_vae != 'none' and args.finetuned_vae is not None:
return samples
# Reuse apply_denoising - it now handles both encoded tensors and raw captions
text_encoder_kwargs = {}
return apply_denoising(
model, samples, y_encoded, text_encoder, tokenizer,
args, text_encoder_kwargs, noise_std, sigma_next=0
)
|