Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from diffusers import StableDiffusionInpaintPipeline
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from segment_anything import SamPredictor, sam_model_registry
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
device= "cuda"
|
| 10 |
+
sam_checkpoint = "weights/sam_vit_b_01ec64.pth"
|
| 11 |
+
model_type = "vit_h"
|
| 12 |
+
sam = sam_model_registry[model_type](checkpoint= sam_checkpoint)
|
| 13 |
+
sam.to(device)
|
| 14 |
+
|
| 15 |
+
predictor= SamPredictor(sam)
|
| 16 |
+
|
| 17 |
+
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
| 18 |
+
"stabilityai/stable-diffusion-2-inpainting",
|
| 19 |
+
torch_dtype = torch.float16,
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
pipe = pipe.to(device)
|
| 24 |
+
|
| 25 |
+
selected_pixels = []
|
| 26 |
+
with gr.Blocks() as demo:
|
| 27 |
+
with gr.Row():
|
| 28 |
+
input_img= gr.Image(label= "Input")
|
| 29 |
+
mask_img = gr.Image(label = "Mask")
|
| 30 |
+
output_img= gr.Image(label = "Output")
|
| 31 |
+
|
| 32 |
+
with gr.Row():
|
| 33 |
+
prompt_text = gr.Textbox(lines=1, label= "Prompt")
|
| 34 |
+
|
| 35 |
+
with gr.Row():
|
| 36 |
+
submit = gr.Button("Submit")
|
| 37 |
+
|
| 38 |
+
def generate_mask(image, evt: gr.SelectData ):
|
| 39 |
+
selected_pixels.append(evt.index)
|
| 40 |
+
predictor.set(image)
|
| 41 |
+
input_points = np.array(selected_pixels)
|
| 42 |
+
input_label= np.ones(input_points.shape[0])
|
| 43 |
+
mask, _ , _ = predictor.predict(
|
| 44 |
+
point_coords= input_points,
|
| 45 |
+
point_label= input_label,
|
| 46 |
+
multimask_output = False,
|
| 47 |
+
|
| 48 |
+
)
|
| 49 |
+
#(1, szn sz) shape of mask
|
| 50 |
+
mask= Image.fromarray(mask[0 : , : ])
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def inpaint(image, mask, prompt):
|
| 54 |
+
image = Image.fromarray(image)
|
| 55 |
+
mask = Image.fromarray(mask)
|
| 56 |
+
|
| 57 |
+
image= image.resize((512, 512))
|
| 58 |
+
image= image.resize((512, 512))
|
| 59 |
+
output = pipe (
|
| 60 |
+
prompt = prompt,
|
| 61 |
+
image= image,
|
| 62 |
+
mask_image= mask,
|
| 63 |
+
|
| 64 |
+
).images[0]
|
| 65 |
+
|
| 66 |
+
return output
|
| 67 |
+
|
| 68 |
+
input_img.select(generate_mask, [input_img], [mask_img])
|
| 69 |
+
|
| 70 |
+
submit.click(inpaint, inputs= [input_img, mask_img, prompt_text],
|
| 71 |
+
outputs=[output_img],
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
if __name__ == "__main__":
|
| 75 |
+
demo.launch()
|
| 76 |
+
|
| 77 |
+
|