Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,839 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
demo.launch()
|
|
|
|
| 1 |
+
import os, io, csv, time, json, hashlib, base64, zipfile, re
|
| 2 |
+
from typing import List, Any, Tuple, Dict
|
| 3 |
+
|
| 4 |
+
import spaces
|
| 5 |
import gradio as gr
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import torch
|
| 8 |
+
from transformers import LlavaForConditionalGeneration, AutoProcessor
|
| 9 |
+
|
| 10 |
+
# ────────────────────────────────────────────────────────
|
| 11 |
+
# Paths & caches
|
| 12 |
+
# ────────────────────────────────────────────────────────
|
| 13 |
+
os.environ.setdefault("HF_HOME", "/home/user/.cache/huggingface")
|
| 14 |
+
os.makedirs(os.environ["HF_HOME"], exist_ok=True)
|
| 15 |
+
|
| 16 |
+
APP_DIR = os.getcwd()
|
| 17 |
+
SESSION_FILE = "/tmp/session.json"
|
| 18 |
+
SETTINGS_FILE = "/tmp/cf_settings.json"
|
| 19 |
+
JOURNAL_FILE = "/tmp/cf_journal.json"
|
| 20 |
+
TXT_EXPORT_DIR = "/tmp/cf_txt"
|
| 21 |
+
THUMB_CACHE = os.path.expanduser("~/.cache/captionforge/thumbs")
|
| 22 |
+
os.makedirs(THUMB_CACHE, exist_ok=True)
|
| 23 |
+
os.makedirs(TXT_EXPORT_DIR, exist_ok=True)
|
| 24 |
+
|
| 25 |
+
# ────────────────────────────────────────────────────────
|
| 26 |
+
# Model setup
|
| 27 |
+
# ────────────────────────────────────────────────────────
|
| 28 |
+
MODEL_PATH = "fancyfeast/llama-joycaption-beta-one-hf-llava"
|
| 29 |
+
|
| 30 |
+
def _detect_gpu():
|
| 31 |
+
if torch.cuda.is_available():
|
| 32 |
+
p = torch.cuda.get_device_properties(0)
|
| 33 |
+
return "cuda", int(p.total_memory/(1024**3)), p.name
|
| 34 |
+
return "cpu", 0, "CPU"
|
| 35 |
+
|
| 36 |
+
BACKEND, VRAM_GB, GPU_NAME = _detect_gpu()
|
| 37 |
+
DTYPE = torch.bfloat16 if BACKEND == "cuda" else torch.float32
|
| 38 |
+
MAX_SIDE_CAP = 1024 if BACKEND == "cuda" else 640
|
| 39 |
+
DEVICE = "cuda" if BACKEND == "cuda" else "cpu"
|
| 40 |
+
|
| 41 |
+
processor = AutoProcessor.from_pretrained(MODEL_PATH)
|
| 42 |
+
model = LlavaForConditionalGeneration.from_pretrained(
|
| 43 |
+
MODEL_PATH,
|
| 44 |
+
torch_dtype=DTYPE,
|
| 45 |
+
low_cpu_mem_usage=True,
|
| 46 |
+
device_map=0 if BACKEND == "cuda" else "cpu",
|
| 47 |
+
)
|
| 48 |
+
model.eval()
|
| 49 |
+
|
| 50 |
+
print(f"[CaptionForge] Backend={BACKEND} GPU={GPU_NAME} VRAM={VRAM_GB}GB dtype={DTYPE}")
|
| 51 |
+
print(f"[CaptionForge] Gradio version: {gr.__version__}")
|
| 52 |
+
|
| 53 |
+
# ────────────────────────────────────────────────────────
|
| 54 |
+
# Instruction templates & options
|
| 55 |
+
# ────────────────────────────────────────────────────────
|
| 56 |
+
STYLE_OPTIONS = [
|
| 57 |
+
"Descriptive (short)", "Descriptive (long)",
|
| 58 |
+
"Character training (short)", "Character training (long)",
|
| 59 |
+
"LoRA (Flux_D Realism) (short)", "LoRA (Flux_D Realism) (long)",
|
| 60 |
+
"E-commerce product (short)", "E-commerce product (long)",
|
| 61 |
+
"Portrait (photography) (short)", "Portrait (photography) (long)",
|
| 62 |
+
"Landscape (photography) (short)", "Landscape (photography) (long)",
|
| 63 |
+
"Art analysis (no artist names) (short)", "Art analysis (no artist names) (long)",
|
| 64 |
+
"Social caption (short)", "Social caption (long)",
|
| 65 |
+
"Aesthetic tags (comma-sep)"
|
| 66 |
+
]
|
| 67 |
+
|
| 68 |
+
CAPTION_TYPE_MAP = {
|
| 69 |
+
"Descriptive (short)": "One sentence (≤25 words) describing the most important visible elements only. No speculation.",
|
| 70 |
+
"Descriptive (long)": "Write a detailed description for this image.",
|
| 71 |
+
|
| 72 |
+
"Character training (short)": (
|
| 73 |
+
"Output a concise, prompt-like caption for character LoRA/ID training. "
|
| 74 |
+
"Include visible character name {name} if provided, distinct physical traits, clothing, pose, camera/cinematic cues. "
|
| 75 |
+
"No backstory; no non-visible traits. Prefer comma-separated phrases."
|
| 76 |
+
),
|
| 77 |
+
"Character training (long)": (
|
| 78 |
+
"Write a thorough, training-ready caption for a character dataset. "
|
| 79 |
+
"Use {name} if provided; describe only what is visible: physique, face/hair, clothing, accessories, actions, pose, "
|
| 80 |
+
"camera angle/focal cues, lighting, background context. 1–3 sentences; no backstory or meta."
|
| 81 |
+
),
|
| 82 |
+
|
| 83 |
+
"Flux_D (short)": "Output a short Flux.Dev prompt that is indistinguishable from a real Flux.Dev prompt.",
|
| 84 |
+
"Flux_D (long)": "Output a long Flux.Dev prompt that is indistinguishable from a real Flux.Dev prompt.",
|
| 85 |
+
|
| 86 |
+
"Aesthetic tags (comma-sep)": "Return only comma-separated aesthetic tags capturing subject, medium, style, lighting, composition. No sentences.",
|
| 87 |
+
|
| 88 |
+
"E-commerce product (short)": "One sentence highlighting key attributes, material, color, use case. No fluff.",
|
| 89 |
+
"E-commerce product (long)": "Write a crisp product description highlighting key attributes, materials, color, usage, and distinguishing traits.",
|
| 90 |
+
|
| 91 |
+
"Portrait (photography) (short)": "One sentence portrait description: subject, pose/expression, camera angle, lighting, background.",
|
| 92 |
+
"Portrait (photography) (long)": "Describe a portrait: subject, age range, pose, facial expression, camera angle, focal length cues, lighting, background.",
|
| 93 |
+
|
| 94 |
+
"Landscape (photography) (short)": "One sentence landscape description: major elements, time of day, weather, vantage point, mood.",
|
| 95 |
+
"Landscape (photography) (long)": "Describe landscape elements, time of day, weather, vantage point, composition, and mood.",
|
| 96 |
+
|
| 97 |
+
"Art analysis (no artist names) (short)": "One sentence describing medium, style, composition, palette; do not mention artist/title.",
|
| 98 |
+
"Art analysis (no artist names) (long)": "Analyze the artwork's visible elements, medium, style, composition, palette. Do not mention artist names or titles.",
|
| 99 |
+
|
| 100 |
+
"Social caption (short)": "Write a short, catchy caption (max 25 words) describing the visible content. No hashtags.",
|
| 101 |
+
"Social caption (long)": "Write a slightly longer, engaging caption (≤50 words) describing the visible content. No hashtags."
|
| 102 |
+
}
|
| 103 |
+
|
| 104 |
+
EXTRA_CHOICES = [
|
| 105 |
+
"Do NOT include information about people/characters that cannot be changed (like ethnicity, gender, etc), but do still include changeable attributes (like hair style).",
|
| 106 |
+
"Do NOT include information about whether there is a watermark or not.",
|
| 107 |
+
"Do NOT use any ambiguous language.",
|
| 108 |
+
"ONLY describe the most important elements of the image.",
|
| 109 |
+
"Include information about the ages of any people/characters when applicable.",
|
| 110 |
+
"Explicitly specify the vantage height (eye-level, low-angle worm’s-eye, bird’s-eye, drone, rooftop, etc.).",
|
| 111 |
+
"Focus captions only on clothing/fashion details.",
|
| 112 |
+
"Focus on setting, scenery, and context; ignore subject details.",
|
| 113 |
+
"ONLY describe the subject’s pose, movement, or action. Do NOT mention appearance, clothing, or setting.",
|
| 114 |
+
"Do NOT include anything sexual; keep it PG.",
|
| 115 |
+
"Include synonyms/alternate phrasing to diversify training set.",
|
| 116 |
+
"ALWAYS arrange caption elements in the order → Subject, Clothing/Accessories, Action/Pose, Setting/Environment, Lighting/Camera/Style.",
|
| 117 |
+
"Do NOT mention the image's resolution.",
|
| 118 |
+
"Include information about depth, lighting, and camera angle.",
|
| 119 |
+
"Include information on composition (rule of thirds, symmetry, leading lines, etc).",
|
| 120 |
+
"Specify the depth of field and whether the background is in focus or blurred.",
|
| 121 |
+
"If applicable, mention the likely use of artificial or natural lighting sources.",
|
| 122 |
+
"If it is a work of art, do not include the artist's name or the title of the work.",
|
| 123 |
+
"Identify the image orientation (portrait, landscape, or square) if obvious.",
|
| 124 |
+
]
|
| 125 |
+
NAME_OPTION = "If there is a person/character in the image you must refer to them as {name}."
|
| 126 |
+
|
| 127 |
+
# ────────────────────────────────────────────────────────
|
| 128 |
+
# Helpers (hashing, thumbs, resize)
|
| 129 |
+
# ────────────────────────────────────────────────────────
|
| 130 |
+
def sha1_file(path: str) -> str:
|
| 131 |
+
h = hashlib.sha1()
|
| 132 |
+
with open(path, "rb") as f:
|
| 133 |
+
for chunk in iter(lambda: f.read(8192), b""):
|
| 134 |
+
h.update(chunk)
|
| 135 |
+
return h.hexdigest()
|
| 136 |
+
|
| 137 |
+
def thumb_path(sha1: str, max_side=96) -> str:
|
| 138 |
+
return os.path.join(THUMB_CACHE, f"{sha1}_{max_side}.jpg")
|
| 139 |
+
|
| 140 |
+
def ensure_thumb(path: str, sha1: str, max_side=96) -> str:
|
| 141 |
+
out = thumb_path(sha1, max_side)
|
| 142 |
+
if os.path.exists(out):
|
| 143 |
+
return out
|
| 144 |
+
try:
|
| 145 |
+
im = Image.open(path).convert("RGB")
|
| 146 |
+
except Exception:
|
| 147 |
+
return ""
|
| 148 |
+
w, h = im.size
|
| 149 |
+
if max(w, h) > max_side:
|
| 150 |
+
s = max_side / max(w, h)
|
| 151 |
+
im = im.resize((int(w*s), int(h*s)), Image.LANCZOS)
|
| 152 |
+
try:
|
| 153 |
+
im.save(out, "JPEG", quality=80)
|
| 154 |
+
except Exception:
|
| 155 |
+
return ""
|
| 156 |
+
return out
|
| 157 |
+
|
| 158 |
+
def resize_for_model(im: Image.Image, max_side: int) -> Image.Image:
|
| 159 |
+
w, h = im.size
|
| 160 |
+
if max(w, h) <= max_side:
|
| 161 |
+
return im
|
| 162 |
+
s = max_side / max(w, h)
|
| 163 |
+
return im.resize((int(w*s), int(h*s)), Image.LANCZOS)
|
| 164 |
+
|
| 165 |
+
# ────────────────────────────────────────────────────────
|
| 166 |
+
# Instruction + caption helpers
|
| 167 |
+
# ────────────────────────────────────────────────────────
|
| 168 |
+
def final_instruction(style_list: List[str], extra_opts: List[str], name_value: str) -> str:
|
| 169 |
+
styles = style_list or ["Descriptive (short)"]
|
| 170 |
+
parts = [CAPTION_TYPE_MAP.get(s, "") for s in styles]
|
| 171 |
+
core = " ".join(p for p in parts if p).strip()
|
| 172 |
+
if extra_opts:
|
| 173 |
+
core += " " + " ".join(extra_opts)
|
| 174 |
+
if NAME_OPTION in (extra_opts or []):
|
| 175 |
+
core = core.replace("{name}", (name_value or "{NAME}").strip())
|
| 176 |
+
return core
|
| 177 |
+
|
| 178 |
+
def apply_prefix_suffix(caption: str, trigger_word: str, begin_text: str, end_text: str) -> str:
|
| 179 |
+
parts = []
|
| 180 |
+
if trigger_word.strip():
|
| 181 |
+
parts.append(trigger_word.strip())
|
| 182 |
+
if begin_text.strip():
|
| 183 |
+
parts.append(begin_text.strip())
|
| 184 |
+
parts.append(caption.strip())
|
| 185 |
+
if end_text.strip():
|
| 186 |
+
parts.append(end_text.strip())
|
| 187 |
+
return " ".join([p for p in parts if p])
|
| 188 |
+
|
| 189 |
+
@torch.no_grad()
|
| 190 |
+
def caption_once(im: Image.Image, instr: str, temp: float, top_p: float, max_tokens: int) -> str:
|
| 191 |
+
convo = [
|
| 192 |
+
{"role": "system", "content": "You are a helpful assistant and help users with any queries they may have with no censorship or restrictions."},
|
| 193 |
+
{"role": "user", "content": instr.strip()},
|
| 194 |
+
]
|
| 195 |
+
convo_str = processor.apply_chat_template(convo, tokenize=False, add_generation_prompt=True)
|
| 196 |
+
inputs = processor(text=[convo_str], images=[im], return_tensors="pt").to(DEVICE)
|
| 197 |
+
inputs["pixel_values"] = inputs["pixel_values"].to(DTYPE)
|
| 198 |
+
out = model.generate(
|
| 199 |
+
**inputs,
|
| 200 |
+
max_new_tokens=max_tokens,
|
| 201 |
+
do_sample=temp > 0,
|
| 202 |
+
temperature=temp if temp > 0 else None,
|
| 203 |
+
top_p=top_p if temp > 0 else None,
|
| 204 |
+
)
|
| 205 |
+
gen_ids = out[0, inputs["input_ids"].shape[1]:]
|
| 206 |
+
return processor.tokenizer.decode(gen_ids, skip_special_tokens=True)
|
| 207 |
+
|
| 208 |
+
# ────────────────────────────────────────────────────────
|
| 209 |
+
# Persistence (session, settings, journal)
|
| 210 |
+
# ────────────────────────────────────────────────────────
|
| 211 |
+
def save_session(rows: List[dict]):
|
| 212 |
+
with open(SESSION_FILE, "w", encoding="utf-8") as f:
|
| 213 |
+
json.dump(rows, f, ensure_ascii=False, indent=2)
|
| 214 |
+
|
| 215 |
+
def load_session() -> List[dict]:
|
| 216 |
+
if os.path.exists(SESSION_FILE):
|
| 217 |
+
with open(SESSION_FILE, "r", encoding="utf-8") as f:
|
| 218 |
+
return json.load(f)
|
| 219 |
+
return []
|
| 220 |
+
|
| 221 |
+
def save_settings(cfg: dict):
|
| 222 |
+
with open(SETTINGS_FILE, "w", encoding="utf-8") as f:
|
| 223 |
+
json.dump(cfg, f, ensure_ascii=False, indent=2)
|
| 224 |
+
|
| 225 |
+
def load_settings() -> dict:
|
| 226 |
+
if os.path.exists(SETTINGS_FILE):
|
| 227 |
+
with open(SETTINGS_FILE, "r", encoding="utf-8") as f:
|
| 228 |
+
cfg = json.load(f)
|
| 229 |
+
else:
|
| 230 |
+
cfg = {}
|
| 231 |
+
defaults = {
|
| 232 |
+
"dataset_name": "captionforge",
|
| 233 |
+
"temperature": 0.6,
|
| 234 |
+
"top_p": 0.9,
|
| 235 |
+
"max_tokens": 256,
|
| 236 |
+
"chunk_mode": "Manual (step)",
|
| 237 |
+
"chunk_size": 10,
|
| 238 |
+
"max_side": min(896, MAX_SIDE_CAP),
|
| 239 |
+
"styles": ["Character training (short)"],
|
| 240 |
+
"extras": [],
|
| 241 |
+
"name": "",
|
| 242 |
+
"trigger": "",
|
| 243 |
+
"begin": "",
|
| 244 |
+
"end": "",
|
| 245 |
+
}
|
| 246 |
+
for k, v in defaults.items():
|
| 247 |
+
cfg.setdefault(k, v)
|
| 248 |
+
|
| 249 |
+
# migrate legacy names
|
| 250 |
+
legacy_map = {
|
| 251 |
+
"Descriptive": "Descriptive (short)",
|
| 252 |
+
"LoRA (Flux_D Realism)": "LoRA (Flux_D Realism) (short)",
|
| 253 |
+
"Portrait (photography)": "Portrait (photography) (short)",
|
| 254 |
+
"Landscape (photography)": "Landscape (photography) (short)",
|
| 255 |
+
"Art analysis (no artist names)": "Art analysis (no artist names) (short)",
|
| 256 |
+
"E-commerce product": "E-commerce product (short)",
|
| 257 |
+
}
|
| 258 |
+
styles = cfg.get("styles") or []
|
| 259 |
+
migrated = []
|
| 260 |
+
for s in styles if isinstance(styles, list) else [styles]:
|
| 261 |
+
migrated.append(legacy_map.get(s, s))
|
| 262 |
+
migrated = [s for s in migrated if s in STYLE_OPTIONS]
|
| 263 |
+
if not migrated:
|
| 264 |
+
migrated = ["Descriptive (short)"]
|
| 265 |
+
cfg["styles"] = migrated
|
| 266 |
+
return cfg
|
| 267 |
+
|
| 268 |
+
def save_journal(data: dict):
|
| 269 |
+
with open(JOURNAL_FILE, "w", encoding="utf-8") as f:
|
| 270 |
+
json.dump(data, f, ensure_ascii=False, indent=2)
|
| 271 |
+
|
| 272 |
+
def load_journal() -> dict:
|
| 273 |
+
if os.path.exists(JOURNAL_FILE):
|
| 274 |
+
with open(JOURNAL_FILE, "r", encoding="utf-8") as f:
|
| 275 |
+
return json.load(f)
|
| 276 |
+
return {}
|
| 277 |
+
|
| 278 |
+
# ────────────────────────────────────────────────────────
|
| 279 |
+
# Logo loader
|
| 280 |
+
# ────────────────────────────────────────────────────────
|
| 281 |
+
def logo_b64_img() -> str:
|
| 282 |
+
candidates = [
|
| 283 |
+
os.path.join(APP_DIR, "captionforge-logo.png"),
|
| 284 |
+
"/home/user/app/captionforge-logo.png",
|
| 285 |
+
"captionforge-logo.png",
|
| 286 |
+
]
|
| 287 |
+
for p in candidates:
|
| 288 |
+
if os.path.exists(p):
|
| 289 |
+
with open(p, "rb") as f:
|
| 290 |
+
b64 = base64.b64encode(f.read()).decode("ascii")
|
| 291 |
+
return f"<img src='data:image/png;base64,{b64}' alt='CaptionForge' class='cf-logo'>"
|
| 292 |
+
return ""
|
| 293 |
+
|
| 294 |
+
# ────────────────────────────────────────────────────────
|
| 295 |
+
# Import / Export helpers
|
| 296 |
+
# ────────────────────────────────────────────────────────
|
| 297 |
+
def sanitize_basename(s: str) -> str:
|
| 298 |
+
s = (s or "").strip() or "captionforge"
|
| 299 |
+
return re.sub(r"[^A-Za-z0-9._-]+", "_", s)[:120]
|
| 300 |
+
|
| 301 |
+
def ts_stamp() -> str:
|
| 302 |
+
return time.strftime("%Y%m%d_%H%M%S")
|
| 303 |
+
|
| 304 |
+
def export_csv(rows: List[dict], basename: str) -> str:
|
| 305 |
+
base = sanitize_basename(basename)
|
| 306 |
+
out = f"/tmp/{base}_{ts_stamp()}.csv"
|
| 307 |
+
with open(out, "w", newline="", encoding="utf-8") as f:
|
| 308 |
+
w = csv.writer(f)
|
| 309 |
+
w.writerow(["sha1", "filename", "caption"])
|
| 310 |
+
for r in rows:
|
| 311 |
+
w.writerow([r.get("sha1",""), r.get("filename",""), r.get("caption","")])
|
| 312 |
+
return out
|
| 313 |
+
|
| 314 |
+
def export_excel(rows: List[dict], basename: str) -> str:
|
| 315 |
+
try:
|
| 316 |
+
from openpyxl import Workbook
|
| 317 |
+
from openpyxl.drawing.image import Image as XLImage
|
| 318 |
+
except Exception as e:
|
| 319 |
+
raise RuntimeError("Excel export requires 'openpyxl' in requirements.txt.") from e
|
| 320 |
+
base = sanitize_basename(basename)
|
| 321 |
+
out = f"/tmp/{base}_{ts_stamp()}.xlsx"
|
| 322 |
+
wb = Workbook(); ws = wb.active; ws.title = "CaptionForge"
|
| 323 |
+
ws.append(["image", "filename", "caption"])
|
| 324 |
+
ws.column_dimensions["A"].width = 24
|
| 325 |
+
ws.column_dimensions["B"].width = 42
|
| 326 |
+
ws.column_dimensions["C"].width = 100
|
| 327 |
+
r_i = 2
|
| 328 |
+
for r in rows:
|
| 329 |
+
fn = r.get("filename",""); cap = r.get("caption","")
|
| 330 |
+
ws.cell(row=r_i, column=2, value=fn)
|
| 331 |
+
ws.cell(row=r_i, column=3, value=cap)
|
| 332 |
+
img_path = r.get("thumb_path") or r.get("path")
|
| 333 |
+
if img_path and os.path.exists(img_path):
|
| 334 |
+
try:
|
| 335 |
+
ximg = XLImage(img_path); ws.add_image(ximg, f"A{r_i}"); ws.row_dimensions[r_i].height = 110
|
| 336 |
+
except Exception:
|
| 337 |
+
pass
|
| 338 |
+
r_i += 1
|
| 339 |
+
wb.save(out); return out
|
| 340 |
+
|
| 341 |
+
def export_txt_zip(rows: List[dict], basename: str) -> str:
|
| 342 |
+
base = sanitize_basename(basename)
|
| 343 |
+
for name in os.listdir(TXT_EXPORT_DIR):
|
| 344 |
+
try: os.remove(os.path.join(TXT_EXPORT_DIR, name))
|
| 345 |
+
except Exception: pass
|
| 346 |
+
used: Dict[str,int] = {}
|
| 347 |
+
for r in rows:
|
| 348 |
+
orig = r.get("filename") or r.get("sha1") or "item"
|
| 349 |
+
stem = re.sub(r"\.[A-Za-z0-9]+$", "", orig)
|
| 350 |
+
stem = sanitize_basename(stem)
|
| 351 |
+
if stem in used:
|
| 352 |
+
used[stem] += 1
|
| 353 |
+
stem = f"{stem}_{used[stem]}"
|
| 354 |
+
else:
|
| 355 |
+
used[stem] = 0
|
| 356 |
+
txt_path = os.path.join(TXT_EXPORT_DIR, f"{stem}.txt")
|
| 357 |
+
with open(txt_path, "w", encoding="utf-8") as f:
|
| 358 |
+
f.write(r.get("caption", ""))
|
| 359 |
+
zpath = f"/tmp/{base}_{ts_stamp()}_txt.zip"
|
| 360 |
+
with zipfile.ZipFile(zpath, "w", zipfile.ZIP_DEFLATED) as z:
|
| 361 |
+
for name in os.listdir(TXT_EXPORT_DIR):
|
| 362 |
+
if name.endswith(".txt"):
|
| 363 |
+
z.write(os.path.join(TXT_EXPORT_DIR, name), arcname=name)
|
| 364 |
+
return zpath
|
| 365 |
+
|
| 366 |
+
def import_csv_jsonl(path: str, rows: List[dict]) -> List[dict]:
|
| 367 |
+
"""Merge captions from CSV/JSONL into current rows by sha1→filename, updating only 'caption'."""
|
| 368 |
+
if not path or not os.path.exists(path):
|
| 369 |
+
return rows or []
|
| 370 |
+
rows = rows or []
|
| 371 |
+
by_sha = {r.get("sha1"): r for r in rows if r.get("sha1")}
|
| 372 |
+
by_fn = {r.get("filename"): r for r in rows if r.get("filename")}
|
| 373 |
+
|
| 374 |
+
def _apply(item: dict):
|
| 375 |
+
if not isinstance(item, dict):
|
| 376 |
+
return
|
| 377 |
+
cap = (item.get("caption") or "").strip()
|
| 378 |
+
if not cap:
|
| 379 |
+
return
|
| 380 |
+
sha = (item.get("sha1") or "").strip()
|
| 381 |
+
fn = (item.get("filename") or "").strip()
|
| 382 |
+
tgt = by_sha.get(sha) if sha else None
|
| 383 |
+
if not tgt and fn:
|
| 384 |
+
tgt = by_fn.get(fn)
|
| 385 |
+
if tgt is not None:
|
| 386 |
+
prev = tgt.get("caption", "")
|
| 387 |
+
if cap != prev:
|
| 388 |
+
tgt.setdefault("history", []).append(prev)
|
| 389 |
+
tgt["caption"] = cap
|
| 390 |
+
|
| 391 |
+
ext = os.path.splitext(path)[1].lower()
|
| 392 |
+
try:
|
| 393 |
+
if ext == ".csv":
|
| 394 |
+
with open(path, "r", encoding="utf-8") as f:
|
| 395 |
+
for row in csv.DictReader(f):
|
| 396 |
+
_apply(row)
|
| 397 |
+
elif ext in (".jsonl", ".ndjson"):
|
| 398 |
+
with open(path, "r", encoding="utf-8") as f:
|
| 399 |
+
for line in f:
|
| 400 |
+
line = line.strip()
|
| 401 |
+
if not line:
|
| 402 |
+
continue
|
| 403 |
+
try:
|
| 404 |
+
obj = json.loads(line)
|
| 405 |
+
except Exception:
|
| 406 |
+
continue
|
| 407 |
+
_apply(obj)
|
| 408 |
+
else:
|
| 409 |
+
with open(path, "r", encoding="utf-8") as f:
|
| 410 |
+
data = json.load(f)
|
| 411 |
+
if isinstance(data, list):
|
| 412 |
+
for obj in data:
|
| 413 |
+
_apply(obj)
|
| 414 |
+
except Exception as e:
|
| 415 |
+
print("[CaptionForge] Import merge failed:", e)
|
| 416 |
+
save_session(rows)
|
| 417 |
+
return rows
|
| 418 |
+
|
| 419 |
+
# ────────────────────────────────────────────────────────
|
| 420 |
+
# Batching / processing
|
| 421 |
+
# ────────────────────────────────────────────────────────
|
| 422 |
+
def adaptive_defaults(vram_gb: int) -> Tuple[int, int]:
|
| 423 |
+
if vram_gb >= 40: return 24, min(1024, MAX_SIDE_CAP)
|
| 424 |
+
if vram_gb >= 24: return 16, min(1024, MAX_SIDE_CAP)
|
| 425 |
+
if vram_gb >= 12: return 10, 896
|
| 426 |
+
if vram_gb >= 8: return 6, 768
|
| 427 |
+
return 4, 640
|
| 428 |
+
|
| 429 |
+
def warmup_if_needed(temp: float, top_p: float, max_tokens: int, max_side: int):
|
| 430 |
+
try:
|
| 431 |
+
im = Image.new("RGB", (min(128, max_side), min(128, max_side)), (127,127,127))
|
| 432 |
+
_ = caption_once(im, "Warm up.", temp=0.0, top_p=top_p, max_tokens=min(16, max_tokens))
|
| 433 |
+
except Exception as e:
|
| 434 |
+
print("[CaptionForge] Warm-up skipped:", e)
|
| 435 |
+
|
| 436 |
+
@spaces.GPU()
|
| 437 |
+
@torch.no_grad()
|
| 438 |
+
def process_batch(files: List[str], include_dups: bool, rows: List[dict],
|
| 439 |
+
instr_text: str, temp: float, top_p: float, max_tokens: int,
|
| 440 |
+
trigger_word: str, begin_text: str, end_text: str,
|
| 441 |
+
mode: str, chunk_size: int, max_side: int, step_once: bool,
|
| 442 |
+
progress=gr.Progress(track_tqdm=True)) -> Tuple[List[dict], List[str], List[str]]:
|
| 443 |
+
if torch.cuda.is_available():
|
| 444 |
+
torch.cuda.empty_cache()
|
| 445 |
+
files = files or []
|
| 446 |
+
if not files: return rows, [], []
|
| 447 |
+
|
| 448 |
+
auto_mode = mode == "Auto"
|
| 449 |
+
if auto_mode:
|
| 450 |
+
chunk_size, max_side = adaptive_defaults(VRAM_GB)
|
| 451 |
+
|
| 452 |
+
sha_seen = {r.get("sha1") for r in rows}
|
| 453 |
+
f_infos = []
|
| 454 |
+
for f in files:
|
| 455 |
+
try:
|
| 456 |
+
s = sha1_file(f)
|
| 457 |
+
except Exception:
|
| 458 |
+
continue
|
| 459 |
+
if (not include_dups) and (s in sha_seen):
|
| 460 |
+
continue
|
| 461 |
+
f_infos.append((f, os.path.basename(f), s))
|
| 462 |
+
if not f_infos: return rows, [], []
|
| 463 |
+
|
| 464 |
+
warmup_if_needed(temp, top_p, max_tokens, max_side)
|
| 465 |
+
|
| 466 |
+
chunks = [f_infos[i:i+chunk_size] for i in range(0, len(f_infos), chunk_size)]
|
| 467 |
+
if step_once:
|
| 468 |
+
chunks = chunks[:1]
|
| 469 |
+
|
| 470 |
+
error_log: List[str] = []
|
| 471 |
+
remaining: List[str] = []
|
| 472 |
+
|
| 473 |
+
for ci, chunk in enumerate(chunks):
|
| 474 |
+
for (f, fname, sha) in progress.tqdm(chunk, desc=f"Chunk {ci+1}/{len(chunks)}"):
|
| 475 |
+
thumb = ensure_thumb(f, sha, 96)
|
| 476 |
+
attempt = 0
|
| 477 |
+
cap = None
|
| 478 |
+
while attempt < 2:
|
| 479 |
+
attempt += 1
|
| 480 |
+
try:
|
| 481 |
+
im = Image.open(f).convert("RGB")
|
| 482 |
+
im = resize_for_model(im, max_side)
|
| 483 |
+
cap = caption_once(im, instr_text, temp, top_p, max_tokens)
|
| 484 |
+
cap = apply_prefix_suffix(cap, trigger_word, begin_text, end_text)
|
| 485 |
+
break
|
| 486 |
+
except Exception as e:
|
| 487 |
+
error_log.append(f"{fname} ({sha[:8]}): {type(e).__name__}: {e} [attempt {attempt}]")
|
| 488 |
+
rows.append({
|
| 489 |
+
"sha1": sha, "filename": fname, "path": f, "thumb_path": thumb,
|
| 490 |
+
"caption": cap or "", "history": []
|
| 491 |
+
})
|
| 492 |
+
save_session(rows)
|
| 493 |
+
|
| 494 |
+
if step_once and len(f_infos) > len(chunks[0]):
|
| 495 |
+
remaining = [fi[0] for fi in f_infos[len(chunks[0]):]]
|
| 496 |
+
save_journal({"remaining_files": remaining})
|
| 497 |
+
return rows, remaining, error_log
|
| 498 |
+
|
| 499 |
+
# ────────────────────────────────────────────────────────
|
| 500 |
+
# UI
|
| 501 |
+
# ────────────────────────────────────────────────────────
|
| 502 |
+
BASE_CSS = """
|
| 503 |
+
:root{--galleryW:50%;--tableW:50%;}
|
| 504 |
+
.gradio-container{max-width:100%!important}
|
| 505 |
+
.cf-hero{display:grid;grid-template-columns:auto 1fr;column-gap:18px;align-items:center;justify-content:center;
|
| 506 |
+
gap: 16px; margin:4px 0 12px;}
|
| 507 |
+
.cf-logo{height:calc(3.25rem + 3 * 1.1rem + 18px);width:auto;object-fit:contain}
|
| 508 |
+
.cf-title{margin:0;font-size:3.25rem;line-height:1;letter-spacing:.2px}
|
| 509 |
+
.cf-sub{margin:6px 0 0;font-size:1.1rem;color:#cfd3da}
|
| 510 |
+
.cf-row{display:flex;gap:12px}
|
| 511 |
+
.cf-col-gallery{flex:0 0 var(--galleryW)}
|
| 512 |
+
.cf-col-table{flex:0 0 var(--tableW)}
|
| 513 |
+
/* Shared scroll look */
|
| 514 |
+
.cf-scroll{max-height:70vh; overflow-y:auto; border:1px solid #e6e6e6; border-radius:10px; padding:8px}
|
| 515 |
+
/* Uniform sizes */
|
| 516 |
+
#cfGal .grid > div { height: 96px; }
|
| 517 |
+
/* Hide SHA1 in table (first column) */
|
| 518 |
+
#cfTable table thead tr th:first-child { display:none; }
|
| 519 |
+
#cfTable table tbody tr td:first-child { display:none; }
|
| 520 |
+
"""
|
| 521 |
+
|
| 522 |
+
with gr.Blocks(css=BASE_CSS, title="CaptionForge") as demo:
|
| 523 |
+
settings = load_settings()
|
| 524 |
+
settings["styles"] = [s for s in settings.get("styles", []) if s in STYLE_OPTIONS] or ["Descriptive (short)"]
|
| 525 |
+
|
| 526 |
+
header = gr.HTML(value="""
|
| 527 |
+
<div class="cf-hero">
|
| 528 |
+
%s
|
| 529 |
+
<div>
|
| 530 |
+
<h1 class="cf-title">CaptionForge</h1>
|
| 531 |
+
<div class="cf-sub">Batch captioning</div>
|
| 532 |
+
<div class="cf-sub">Scrollable editor & autosave</div>
|
| 533 |
+
<div class="cf-sub">CSV / Excel / TXT export</div>
|
| 534 |
+
</div>
|
| 535 |
+
</div>
|
| 536 |
+
<hr>
|
| 537 |
+
""" % logo_b64_img())
|
| 538 |
+
|
| 539 |
+
# ===== Controls (top)
|
| 540 |
+
with gr.Group():
|
| 541 |
+
with gr.Row():
|
| 542 |
+
with gr.Column(scale=2):
|
| 543 |
+
style_checks = gr.CheckboxGroup(
|
| 544 |
+
choices=STYLE_OPTIONS,
|
| 545 |
+
value=settings.get("styles", ["Descriptive (short)"]),
|
| 546 |
+
label="Caption style (choose one or combine)"
|
| 547 |
+
)
|
| 548 |
+
with gr.Accordion("Extra options", open=True):
|
| 549 |
+
extra_opts = gr.CheckboxGroup(
|
| 550 |
+
choices=[NAME_OPTION] + EXTRA_CHOICES,
|
| 551 |
+
value=settings.get("extras", []),
|
| 552 |
+
label=None
|
| 553 |
+
)
|
| 554 |
+
with gr.Accordion("Name & Prefix/Suffix", open=True):
|
| 555 |
+
name_input = gr.Textbox(label="Person / Character Name", value=settings.get("name", ""))
|
| 556 |
+
trig = gr.Textbox(label="Trigger word")
|
| 557 |
+
add_start = gr.Textbox(label="Add text to start")
|
| 558 |
+
add_end = gr.Textbox(label="Add text to end")
|
| 559 |
+
|
| 560 |
+
with gr.Column(scale=1):
|
| 561 |
+
instruction_preview = gr.Textbox(label="Model Instructions", lines=14)
|
| 562 |
+
dataset_name = gr.Textbox(label="Dataset name (used for export file titles)", value=settings.get("dataset_name", "captionforge"))
|
| 563 |
+
|
| 564 |
+
with gr.Row():
|
| 565 |
+
chunk_mode = gr.Radio(
|
| 566 |
+
choices=["Auto", "Manual (all at once)", "Manual (step)"],
|
| 567 |
+
value=settings.get("chunk_mode", "Manual (step)"),
|
| 568 |
+
label="Batch mode"
|
| 569 |
+
)
|
| 570 |
+
chunk_size = gr.Slider(1, 50, settings.get("chunk_size", 10), step=1, label="Chunk size")
|
| 571 |
+
max_side = gr.Slider(256, MAX_SIDE_CAP, settings.get("max_side", min(896, MAX_SIDE_CAP)), step=32, label="Max side (resize)")
|
| 572 |
+
|
| 573 |
+
# Auto-refresh instruction & persist key controls
|
| 574 |
+
def _refresh_instruction(styles, extra, name_value, trigv, begv, endv):
|
| 575 |
+
instr = final_instruction(styles or ["Descriptive (short)"], extra or [], name_value)
|
| 576 |
+
cfg = load_settings()
|
| 577 |
+
cfg.update({
|
| 578 |
+
"styles": styles or ["Descriptive (short)"],
|
| 579 |
+
"extras": extra or [],
|
| 580 |
+
"name": name_value,
|
| 581 |
+
"trigger": trigv, "begin": begv, "end": endv
|
| 582 |
+
})
|
| 583 |
+
save_settings(cfg)
|
| 584 |
+
return instr
|
| 585 |
+
|
| 586 |
+
for comp in [style_checks, extra_opts, name_input, trig, add_start, add_end]:
|
| 587 |
+
comp.change(_refresh_instruction, inputs=[style_checks, extra_opts, name_input, trig, add_start, add_end], outputs=[instruction_preview])
|
| 588 |
+
|
| 589 |
+
# ===== File inputs & actions
|
| 590 |
+
with gr.Accordion("Uploaded images", open=True) as uploads_acc:
|
| 591 |
+
input_files = gr.File(label="Drop images", file_types=["image"], file_count="multiple", type="filepath")
|
| 592 |
+
import_file = gr.File(label="Import CSV or JSONL (merge captions)")
|
| 593 |
+
|
| 594 |
+
with gr.Row():
|
| 595 |
+
import_btn = gr.Button("Import → Merge")
|
| 596 |
+
resume_btn = gr.Button("Resume last run", variant="secondary")
|
| 597 |
+
run_button = gr.Button("Caption batch", variant="primary")
|
| 598 |
+
|
| 599 |
+
# Step-chunk controls
|
| 600 |
+
step_panel = gr.Group(visible=False)
|
| 601 |
+
with step_panel:
|
| 602 |
+
step_msg = gr.Markdown("")
|
| 603 |
+
step_next = gr.Button("Process next chunk")
|
| 604 |
+
step_finish = gr.Button("Finish")
|
| 605 |
+
|
| 606 |
+
# States
|
| 607 |
+
rows_state = gr.State(load_session())
|
| 608 |
+
visible_count_state = gr.State(100)
|
| 609 |
+
pending_files = gr.State([])
|
| 610 |
+
remaining_state = gr.State([])
|
| 611 |
+
autosave_md = gr.Markdown("Ready.")
|
| 612 |
+
|
| 613 |
+
# Error log
|
| 614 |
+
with gr.Accordion("Error log", open=False):
|
| 615 |
+
log_md = gr.Markdown("")
|
| 616 |
+
|
| 617 |
+
# Side-by-side gallery + table with shared scroll
|
| 618 |
+
with gr.Row():
|
| 619 |
+
with gr.Column(scale=1):
|
| 620 |
+
gallery = gr.Gallery(
|
| 621 |
+
label="Results (images)",
|
| 622 |
+
show_label=True,
|
| 623 |
+
columns=10, # 10 per row as requested
|
| 624 |
+
height=520,
|
| 625 |
+
elem_id="cfGal",
|
| 626 |
+
elem_classes=["cf-scroll"]
|
| 627 |
+
)
|
| 628 |
+
with gr.Column(scale=1):
|
| 629 |
+
table = gr.Dataframe(
|
| 630 |
+
label="Editable captions (whole session)",
|
| 631 |
+
value=[], # filled by _render
|
| 632 |
+
headers=["sha1", "filename", "caption"], # include sha1, but it's hidden by CSS
|
| 633 |
+
interactive=True,
|
| 634 |
+
elem_id="cfTable",
|
| 635 |
+
elem_classes=["cf-scroll"]
|
| 636 |
+
)
|
| 637 |
+
|
| 638 |
+
# Exports aligned under buttons
|
| 639 |
+
with gr.Row():
|
| 640 |
+
with gr.Column():
|
| 641 |
+
export_csv_btn = gr.Button("Export CSV")
|
| 642 |
+
csv_file = gr.File(label="CSV file", visible=False)
|
| 643 |
+
with gr.Column():
|
| 644 |
+
export_xlsx_btn = gr.Button("Export Excel (.xlsx)")
|
| 645 |
+
xlsx_file = gr.File(label="Excel file", visible=False)
|
| 646 |
+
with gr.Column():
|
| 647 |
+
export_txt_btn = gr.Button("Export captions as .txt (zip)")
|
| 648 |
+
txt_zip = gr.File(label="TXT zip", visible=False)
|
| 649 |
+
|
| 650 |
+
# Render helpers
|
| 651 |
+
def _render(rows, vis_n):
|
| 652 |
+
rows = rows or []
|
| 653 |
+
n = max(0, int(vis_n) if vis_n else 0)
|
| 654 |
+
win = rows[:n]
|
| 655 |
+
|
| 656 |
+
# Gallery expects list of paths (Gradio 5 ok)
|
| 657 |
+
gal = []
|
| 658 |
+
for r in win:
|
| 659 |
+
p = r.get("thumb_path") or r.get("path")
|
| 660 |
+
if isinstance(p, str) and os.path.exists(p):
|
| 661 |
+
gal.append(p)
|
| 662 |
+
|
| 663 |
+
# Dataframe rows (sha1 kept for mapping; hidden via CSS)
|
| 664 |
+
df = [[str(r.get("sha1","")), str(r.get("filename","")), str(r.get("caption",""))] for r in win]
|
| 665 |
+
info = f"Showing {len(win)} of {len(rows)}"
|
| 666 |
+
return gal, df, info
|
| 667 |
+
|
| 668 |
+
# Initial loads
|
| 669 |
+
demo.load(lambda s,e,n: final_instruction(s or ["Descriptive (short)"], e or [], n),
|
| 670 |
+
inputs=[style_checks, extra_opts, name_input], outputs=[instruction_preview])
|
| 671 |
+
demo.load(_render, inputs=[rows_state, visible_count_state], outputs=[gallery, table, autosave_md])
|
| 672 |
+
|
| 673 |
+
# Scroll sync (Gallery + Table)
|
| 674 |
+
gr.HTML("""
|
| 675 |
+
<script>
|
| 676 |
+
(function () {
|
| 677 |
+
function findGalleryScrollRoot() {
|
| 678 |
+
const host = document.querySelector("#cfGal");
|
| 679 |
+
if (!host) return null;
|
| 680 |
+
return host.querySelector(".grid") || host.querySelector("[data-testid='gallery']") || host;
|
| 681 |
+
}
|
| 682 |
+
function findTableScrollRoot() {
|
| 683 |
+
const host = document.querySelector("#cfTable");
|
| 684 |
+
if (!host) return null;
|
| 685 |
+
return host.querySelector(".wrap") ||
|
| 686 |
+
host.querySelector(".dataframe-wrap") ||
|
| 687 |
+
(host.querySelector("table") ? host.querySelector("table").parentElement : null) ||
|
| 688 |
+
host;
|
| 689 |
+
}
|
| 690 |
+
function syncScroll(a, b) {
|
| 691 |
+
if (!a || !b) return;
|
| 692 |
+
let lock = false;
|
| 693 |
+
const onScrollA = () => { if (lock) return; lock = true; b.scrollTop = a.scrollTop; lock = false; };
|
| 694 |
+
const onScrollB = () => { if (lock) return; lock = true; a.scrollTop = b.scrollTop; lock = false; };
|
| 695 |
+
a.addEventListener("scroll", onScrollA, { passive: true });
|
| 696 |
+
b.addEventListener("scroll", onScrollB, { passive: true });
|
| 697 |
+
}
|
| 698 |
+
let tries = 0;
|
| 699 |
+
const timer = setInterval(() => {
|
| 700 |
+
tries++;
|
| 701 |
+
const gal = findGalleryScrollRoot();
|
| 702 |
+
const tab = findTableScrollRoot();
|
| 703 |
+
if (gal && tab) {
|
| 704 |
+
const H = Math.min(gal.clientHeight || 520, tab.clientHeight || 520);
|
| 705 |
+
gal.style.maxHeight = H + "px";
|
| 706 |
+
gal.style.overflowY = "auto";
|
| 707 |
+
tab.style.maxHeight = H + "px";
|
| 708 |
+
tab.style.overflowY = "auto";
|
| 709 |
+
syncScroll(gal, tab);
|
| 710 |
+
clearInterval(timer);
|
| 711 |
+
}
|
| 712 |
+
if (tries > 20) clearInterval(timer);
|
| 713 |
+
}, 100);
|
| 714 |
+
})();
|
| 715 |
+
</script>
|
| 716 |
+
""")
|
| 717 |
+
|
| 718 |
+
# Auto refresh instruction persists (already wired above)
|
| 719 |
+
# Table edits -> save + rerender (map by sha1, which is hidden in UI)
|
| 720 |
+
def on_table_edit(df_rows, rows):
|
| 721 |
+
by_sha = {r.get("sha1"): r for r in (rows or [])}
|
| 722 |
+
for row in (df_rows or []):
|
| 723 |
+
if not row:
|
| 724 |
+
continue
|
| 725 |
+
sha = str(row[0]) if len(row) > 0 else ""
|
| 726 |
+
tgt = by_sha.get(sha)
|
| 727 |
+
if not tgt:
|
| 728 |
+
continue
|
| 729 |
+
prev = tgt.get("caption", "")
|
| 730 |
+
newc = row[2] if len(row) > 2 else prev
|
| 731 |
+
if newc != prev:
|
| 732 |
+
hist = tgt.setdefault("history", [])
|
| 733 |
+
hist.append(prev)
|
| 734 |
+
tgt["caption"] = newc
|
| 735 |
+
save_session(rows or [])
|
| 736 |
+
return rows, f"Saved • {time.strftime('%H:%M:%S')}"
|
| 737 |
+
table.change(on_table_edit, inputs=[table, rows_state], outputs=[rows_state, autosave_md])\
|
| 738 |
+
.then(_render, inputs=[rows_state, visible_count_state], outputs=[gallery, table, autosave_md])
|
| 739 |
+
|
| 740 |
+
# Import merge
|
| 741 |
+
def do_import(file, rows):
|
| 742 |
+
if not file:
|
| 743 |
+
return rows, gr.update(value="No file"), rows
|
| 744 |
+
rows = import_csv_jsonl(file.name, rows or [])
|
| 745 |
+
return rows, gr.update(value=f"Merged from {os.path.basename(file.name)} at {time.strftime('%H:%M:%S')}"), rows
|
| 746 |
+
import_btn.click(do_import, inputs=[import_file, rows_state], outputs=[rows_state, autosave_md, rows_state])\
|
| 747 |
+
.then(_render, inputs=[rows_state, visible_count_state], outputs=[gallery, table, autosave_md])
|
| 748 |
+
|
| 749 |
+
# Prepare run (hash dupes)
|
| 750 |
+
def prepare_run(files, rows, pending):
|
| 751 |
+
files = files or []
|
| 752 |
+
rows = rows or []
|
| 753 |
+
pending = pending or []
|
| 754 |
+
if not files:
|
| 755 |
+
return [], gr.update(open=True), []
|
| 756 |
+
existing = {r.get("sha1") for r in rows if r.get("sha1")}
|
| 757 |
+
pending_sha = set()
|
| 758 |
+
for f in pending:
|
| 759 |
+
try:
|
| 760 |
+
pending_sha.add(sha1_file(f))
|
| 761 |
+
except Exception:
|
| 762 |
+
pass
|
| 763 |
+
keep = []
|
| 764 |
+
for f in files:
|
| 765 |
+
try:
|
| 766 |
+
s = sha1_file(f)
|
| 767 |
+
except Exception:
|
| 768 |
+
continue
|
| 769 |
+
if s not in existing and s not in pending_sha:
|
| 770 |
+
keep.append(f)
|
| 771 |
+
return keep, gr.update(open=False), keep
|
| 772 |
+
input_files.change(prepare_run, inputs=[input_files, rows_state, pending_files], outputs=[pending_files, uploads_acc, pending_files])
|
| 773 |
+
|
| 774 |
+
# Step visibility helper (dynamic message)
|
| 775 |
+
def _step_visibility(remain, mode):
|
| 776 |
+
if (mode == "Manual (step)") and remain:
|
| 777 |
+
return gr.update(visible=True), gr.update(value=f"{len(remain)} files remain. Process next chunk?")
|
| 778 |
+
return gr.update(visible=False), gr.update(value="")
|
| 779 |
+
|
| 780 |
+
# Run helpers (use settings for gen params; sliders removed from UI)
|
| 781 |
+
def _run_once(pending, rows, instr, trigv, begv, endv, mode, csize, mside):
|
| 782 |
+
cfg = load_settings()
|
| 783 |
+
t = cfg.get("temperature", 0.6)
|
| 784 |
+
p = cfg.get("top_p", 0.9)
|
| 785 |
+
m = cfg.get("max_tokens", 256)
|
| 786 |
+
step_once = (mode == "Manual (step)")
|
| 787 |
+
new_rows, remaining, errors = process_batch(
|
| 788 |
+
pending, False, rows or [], instr, t, p, m, trigv, begv, endv,
|
| 789 |
+
mode, int(csize), int(mside), step_once
|
| 790 |
+
)
|
| 791 |
+
log = "\n".join(errors) if errors else "(no errors)"
|
| 792 |
+
return new_rows, remaining, log, f"Saved • {time.strftime('%H:%M:%S')}"
|
| 793 |
+
|
| 794 |
+
run_button.click(
|
| 795 |
+
_run_once,
|
| 796 |
+
inputs=[pending_files, rows_state, instruction_preview, trig, add_start, add_end, chunk_mode, chunk_size, max_side],
|
| 797 |
+
outputs=[rows_state, remaining_state, log_md, autosave_md]
|
| 798 |
+
).then(
|
| 799 |
+
_render, inputs=[rows_state, visible_count_state], outputs=[gallery, table, autosave_md]
|
| 800 |
+
).then(
|
| 801 |
+
_step_visibility, inputs=[remaining_state, chunk_mode], outputs=[step_panel, step_msg]
|
| 802 |
+
)
|
| 803 |
+
|
| 804 |
+
def _resume(rows):
|
| 805 |
+
j = load_journal()
|
| 806 |
+
rem = j.get("remaining_files", [])
|
| 807 |
+
return rem, ("Nothing to resume" if not rem else f"Loaded {len(rem)} remaining")
|
| 808 |
+
resume_btn.click(_resume, inputs=[rows_state], outputs=[pending_files, autosave_md])
|
| 809 |
+
|
| 810 |
+
def _step_next(remain, rows, instr, trigv, begv, endv, mode, csize, mside):
|
| 811 |
+
return _run_once(remain, rows, instr, trigv, begv, endv, mode, csize, mside)
|
| 812 |
+
step_next.click(
|
| 813 |
+
_step_next,
|
| 814 |
+
inputs=[remaining_state, rows_state, instruction_preview, trig, add_start, add_end, chunk_mode, chunk_size, max_side],
|
| 815 |
+
outputs=[rows_state, remaining_state, log_md, autosave_md]
|
| 816 |
+
).then(
|
| 817 |
+
_render, inputs=[rows_state, visible_count_state], outputs=[gallery, table, autosave_md]
|
| 818 |
+
).then(
|
| 819 |
+
_step_visibility, inputs=[remaining_state, chunk_mode], outputs=[step_panel, step_msg]
|
| 820 |
+
)
|
| 821 |
+
|
| 822 |
+
step_finish.click(lambda: (gr.update(visible=False), gr.update(value=""), []), outputs=[step_panel, step_msg, remaining_state])
|
| 823 |
|
| 824 |
+
# Exports (reveal file widgets when created)
|
| 825 |
+
export_csv_btn.click(
|
| 826 |
+
lambda rows, base: (export_csv(rows or [], base), gr.update(visible=True)),
|
| 827 |
+
inputs=[rows_state, dataset_name], outputs=[csv_file, csv_file]
|
| 828 |
+
)
|
| 829 |
+
export_xlsx_btn.click(
|
| 830 |
+
lambda rows, base: (export_excel(rows or [], base), gr.update(visible=True)),
|
| 831 |
+
inputs=[rows_state, dataset_name], outputs=[xlsx_file, xlsx_file]
|
| 832 |
+
)
|
| 833 |
+
export_txt_btn.click(
|
| 834 |
+
lambda rows, base: (export_txt_zip(rows or [], base), gr.update(visible=True)),
|
| 835 |
+
inputs=[rows_state, dataset_name], outputs=[txt_zip, txt_zip]
|
| 836 |
+
)
|
| 837 |
|
| 838 |
+
# Launch
|
| 839 |
+
demo.queue(max_size=64).launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", "7860")))
|