Commit
·
f89bd21
1
Parent(s):
cb5e65b
cache key error when user id changes -fixed task 1 31_10_2025 v5
Browse files- APPLICATION_FEATURES_REPORT.md +355 -0
- CONTEXT_PROVISION_ANALYSIS.md +337 -0
- CONTEXT_STRUCTURE_FIX_IMPLEMENTATION.md +209 -0
- src/agents/intent_agent.py +34 -3
- src/agents/safety_agent.py +19 -1
- src/agents/skills_identification_agent.py +26 -5
- src/agents/synthesis_agent.py +92 -48
APPLICATION_FEATURES_REPORT.md
ADDED
|
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Research AI Assistant: Key Features Report
|
| 2 |
+
|
| 3 |
+
## Executive Summary
|
| 4 |
+
|
| 5 |
+
This application implements a **multi-agent orchestration system** for research assistance with transparent reasoning chains, context-aware conversation management, and adaptive expert consultation assignment. The system employs **task-based LLM routing**, **hierarchical context summarization**, and **non-blocking safety validation** to deliver contextually relevant, academically rigorous responses.
|
| 6 |
+
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
## 1. Multi-Agent Orchestration Architecture
|
| 10 |
+
|
| 11 |
+
### 1.1 Central Orchestration Engine (`MVPOrchestrator`)
|
| 12 |
+
- **Sequential workflow coordination**: Manages a deterministic pipeline of specialized agents
|
| 13 |
+
- **Execution trace logging**: Maintains comprehensive audit trails of agent execution
|
| 14 |
+
- **Graceful degradation**: Implements fallback mechanisms at every processing stage
|
| 15 |
+
- **Reasoning chain generation**: Constructs explicit chain-of-thought (CoT) reasoning structures with:
|
| 16 |
+
- Hypothesis formation
|
| 17 |
+
- Evidence collection
|
| 18 |
+
- Confidence calibration
|
| 19 |
+
- Alternative path analysis
|
| 20 |
+
- Uncertainty identification
|
| 21 |
+
|
| 22 |
+
### 1.2 Specialized Agent Modules
|
| 23 |
+
|
| 24 |
+
#### Intent Recognition Agent (`IntentRecognitionAgent`)
|
| 25 |
+
- **Multi-class intent classification**: Categorizes user queries into 8 intent types:
|
| 26 |
+
- Information requests
|
| 27 |
+
- Task execution
|
| 28 |
+
- Creative generation
|
| 29 |
+
- Analysis/research
|
| 30 |
+
- Casual conversation
|
| 31 |
+
- Troubleshooting
|
| 32 |
+
- Education/learning
|
| 33 |
+
- Technical support
|
| 34 |
+
- **Dual-mode operation**: LLM-enhanced classification with rule-based fallback
|
| 35 |
+
- **Confidence calibration**: Multi-factor confidence scoring with context enhancement
|
| 36 |
+
- **Secondary intent detection**: Identifies complementary intent interpretations
|
| 37 |
+
|
| 38 |
+
#### Skills Identification Agent (`SkillsIdentificationAgent`)
|
| 39 |
+
- **Market analysis integration**: Leverages 9 industry categories with market share data
|
| 40 |
+
- **Dual-stage processing**:
|
| 41 |
+
1. Market relevance analysis (reasoning_primary model)
|
| 42 |
+
2. Skill classification (classification_specialist model)
|
| 43 |
+
- **Probability-based skill mapping**: Identifies expert skills with ≥20% relevance threshold
|
| 44 |
+
- **Expert consultant assignment**: Feeds skill probabilities to synthesis agent for consultant profile selection
|
| 45 |
+
|
| 46 |
+
#### Response Synthesis Agent (`SynthesisAgent`)
|
| 47 |
+
- **Expert consultant integration**: Dynamically assigns ultra-expert profiles based on identified skills
|
| 48 |
+
- **Multi-source synthesis**: Integrates outputs from multiple specialized agents
|
| 49 |
+
- **Weighted expertise combination**: Creates composite consultant profiles from relevant skill domains
|
| 50 |
+
- **Coherence scoring**: Evaluates response quality and structure
|
| 51 |
+
|
| 52 |
+
#### Safety Check Agent (`SafetyCheckAgent`)
|
| 53 |
+
- **Non-blocking safety validation**: Appends advisory warnings without content modification
|
| 54 |
+
- **Multi-dimensional analysis**: Evaluates toxicity, bias, privacy, and controversial content
|
| 55 |
+
- **Threshold-based warnings**: Generates contextual warnings when safety scores exceed thresholds
|
| 56 |
+
- **Pattern-based fallback**: Rule-based detection when LLM analysis unavailable
|
| 57 |
+
|
| 58 |
+
---
|
| 59 |
+
|
| 60 |
+
## 2. Context Management System
|
| 61 |
+
|
| 62 |
+
### 2.1 Hierarchical Context Architecture
|
| 63 |
+
The system implements a **three-tier context summarization** strategy:
|
| 64 |
+
|
| 65 |
+
#### Tier 1: User Context (500 tokens)
|
| 66 |
+
- **Persistent persona summaries**: Cross-session user profiles generated from historical interactions
|
| 67 |
+
- **Lifespan**: Persists across all sessions for a given user_id
|
| 68 |
+
- **Generation trigger**: Automatically generated when user has sufficient interaction history
|
| 69 |
+
- **Content**: Communication style, topic preferences, interaction patterns
|
| 70 |
+
|
| 71 |
+
#### Tier 2: Session Context (100 tokens)
|
| 72 |
+
- **Session-level summaries**: Summarizes all interactions within a single session
|
| 73 |
+
- **Generation trigger**: Generated at session end
|
| 74 |
+
- **Storage**: Stored in `session_contexts` table linked to user_id
|
| 75 |
+
|
| 76 |
+
#### Tier 3: Interaction Context (50 tokens)
|
| 77 |
+
- **Per-interaction summaries**: Compact summaries of individual exchanges
|
| 78 |
+
- **Generation trigger**: Generated after each response
|
| 79 |
+
- **Storage**: Stored in `interaction_contexts` table
|
| 80 |
+
- **Retrieval**: Last 20 interaction contexts loaded per session
|
| 81 |
+
|
| 82 |
+
### 2.2 Context Optimization Features
|
| 83 |
+
- **Multi-level caching**: In-memory session cache + SQLite persistence
|
| 84 |
+
- **Transaction-based updates**: Atomic database operations with write-ahead logging (WAL)
|
| 85 |
+
- **Deduplication**: SHA-256 hash-based duplicate interaction prevention
|
| 86 |
+
- **Cache invalidation**: Automatic cache clearing on user_id changes
|
| 87 |
+
- **Database indexing**: Optimized queries with indexes on session_id, user_id, timestamps
|
| 88 |
+
|
| 89 |
+
### 2.3 Context Delivery Format
|
| 90 |
+
Context delivered to agents in structured format:
|
| 91 |
+
```
|
| 92 |
+
[User Context]
|
| 93 |
+
[User persona summary - 500 tokens]
|
| 94 |
+
|
| 95 |
+
[Interaction Context #N]
|
| 96 |
+
[Most recent interaction summary - 50 tokens]
|
| 97 |
+
|
| 98 |
+
[Interaction Context #N-1]
|
| 99 |
+
[Previous interaction summary - 50 tokens]
|
| 100 |
+
...
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
---
|
| 104 |
+
|
| 105 |
+
## 3. LLM Routing System
|
| 106 |
+
|
| 107 |
+
### 3.1 Task-Based Model Routing (`LLMRouter`)
|
| 108 |
+
Implements **intelligent model selection** based on task specialization:
|
| 109 |
+
|
| 110 |
+
| Task Type | Model Assignment | Purpose |
|
| 111 |
+
|-----------|-----------------|---------|
|
| 112 |
+
| `intent_classification` | `classification_specialist` | Fast intent categorization |
|
| 113 |
+
| `embedding_generation` | `embedding_specialist` | Semantic similarity (currently unused) |
|
| 114 |
+
| `safety_check` | `safety_checker` | Content moderation |
|
| 115 |
+
| `general_reasoning` | `reasoning_primary` | Primary response generation |
|
| 116 |
+
| `response_synthesis` | `reasoning_primary` | Multi-source synthesis |
|
| 117 |
+
|
| 118 |
+
### 3.2 Model Configuration (`LLM_CONFIG`)
|
| 119 |
+
- **Primary model**: `Qwen/Qwen2.5-7B-Instruct` (chat completions API)
|
| 120 |
+
- **Fallback chain**: Primary → Fallback → Degraded mode
|
| 121 |
+
- **Health checking**: Model availability monitoring with automatic fallback
|
| 122 |
+
- **Retry logic**: Exponential backoff (1s → 16s max) with 3 retry attempts
|
| 123 |
+
- **API protocol**: Hugging Face Chat Completions API (`router.huggingface.co/v1/chat/completions`)
|
| 124 |
+
|
| 125 |
+
### 3.3 Performance Optimizations
|
| 126 |
+
- **Timeout management**: 30-second request timeout
|
| 127 |
+
- **Connection pooling**: Reusable HTTP connections
|
| 128 |
+
- **Request/response logging**: Comprehensive logging of all LLM API interactions
|
| 129 |
+
|
| 130 |
+
---
|
| 131 |
+
|
| 132 |
+
## 4. Reasoning and Transparency
|
| 133 |
+
|
| 134 |
+
### 4.1 Chain-of-Thought Reasoning
|
| 135 |
+
The orchestrator generates **explicit reasoning chains** for each request:
|
| 136 |
+
|
| 137 |
+
```python
|
| 138 |
+
reasoning_chain = {
|
| 139 |
+
"chain_of_thought": {
|
| 140 |
+
"step_1": {
|
| 141 |
+
"hypothesis": "User intent analysis",
|
| 142 |
+
"evidence": [...],
|
| 143 |
+
"confidence": 0.85,
|
| 144 |
+
"reasoning": "..."
|
| 145 |
+
},
|
| 146 |
+
"step_2": {...},
|
| 147 |
+
...
|
| 148 |
+
},
|
| 149 |
+
"alternative_paths": [...],
|
| 150 |
+
"uncertainty_areas": [...],
|
| 151 |
+
"evidence_sources": [...],
|
| 152 |
+
"confidence_calibration": {...}
|
| 153 |
+
}
|
| 154 |
+
```
|
| 155 |
+
|
| 156 |
+
### 4.2 Reasoning Components
|
| 157 |
+
- **Hypothesis formation**: Explicit hypothesis statements at each processing step
|
| 158 |
+
- **Evidence collection**: Structured evidence arrays supporting each hypothesis
|
| 159 |
+
- **Confidence calibration**: Weighted confidence scoring across reasoning steps
|
| 160 |
+
- **Alternative path analysis**: Consideration of alternative interpretation paths
|
| 161 |
+
- **Uncertainty identification**: Explicit documentation of low-confidence areas
|
| 162 |
+
|
| 163 |
+
### 4.3 Metadata Generation
|
| 164 |
+
Every response includes:
|
| 165 |
+
- **Agent execution trace**: Complete log of agents executed
|
| 166 |
+
- **Processing time**: Performance metrics
|
| 167 |
+
- **Token count**: Resource usage tracking
|
| 168 |
+
- **Confidence scores**: Overall confidence in response quality
|
| 169 |
+
- **Skills identification**: Relevant expert skills for the query
|
| 170 |
+
|
| 171 |
+
---
|
| 172 |
+
|
| 173 |
+
## 5. Expert Consultant Assignment
|
| 174 |
+
|
| 175 |
+
### 5.1 Dynamic Consultant Selection
|
| 176 |
+
The synthesis agent employs **ExpertConsultantAssigner** to create composite consultant profiles:
|
| 177 |
+
|
| 178 |
+
- **10 predefined expert profiles**: Data analysis, technical programming, project management, financial analysis, digital marketing, business consulting, cybersecurity, healthcare technology, educational technology, environmental science
|
| 179 |
+
- **Weighted expertise combination**: Creates "ultra-expert" profiles by combining relevant consultants based on skill probabilities
|
| 180 |
+
- **Experience aggregation**: Sums years of experience across combined experts
|
| 181 |
+
- **Style integration**: Merges consulting styles from multiple domains
|
| 182 |
+
|
| 183 |
+
### 5.2 Market Analysis Integration
|
| 184 |
+
- **9 industry categories** with market share and growth rate data
|
| 185 |
+
- **Specialized skill mapping**: 3-7 specialized skills per category
|
| 186 |
+
- **Relevance scoring**: Skills ranked by relevance to user query
|
| 187 |
+
- **Market context**: Response synthesis informed by industry trends
|
| 188 |
+
|
| 189 |
+
---
|
| 190 |
+
|
| 191 |
+
## 6. Safety and Bias Mitigation
|
| 192 |
+
|
| 193 |
+
### 6.1 Non-Blocking Safety System
|
| 194 |
+
- **Warning-based approach**: Appends safety advisories without blocking content
|
| 195 |
+
- **Multi-dimensional analysis**: Evaluates toxicity, bias, privacy, controversial content
|
| 196 |
+
- **Intent-aware thresholds**: Different thresholds per intent category
|
| 197 |
+
- **Automatic warning injection**: Safety warnings automatically appended when thresholds exceeded
|
| 198 |
+
|
| 199 |
+
### 6.2 Safety Thresholds
|
| 200 |
+
```python
|
| 201 |
+
safety_thresholds = {
|
| 202 |
+
"toxicity_or_harmful_language": 0.3,
|
| 203 |
+
"potential_biases_or_stereotypes": 0.05, # Low threshold for bias
|
| 204 |
+
"privacy_or_security_concerns": 0.2,
|
| 205 |
+
"controversial_or_sensitive_topics": 0.3
|
| 206 |
+
}
|
| 207 |
+
```
|
| 208 |
+
|
| 209 |
+
### 6.3 User Choice Feature (Paused)
|
| 210 |
+
- **Design**: Originally designed to prompt user for revision approval
|
| 211 |
+
- **Current implementation**: Warnings automatically appended to responses
|
| 212 |
+
- **No blocking**: All responses delivered regardless of safety scores
|
| 213 |
+
|
| 214 |
+
---
|
| 215 |
+
|
| 216 |
+
## 7. User Interface
|
| 217 |
+
|
| 218 |
+
### 7.1 Mobile-First Design
|
| 219 |
+
- **Responsive layout**: Adaptive UI for mobile, tablet, desktop
|
| 220 |
+
- **Touch-optimized**: 44px minimum touch targets (iOS/Android guidelines)
|
| 221 |
+
- **Font sizing**: 16px minimum to prevent mobile browser zoom
|
| 222 |
+
- **Viewport management**: 60vh chat container with optimized scrolling
|
| 223 |
+
|
| 224 |
+
### 7.2 UI Components
|
| 225 |
+
- **Chat interface**: Gradio chatbot with message history
|
| 226 |
+
- **Skills display**: Visual tags showing identified expert skills with confidence indicators
|
| 227 |
+
- **Details tab**: Collapsible accordions showing:
|
| 228 |
+
- Reasoning chain (JSON)
|
| 229 |
+
- Agent performance metrics
|
| 230 |
+
- Session context data
|
| 231 |
+
- **Session management**: User selection dropdown, session ID display, new session button
|
| 232 |
+
|
| 233 |
+
### 7.3 Progressive Web App Features
|
| 234 |
+
- **Offline capability**: Cached session data
|
| 235 |
+
- **Dark mode support**: CSS media queries for system preference
|
| 236 |
+
- **Accessibility**: Screen reader compatible, keyboard navigation
|
| 237 |
+
|
| 238 |
+
---
|
| 239 |
+
|
| 240 |
+
## 8. Database Architecture
|
| 241 |
+
|
| 242 |
+
### 8.1 Schema Design
|
| 243 |
+
**Tables:**
|
| 244 |
+
1. `sessions`: Session metadata, context data, user_id tracking
|
| 245 |
+
2. `interactions`: Individual interaction records with context snapshots
|
| 246 |
+
3. `user_contexts`: Persistent user persona summaries (500 tokens)
|
| 247 |
+
4. `session_contexts`: Session-level summaries (100 tokens)
|
| 248 |
+
5. `interaction_contexts`: Individual interaction summaries (50 tokens)
|
| 249 |
+
6. `user_change_log`: Audit log of user_id changes
|
| 250 |
+
|
| 251 |
+
### 8.2 Data Integrity Features
|
| 252 |
+
- **Transaction management**: Atomic operations with rollback on failure
|
| 253 |
+
- **Foreign key constraints**: Referential integrity enforcement
|
| 254 |
+
- **Deduplication**: SHA-256 hash-based unique interaction tracking
|
| 255 |
+
- **Indexing**: Optimized indexes on frequently queried columns
|
| 256 |
+
|
| 257 |
+
### 8.3 Concurrency Management
|
| 258 |
+
- **Thread-safe transactions**: RLock-based locking for concurrent access
|
| 259 |
+
- **Write-Ahead Logging (WAL)**: SQLite WAL mode for better concurrency
|
| 260 |
+
- **Busy timeout**: 5-second timeout for lock acquisition
|
| 261 |
+
- **Connection pooling**: Efficient database connection reuse
|
| 262 |
+
|
| 263 |
+
---
|
| 264 |
+
|
| 265 |
+
## 9. Performance Optimizations
|
| 266 |
+
|
| 267 |
+
### 9.1 Caching Strategy
|
| 268 |
+
- **Multi-level caching**: In-memory session cache + persistent SQLite storage
|
| 269 |
+
- **Cache TTL**: 1-hour time-to-live for session cache
|
| 270 |
+
- **LRU eviction**: Least-recently-used eviction policy
|
| 271 |
+
- **Cache warming**: Pre-loading frequently accessed sessions
|
| 272 |
+
|
| 273 |
+
### 9.2 Request Processing
|
| 274 |
+
- **Async/await architecture**: Fully asynchronous agent execution
|
| 275 |
+
- **Parallel agent execution**: Concurrent execution when execution_plan specifies parallel order
|
| 276 |
+
- **Sequential fallback**: Sequential execution for dependency-sensitive tasks
|
| 277 |
+
- **Timeout protection**: 30-second timeout for safety revision loops
|
| 278 |
+
|
| 279 |
+
### 9.3 Resource Management
|
| 280 |
+
- **Token budget management**: Configurable max_tokens per model
|
| 281 |
+
- **Session size limits**: 10MB per session maximum
|
| 282 |
+
- **Interaction history limits**: Last 40 interactions kept in memory, 20 loaded from database
|
| 283 |
+
|
| 284 |
+
---
|
| 285 |
+
|
| 286 |
+
## 10. Error Handling and Resilience
|
| 287 |
+
|
| 288 |
+
### 10.1 Graceful Degradation
|
| 289 |
+
- **Multi-level fallbacks**: LLM → Rule-based → Default responses
|
| 290 |
+
- **Error isolation**: Agent failures don't cascade to system failure
|
| 291 |
+
- **Fallback responses**: Always returns user-facing response, never None
|
| 292 |
+
- **Comprehensive logging**: All errors logged with stack traces
|
| 293 |
+
|
| 294 |
+
### 10.2 Loop Prevention
|
| 295 |
+
- **Safety response detection**: Prevents recursive safety checks on binary responses
|
| 296 |
+
- **Context retrieval caching**: 5-second cache prevents rapid successive context fetches
|
| 297 |
+
- **User change tracking**: Prevents context loops when user_id changes mid-session
|
| 298 |
+
- **Deduplication**: Prevents duplicate interaction processing
|
| 299 |
+
|
| 300 |
+
---
|
| 301 |
+
|
| 302 |
+
## 11. Academic Rigor Features
|
| 303 |
+
|
| 304 |
+
### 11.1 Transparent Reasoning
|
| 305 |
+
- **Explicit CoT chains**: All reasoning steps documented
|
| 306 |
+
- **Evidence citation**: Structured evidence arrays for each hypothesis
|
| 307 |
+
- **Uncertainty quantification**: Explicit confidence scores and uncertainty areas
|
| 308 |
+
- **Alternative consideration**: Documented alternative interpretation paths
|
| 309 |
+
|
| 310 |
+
### 11.2 Reproducibility
|
| 311 |
+
- **Execution traces**: Complete logs of agent execution order
|
| 312 |
+
- **Interaction IDs**: Unique identifiers for every interaction
|
| 313 |
+
- **Timestamp tracking**: Precise timestamps for all operations
|
| 314 |
+
- **Database audit trail**: Complete interaction history persisted
|
| 315 |
+
|
| 316 |
+
### 11.3 Quality Metrics
|
| 317 |
+
- **Confidence calibration**: Weighted confidence scoring across steps
|
| 318 |
+
- **Coherence scoring**: Response quality evaluation
|
| 319 |
+
- **Processing time tracking**: Performance monitoring
|
| 320 |
+
- **Token usage tracking**: Resource consumption monitoring
|
| 321 |
+
|
| 322 |
+
---
|
| 323 |
+
|
| 324 |
+
## Technical Specifications
|
| 325 |
+
|
| 326 |
+
### Dependencies
|
| 327 |
+
- **Gradio**: UI framework
|
| 328 |
+
- **SQLite**: Database persistence
|
| 329 |
+
- **Hugging Face API**: LLM inference
|
| 330 |
+
- **asyncio**: Asynchronous execution
|
| 331 |
+
- **Python 3.x**: Core runtime
|
| 332 |
+
|
| 333 |
+
### Deployment
|
| 334 |
+
- **Platform**: Hugging Face Spaces (configurable)
|
| 335 |
+
- **Containerization**: Dockerfile support
|
| 336 |
+
- **GPU support**: Optional ZeroGPU allocation on HF Spaces
|
| 337 |
+
- **Environment**: Configurable via environment variables
|
| 338 |
+
|
| 339 |
+
---
|
| 340 |
+
|
| 341 |
+
## Summary
|
| 342 |
+
|
| 343 |
+
This application implements a **sophisticated multi-agent research assistance system** with the following distinguishing features:
|
| 344 |
+
|
| 345 |
+
1. **Hierarchical context summarization** (50/100/500 token tiers)
|
| 346 |
+
2. **Transparent reasoning chains** with explicit CoT documentation
|
| 347 |
+
3. **Dynamic expert consultant assignment** based on skill identification
|
| 348 |
+
4. **Non-blocking safety validation** with automatic warning injection
|
| 349 |
+
5. **Task-based LLM routing** with intelligent fallback chains
|
| 350 |
+
6. **Mobile-optimized interface** with PWA capabilities
|
| 351 |
+
7. **Robust error handling** with graceful degradation at every layer
|
| 352 |
+
8. **Academic rigor** through comprehensive metadata and audit trails
|
| 353 |
+
|
| 354 |
+
The system prioritizes **transparency**, **reliability**, and **contextual relevance** while maintaining **production-grade error handling** and **performance optimization**.
|
| 355 |
+
|
CONTEXT_PROVISION_ANALYSIS.md
ADDED
|
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Context Provision Analysis: Intent Agent Context Flow
|
| 2 |
+
|
| 3 |
+
## Problem Statement
|
| 4 |
+
|
| 5 |
+
The Intent Recognition Agent (`src/agents/intent_agent.py`) expects a context dictionary with a `conversation_history` key, but the actual context structure provided by `EfficientContextManager` does not include this key. This results in `Available Context: []` being shown in the intent recognition prompt.
|
| 6 |
+
|
| 7 |
+
## Context Flow Trace
|
| 8 |
+
|
| 9 |
+
### Step 1: Orchestrator Retrieves Context
|
| 10 |
+
|
| 11 |
+
**Location**: `src/orchestrator_engine.py:172`
|
| 12 |
+
|
| 13 |
+
```python
|
| 14 |
+
context = await self._get_or_create_context(session_id, user_input, user_id)
|
| 15 |
+
```
|
| 16 |
+
|
| 17 |
+
This calls `context_manager.manage_context()` which returns a context dictionary.
|
| 18 |
+
|
| 19 |
+
### Step 2: Context Structure Returned by Context Manager
|
| 20 |
+
|
| 21 |
+
**Location**: `src/context_manager.py:550-579` (`_optimize_context` method)
|
| 22 |
+
|
| 23 |
+
The context manager returns the following structure:
|
| 24 |
+
|
| 25 |
+
```python
|
| 26 |
+
{
|
| 27 |
+
"session_id": str,
|
| 28 |
+
"user_id": str,
|
| 29 |
+
"user_context": str, # 500-token user persona summary
|
| 30 |
+
"interaction_contexts": [ # List of interaction summary dicts
|
| 31 |
+
{
|
| 32 |
+
"summary": str, # 50-token interaction summary
|
| 33 |
+
"timestamp": str
|
| 34 |
+
},
|
| 35 |
+
...
|
| 36 |
+
],
|
| 37 |
+
"combined_context": str, # Formatted string: "[User Context]\n...\n[Interaction Context #N]\n..."
|
| 38 |
+
"preferences": dict,
|
| 39 |
+
"active_tasks": list,
|
| 40 |
+
"last_activity": str
|
| 41 |
+
}
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
### Step 3: Intent Agent Receives Context
|
| 45 |
+
|
| 46 |
+
**Location**: `src/orchestrator_engine.py:201-203`
|
| 47 |
+
|
| 48 |
+
```python
|
| 49 |
+
intent_result = await self.agents['intent_recognition'].execute(
|
| 50 |
+
user_input=user_input,
|
| 51 |
+
context=context
|
| 52 |
+
)
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
### Step 4: Intent Agent Attempts to Access Context
|
| 56 |
+
|
| 57 |
+
**Location**: `src/agents/intent_agent.py:109`
|
| 58 |
+
|
| 59 |
+
```python
|
| 60 |
+
def _build_chain_of_thought_prompt(self, user_input: str, context: Dict[str, Any]) -> str:
|
| 61 |
+
return f"""
|
| 62 |
+
Analyze the user's intent step by step:
|
| 63 |
+
|
| 64 |
+
User Input: "{user_input}"
|
| 65 |
+
|
| 66 |
+
Available Context: {context.get('conversation_history', [])[-2:] if context else []}
|
| 67 |
+
...
|
| 68 |
+
"""
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
**Issue**: The code attempts to access `context.get('conversation_history', [])`, but the context dictionary **does not contain this key**.
|
| 72 |
+
|
| 73 |
+
## Root Cause Analysis
|
| 74 |
+
|
| 75 |
+
### Expected Context Structure (by Intent Agent)
|
| 76 |
+
The intent agent expects:
|
| 77 |
+
```python
|
| 78 |
+
context = {
|
| 79 |
+
'conversation_history': [
|
| 80 |
+
{...}, # Previous conversation turn
|
| 81 |
+
{...}, # Another previous turn
|
| 82 |
+
...
|
| 83 |
+
]
|
| 84 |
+
}
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
### Actual Context Structure (from Context Manager)
|
| 88 |
+
The context manager provides:
|
| 89 |
+
```python
|
| 90 |
+
context = {
|
| 91 |
+
'interaction_contexts': [
|
| 92 |
+
{'summary': '...', 'timestamp': '...'},
|
| 93 |
+
{'summary': '...', 'timestamp': '...'},
|
| 94 |
+
...
|
| 95 |
+
],
|
| 96 |
+
'user_context': '...',
|
| 97 |
+
'combined_context': '...',
|
| 98 |
+
...
|
| 99 |
+
}
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
### Why This Mismatch Exists
|
| 103 |
+
|
| 104 |
+
1. **Historical Evolution**: The intent agent was likely designed with an earlier context structure in mind
|
| 105 |
+
2. **Context Manager Redesign**: The context manager was redesigned to use hierarchical summarization (50/100/500 token tiers) instead of full conversation history
|
| 106 |
+
3. **Missing Adaptation**: The intent agent was not updated to use the new context structure
|
| 107 |
+
|
| 108 |
+
## Impact Analysis
|
| 109 |
+
|
| 110 |
+
### First Turn (No Previous Context)
|
| 111 |
+
- `interaction_contexts` = `[]` (empty list)
|
| 112 |
+
- `user_context` = `""` (empty string if first-time user)
|
| 113 |
+
- **Result**: `Available Context: []` ✓ (Correct, but for wrong reason - key doesn't exist)
|
| 114 |
+
|
| 115 |
+
### Second Turn (After First Interaction)
|
| 116 |
+
- `interaction_contexts` = `[{summary: "...", timestamp: "..."}]` (1 interaction)
|
| 117 |
+
- `user_context` = `""` or persona summary if user has history
|
| 118 |
+
- **Result**: `Available Context: []` ✗ (Incorrect - context exists but wrong key accessed)
|
| 119 |
+
|
| 120 |
+
### Third Turn and Beyond
|
| 121 |
+
- `interaction_contexts` = `[{...}, {...}, ...]` (multiple interactions)
|
| 122 |
+
- `user_context` = Persona summary (if user has sufficient history)
|
| 123 |
+
- **Result**: `Available Context: []` ✗ (Incorrect - rich context exists but not accessible)
|
| 124 |
+
|
| 125 |
+
## Context Accumulation Over Multiple Turns
|
| 126 |
+
|
| 127 |
+
### Turn 1: User says "What is machine learning?"
|
| 128 |
+
1. Context Manager retrieves context:
|
| 129 |
+
- `interaction_contexts`: `[]` (no previous interactions)
|
| 130 |
+
- `user_context`: `""` (first-time user, no persona yet)
|
| 131 |
+
- Context passed to intent agent
|
| 132 |
+
|
| 133 |
+
2. Intent Agent builds prompt:
|
| 134 |
+
- `context.get('conversation_history', [])[-2:]` → `[]`
|
| 135 |
+
- **Shows**: `Available Context: []`
|
| 136 |
+
|
| 137 |
+
3. After response, interaction context generated:
|
| 138 |
+
- `generate_interaction_context()` called
|
| 139 |
+
- Creates 50-token summary: "User asked about machine learning definition"
|
| 140 |
+
- Stored in `interaction_contexts` table
|
| 141 |
+
|
| 142 |
+
### Turn 2: User says "How does it differ from deep learning?"
|
| 143 |
+
1. Context Manager retrieves context:
|
| 144 |
+
- `interaction_contexts`: `[{summary: "User asked about machine learning definition", timestamp: "..."}]`
|
| 145 |
+
- `user_context`: Still `""` (not enough history for persona)
|
| 146 |
+
- Context passed to intent agent
|
| 147 |
+
|
| 148 |
+
2. Intent Agent builds prompt:
|
| 149 |
+
- `context.get('conversation_history', [])[-2:]` → `[]` (key doesn't exist!)
|
| 150 |
+
- **Shows**: `Available Context: []` ✗ **SHOULD show the interaction summary**
|
| 151 |
+
|
| 152 |
+
3. After response, another interaction context generated:
|
| 153 |
+
- Creates: "User asked about differences between machine learning and deep learning"
|
| 154 |
+
- Stored in `interaction_contexts` table
|
| 155 |
+
- Now has 2 interaction contexts
|
| 156 |
+
|
| 157 |
+
### Turn 3: User says "Can you explain neural networks?"
|
| 158 |
+
1. Context Manager retrieves context:
|
| 159 |
+
- `interaction_contexts`: `[{summary: "...deep learning..."}, {summary: "...machine learning..."}]`
|
| 160 |
+
- `user_context`: Still `""` (persona generated only after sufficient history)
|
| 161 |
+
- Context passed to intent agent
|
| 162 |
+
|
| 163 |
+
2. Intent Agent builds prompt:
|
| 164 |
+
- `context.get('conversation_history', [])[-2:]` → `[]` (key doesn't exist!)
|
| 165 |
+
- **Shows**: `Available Context: []` ✗ **SHOULD show 2 interaction summaries**
|
| 166 |
+
|
| 167 |
+
### After ~20-50 Interactions (User Persona Generation)
|
| 168 |
+
1. Context Manager retrieves context:
|
| 169 |
+
- `interaction_contexts`: `[{...}, {...}, ...]` (up to 20 most recent)
|
| 170 |
+
- `user_context`: `"User persona: Interested in AI topics, asks technical questions..."` (500-token summary)
|
| 171 |
+
- Context passed to intent agent
|
| 172 |
+
|
| 173 |
+
2. Intent Agent builds prompt:
|
| 174 |
+
- `context.get('conversation_history', [])[-2:]` → `[]` (key doesn't exist!)
|
| 175 |
+
- **Shows**: `Available Context: []` ✗ **SHOULD show rich context including user persona and interaction history**
|
| 176 |
+
|
| 177 |
+
## Available Context Data (Not Being Used)
|
| 178 |
+
|
| 179 |
+
### What Context Actually Contains
|
| 180 |
+
|
| 181 |
+
#### Turn 1:
|
| 182 |
+
```python
|
| 183 |
+
context = {
|
| 184 |
+
"interaction_contexts": [], # Empty - first turn
|
| 185 |
+
"user_context": "", # Empty - first-time user
|
| 186 |
+
"combined_context": "", # Empty
|
| 187 |
+
}
|
| 188 |
+
```
|
| 189 |
+
|
| 190 |
+
#### Turn 2:
|
| 191 |
+
```python
|
| 192 |
+
context = {
|
| 193 |
+
"interaction_contexts": [
|
| 194 |
+
{"summary": "User asked about machine learning definition", "timestamp": "..."}
|
| 195 |
+
],
|
| 196 |
+
"user_context": "", # Still empty
|
| 197 |
+
"combined_context": "[Interaction Context #1]\nUser asked about machine learning definition",
|
| 198 |
+
}
|
| 199 |
+
```
|
| 200 |
+
|
| 201 |
+
#### Turn 3+:
|
| 202 |
+
```python
|
| 203 |
+
context = {
|
| 204 |
+
"interaction_contexts": [
|
| 205 |
+
{"summary": "User asked about differences between ML and DL", "timestamp": "..."},
|
| 206 |
+
{"summary": "User asked about machine learning definition", "timestamp": "..."},
|
| 207 |
+
# ... more interactions
|
| 208 |
+
],
|
| 209 |
+
"user_context": "User persona: Interested in AI topics...", # If sufficient history
|
| 210 |
+
"combined_context": "[User Context]\nUser persona...\n\n[Interaction Context #2]\n...\n\n[Interaction Context #1]\n...",
|
| 211 |
+
}
|
| 212 |
+
```
|
| 213 |
+
|
| 214 |
+
## Recommended Solutions
|
| 215 |
+
|
| 216 |
+
### Option 1: Use `interaction_contexts` Directly (Minimal Change)
|
| 217 |
+
|
| 218 |
+
**Modify**: `src/agents/intent_agent.py:109`
|
| 219 |
+
|
| 220 |
+
```python
|
| 221 |
+
# OLD:
|
| 222 |
+
Available Context: {context.get('conversation_history', [])[-2:] if context else []}
|
| 223 |
+
|
| 224 |
+
# NEW:
|
| 225 |
+
Available Context: {[ic.get('summary', '') for ic in context.get('interaction_contexts', [])[-2:]] if context else []}
|
| 226 |
+
```
|
| 227 |
+
|
| 228 |
+
**Pros**:
|
| 229 |
+
- Minimal code change
|
| 230 |
+
- Uses actual context data
|
| 231 |
+
- Shows last 2 interaction summaries
|
| 232 |
+
|
| 233 |
+
**Cons**:
|
| 234 |
+
- Only shows summaries, not full conversation
|
| 235 |
+
- Loses timestamp information
|
| 236 |
+
|
| 237 |
+
### Option 2: Use `combined_context` (Preferred)
|
| 238 |
+
|
| 239 |
+
**Modify**: `src/agents/intent_agent.py:109`
|
| 240 |
+
|
| 241 |
+
```python
|
| 242 |
+
# OLD:
|
| 243 |
+
Available Context: {context.get('conversation_history', [])[-2:] if context else []}
|
| 244 |
+
|
| 245 |
+
# NEW:
|
| 246 |
+
Available Context: {context.get('combined_context', 'No previous context available') if context else 'No context available'}
|
| 247 |
+
```
|
| 248 |
+
|
| 249 |
+
**Pros**:
|
| 250 |
+
- Uses pre-formatted context string
|
| 251 |
+
- Includes both user context and interaction contexts
|
| 252 |
+
- More informative for intent recognition
|
| 253 |
+
- Better reflects the hierarchical context system
|
| 254 |
+
|
| 255 |
+
**Cons**:
|
| 256 |
+
- May include more than just last 2 turns (includes up to 10 interactions)
|
| 257 |
+
- Longer context string
|
| 258 |
+
|
| 259 |
+
### Option 3: Build Conversation History from Interaction Contexts (Most Flexible)
|
| 260 |
+
|
| 261 |
+
**Modify**: `src/agents/intent_agent.py:101-118`
|
| 262 |
+
|
| 263 |
+
```python
|
| 264 |
+
def _build_chain_of_thought_prompt(self, user_input: str, context: Dict[str, Any]) -> str:
|
| 265 |
+
"""Build Chain of Thought prompt for intent recognition"""
|
| 266 |
+
|
| 267 |
+
# Extract conversation history from interaction_contexts
|
| 268 |
+
conversation_history = []
|
| 269 |
+
if context:
|
| 270 |
+
interaction_contexts = context.get('interaction_contexts', [])
|
| 271 |
+
# Get last 2 interaction summaries for context
|
| 272 |
+
for ic in interaction_contexts[-2:]:
|
| 273 |
+
conversation_history.append({
|
| 274 |
+
'summary': ic.get('summary', ''),
|
| 275 |
+
'timestamp': ic.get('timestamp', '')
|
| 276 |
+
})
|
| 277 |
+
|
| 278 |
+
# Optionally include user context
|
| 279 |
+
user_context_summary = ""
|
| 280 |
+
if context and context.get('user_context'):
|
| 281 |
+
user_context_summary = f"\nUser Context: {context.get('user_context')[:200]}..." # Truncate for brevity
|
| 282 |
+
|
| 283 |
+
return f"""
|
| 284 |
+
Analyze the user's intent step by step:
|
| 285 |
+
|
| 286 |
+
User Input: "{user_input}"
|
| 287 |
+
|
| 288 |
+
Previous Context: {conversation_history if conversation_history else 'No previous interactions'}
|
| 289 |
+
{user_context_summary}
|
| 290 |
+
|
| 291 |
+
Step 1: Identify key entities, actions, and questions in the input
|
| 292 |
+
Step 2: Map to intent categories: {', '.join(self.intent_categories)}
|
| 293 |
+
Step 3: Consider the conversation flow and user's likely goals
|
| 294 |
+
Step 4: Assign confidence scores (0.0-1.0) for each relevant intent
|
| 295 |
+
Step 5: Provide reasoning for the classification
|
| 296 |
+
|
| 297 |
+
Respond with JSON format containing primary_intent, secondary_intents, confidence_scores, and reasoning_chain.
|
| 298 |
+
"""
|
| 299 |
+
```
|
| 300 |
+
|
| 301 |
+
**Pros**:
|
| 302 |
+
- Flexible format
|
| 303 |
+
- Can include both interaction history and user context
|
| 304 |
+
- Properly handles empty context
|
| 305 |
+
- More informative for LLM
|
| 306 |
+
|
| 307 |
+
**Cons**:
|
| 308 |
+
- More code changes
|
| 309 |
+
- Slightly more complex
|
| 310 |
+
|
| 311 |
+
## Current Behavior Summary
|
| 312 |
+
|
| 313 |
+
| Turn | Interaction Contexts Available | User Context Available | Intent Agent Sees |
|
| 314 |
+
|------|-------------------------------|----------------------|-------------------|
|
| 315 |
+
| 1 | 0 | No | `[]` (empty) |
|
| 316 |
+
| 2 | 1 | No | `[]` (empty) ✗ |
|
| 317 |
+
| 3 | 2 | Possibly | `[]` (empty) ✗ |
|
| 318 |
+
| 10+ | 10-20 | Yes (if sufficient history) | `[]` (empty) ✗ |
|
| 319 |
+
|
| 320 |
+
**Key Issue**: Intent agent never sees the available context data because it looks for the wrong key (`conversation_history` instead of `interaction_contexts` or `combined_context`).
|
| 321 |
+
|
| 322 |
+
## Testing Recommendations
|
| 323 |
+
|
| 324 |
+
1. **Verify Context Structure**: Log the actual context dict passed to intent agent
|
| 325 |
+
2. **Test Multiple Turns**: Verify context accumulates correctly over multiple interactions
|
| 326 |
+
3. **Test Persona Generation**: Verify user_context appears after sufficient history
|
| 327 |
+
4. **Compare Intent Accuracy**: Measure if fixing context access improves intent recognition accuracy
|
| 328 |
+
|
| 329 |
+
## Implementation Priority
|
| 330 |
+
|
| 331 |
+
**High Priority**: This bug prevents the intent agent from using available conversation context, which likely:
|
| 332 |
+
- Reduces intent recognition accuracy for follow-up questions
|
| 333 |
+
- Prevents context-aware intent classification
|
| 334 |
+
- Wastes the hierarchical context summarization system
|
| 335 |
+
|
| 336 |
+
**Recommended Fix**: Option 2 (Use `combined_context`) as it's the simplest and most comprehensive solution.
|
| 337 |
+
|
CONTEXT_STRUCTURE_FIX_IMPLEMENTATION.md
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Context Structure Fix Implementation
|
| 2 |
+
|
| 3 |
+
## Summary
|
| 4 |
+
|
| 5 |
+
Fixed context structure mismatches across all agents to properly use the Context Manager's actual data structure. All agents now correctly access `interaction_contexts`, `user_context`, and `combined_context` instead of non-existent keys like `conversation_history` or `interactions`.
|
| 6 |
+
|
| 7 |
+
## Changes Made
|
| 8 |
+
|
| 9 |
+
### 1. Intent Recognition Agent (`src/agents/intent_agent.py`)
|
| 10 |
+
|
| 11 |
+
**Problem**: Was accessing `context.get('conversation_history', [])` which doesn't exist.
|
| 12 |
+
|
| 13 |
+
**Fix**:
|
| 14 |
+
- Now uses `combined_context` (preferred) or builds from `interaction_contexts` and `user_context`
|
| 15 |
+
- Shows last 2 interaction summaries for context awareness
|
| 16 |
+
- Includes user context if available
|
| 17 |
+
- Provides informative message when no context is available
|
| 18 |
+
|
| 19 |
+
**Key Changes**:
|
| 20 |
+
```python
|
| 21 |
+
# OLD (line 109):
|
| 22 |
+
Available Context: {context.get('conversation_history', [])[-2:] if context else []}
|
| 23 |
+
|
| 24 |
+
# NEW:
|
| 25 |
+
# Uses combined_context if available, otherwise builds from interaction_contexts
|
| 26 |
+
combined_context = context.get('combined_context', '')
|
| 27 |
+
interaction_contexts = context.get('interaction_contexts', [])
|
| 28 |
+
user_context = context.get('user_context', '')
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
**Impact**: Intent agent now sees actual conversation history, improving intent recognition accuracy for follow-up questions.
|
| 32 |
+
|
| 33 |
+
---
|
| 34 |
+
|
| 35 |
+
### 2. Response Synthesis Agent (`src/agents/synthesis_agent.py`)
|
| 36 |
+
|
| 37 |
+
**Problem**: Was accessing `context.get('interactions', [])` which doesn't exist.
|
| 38 |
+
|
| 39 |
+
**Fix**:
|
| 40 |
+
- `_build_context_section()` now uses `combined_context` (preferred) or builds from `interaction_contexts`
|
| 41 |
+
- Updated `_summarize_interaction_contexts()` to work with Context Manager structure
|
| 42 |
+
- Added backward compatibility via `_summarize_interactions()` wrapper
|
| 43 |
+
- Updated logging and metadata to use correct keys
|
| 44 |
+
|
| 45 |
+
**Key Changes**:
|
| 46 |
+
```python
|
| 47 |
+
# OLD (line 534):
|
| 48 |
+
interactions = context.get('interactions', [])
|
| 49 |
+
|
| 50 |
+
# NEW:
|
| 51 |
+
combined_context = context.get('combined_context', '')
|
| 52 |
+
interaction_contexts = context.get('interaction_contexts', [])
|
| 53 |
+
user_context = context.get('user_context', '')
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
**Impact**: Synthesis agent now uses actual conversation context for generating contextually relevant responses.
|
| 57 |
+
|
| 58 |
+
---
|
| 59 |
+
|
| 60 |
+
### 3. Safety Check Agent (`src/agents/safety_agent.py`)
|
| 61 |
+
|
| 62 |
+
**Problem**: Wasn't using context at all in safety analysis.
|
| 63 |
+
|
| 64 |
+
**Fix**:
|
| 65 |
+
- Enhanced `_build_safety_prompt()` to include context information
|
| 66 |
+
- Uses `user_context` and recent `interaction_contexts` for context-aware safety analysis
|
| 67 |
+
- Helps safety agent understand conversational context when assessing content appropriateness
|
| 68 |
+
|
| 69 |
+
**Key Changes**:
|
| 70 |
+
```python
|
| 71 |
+
# Added context awareness:
|
| 72 |
+
user_context = context.get('user_context', '')
|
| 73 |
+
interaction_contexts = context.get('interaction_contexts', [])
|
| 74 |
+
# Includes context in safety analysis prompt
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
**Impact**: Safety analysis now considers conversation context, improving appropriateness assessment.
|
| 78 |
+
|
| 79 |
+
---
|
| 80 |
+
|
| 81 |
+
### 4. Skills Identification Agent (`src/agents/skills_identification_agent.py`)
|
| 82 |
+
|
| 83 |
+
**Problem**: Wasn't using context in skill identification.
|
| 84 |
+
|
| 85 |
+
**Fix**:
|
| 86 |
+
- Enhanced `_build_market_analysis_prompt()` to accept and use context parameter
|
| 87 |
+
- Includes user context and recent interaction contexts in market analysis
|
| 88 |
+
- Helps identify skills based on conversation continuity
|
| 89 |
+
|
| 90 |
+
**Key Changes**:
|
| 91 |
+
```python
|
| 92 |
+
# Updated method signature:
|
| 93 |
+
def _build_market_analysis_prompt(self, user_input: str, context: Dict[str, Any] = None)
|
| 94 |
+
|
| 95 |
+
# Added context information:
|
| 96 |
+
user_context = context.get('user_context', '')
|
| 97 |
+
interaction_contexts = context.get('interaction_contexts', [])
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
**Impact**: Skills identification now considers conversation history for better skill relevance.
|
| 101 |
+
|
| 102 |
+
---
|
| 103 |
+
|
| 104 |
+
## Context Structure Reference
|
| 105 |
+
|
| 106 |
+
All agents now correctly use the Context Manager's structure:
|
| 107 |
+
|
| 108 |
+
```python
|
| 109 |
+
context = {
|
| 110 |
+
"session_id": str,
|
| 111 |
+
"user_id": str,
|
| 112 |
+
"user_context": str, # 500-token user persona summary
|
| 113 |
+
"interaction_contexts": [ # List of interaction summary dicts
|
| 114 |
+
{
|
| 115 |
+
"summary": str, # 50-token interaction summary
|
| 116 |
+
"timestamp": str
|
| 117 |
+
},
|
| 118 |
+
...
|
| 119 |
+
],
|
| 120 |
+
"combined_context": str, # Pre-formatted: "[User Context]\n...\n[Interaction Context #N]\n..."
|
| 121 |
+
"preferences": dict,
|
| 122 |
+
"active_tasks": list,
|
| 123 |
+
"last_activity": str
|
| 124 |
+
}
|
| 125 |
+
```
|
| 126 |
+
|
| 127 |
+
## Implementation Strategy
|
| 128 |
+
|
| 129 |
+
### Priority Order
|
| 130 |
+
1. **Use `combined_context` first** - Pre-formatted by Context Manager, most efficient
|
| 131 |
+
2. **Fallback to building from components** - If `combined_context` not available
|
| 132 |
+
3. **Handle empty context gracefully** - Informative messages when no context exists
|
| 133 |
+
|
| 134 |
+
### Context Access Pattern
|
| 135 |
+
```python
|
| 136 |
+
# Preferred pattern used across all agents:
|
| 137 |
+
if context:
|
| 138 |
+
# Option 1: Use pre-formatted combined_context
|
| 139 |
+
combined_context = context.get('combined_context', '')
|
| 140 |
+
if combined_context:
|
| 141 |
+
# Use combined_context directly
|
| 142 |
+
context_info = combined_context
|
| 143 |
+
|
| 144 |
+
# Option 2: Build from components
|
| 145 |
+
else:
|
| 146 |
+
user_context = context.get('user_context', '')
|
| 147 |
+
interaction_contexts = context.get('interaction_contexts', [])
|
| 148 |
+
# Build context_info from components
|
| 149 |
+
```
|
| 150 |
+
|
| 151 |
+
## Testing Recommendations
|
| 152 |
+
|
| 153 |
+
### Test Scenarios
|
| 154 |
+
|
| 155 |
+
1. **First Turn (No Context)**
|
| 156 |
+
- Verify agents handle empty context gracefully
|
| 157 |
+
- Verify informative messages when no context available
|
| 158 |
+
|
| 159 |
+
2. **Second Turn (1 Interaction)**
|
| 160 |
+
- Verify agents access `interaction_contexts[0]`
|
| 161 |
+
- Verify context appears in prompts
|
| 162 |
+
|
| 163 |
+
3. **Multiple Turns (3+ Interactions)**
|
| 164 |
+
- Verify agents use last N interaction contexts
|
| 165 |
+
- Verify context accumulates correctly
|
| 166 |
+
|
| 167 |
+
4. **With User Persona (20+ Interactions)**
|
| 168 |
+
- Verify `user_context` appears in prompts
|
| 169 |
+
- Verify `combined_context` includes user context
|
| 170 |
+
|
| 171 |
+
### Expected Behavior
|
| 172 |
+
|
| 173 |
+
| Turn | Intent Agent Sees | Synthesis Agent Sees | Safety Agent Sees | Skills Agent Sees |
|
| 174 |
+
|------|------------------|---------------------|-------------------|-------------------|
|
| 175 |
+
| 1 | "No previous context" | Empty | No context | No context |
|
| 176 |
+
| 2 | Interaction #1 summary | Interaction #1 | Recent context | Recent context |
|
| 177 |
+
| 3+ | Last 2 interactions | All/Summarized interactions | Recent context | Recent context |
|
| 178 |
+
| 20+ | User context + interactions | User context + interactions | User context | User context |
|
| 179 |
+
|
| 180 |
+
## Benefits
|
| 181 |
+
|
| 182 |
+
1. **Intent Recognition**: Now context-aware, better accuracy for follow-up questions
|
| 183 |
+
2. **Response Synthesis**: Uses conversation history for more relevant responses
|
| 184 |
+
3. **Safety Analysis**: Context-aware appropriateness assessment
|
| 185 |
+
4. **Skills Identification**: Considers conversation continuity for better skill matching
|
| 186 |
+
5. **Consistency**: All agents use the same context structure
|
| 187 |
+
6. **Performance**: Uses pre-formatted `combined_context` when available (more efficient)
|
| 188 |
+
|
| 189 |
+
## Backward Compatibility
|
| 190 |
+
|
| 191 |
+
- Synthesis agent includes `_summarize_interactions()` wrapper for backward compatibility
|
| 192 |
+
- All changes are additive (enhancements) rather than breaking changes
|
| 193 |
+
- Fallback logic handles missing or incomplete context gracefully
|
| 194 |
+
|
| 195 |
+
## Files Modified
|
| 196 |
+
|
| 197 |
+
1. `src/agents/intent_agent.py` - Fixed context access in `_build_chain_of_thought_prompt()`
|
| 198 |
+
2. `src/agents/synthesis_agent.py` - Fixed `_build_context_section()` and related methods
|
| 199 |
+
3. `src/agents/safety_agent.py` - Enhanced `_build_safety_prompt()` with context
|
| 200 |
+
4. `src/agents/skills_identification_agent.py` - Enhanced `_build_market_analysis_prompt()` with context
|
| 201 |
+
|
| 202 |
+
## Verification
|
| 203 |
+
|
| 204 |
+
✅ No linting errors
|
| 205 |
+
✅ All agents use correct context keys
|
| 206 |
+
✅ Backward compatibility maintained
|
| 207 |
+
✅ Graceful handling of empty context
|
| 208 |
+
✅ Consistent implementation pattern across all agents
|
| 209 |
+
|
src/agents/intent_agent.py
CHANGED
|
@@ -101,16 +101,47 @@ class IntentRecognitionAgent:
|
|
| 101 |
def _build_chain_of_thought_prompt(self, user_input: str, context: Dict[str, Any]) -> str:
|
| 102 |
"""Build Chain of Thought prompt for intent recognition"""
|
| 103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
return f"""
|
| 105 |
Analyze the user's intent step by step:
|
| 106 |
|
| 107 |
User Input: "{user_input}"
|
| 108 |
-
|
| 109 |
-
Available Context: {context.get('conversation_history', [])[-2:] if context else []}
|
| 110 |
|
| 111 |
Step 1: Identify key entities, actions, and questions in the input
|
| 112 |
Step 2: Map to intent categories: {', '.join(self.intent_categories)}
|
| 113 |
-
Step 3: Consider the conversation flow and user's likely goals
|
| 114 |
Step 4: Assign confidence scores (0.0-1.0) for each relevant intent
|
| 115 |
Step 5: Provide reasoning for the classification
|
| 116 |
|
|
|
|
| 101 |
def _build_chain_of_thought_prompt(self, user_input: str, context: Dict[str, Any]) -> str:
|
| 102 |
"""Build Chain of Thought prompt for intent recognition"""
|
| 103 |
|
| 104 |
+
# Extract context information from Context Manager structure
|
| 105 |
+
context_info = ""
|
| 106 |
+
if context:
|
| 107 |
+
# Use combined_context if available (pre-formatted by Context Manager)
|
| 108 |
+
combined_context = context.get('combined_context', '')
|
| 109 |
+
if combined_context:
|
| 110 |
+
# Use the pre-formatted context from Context Manager
|
| 111 |
+
context_info = f"\n\nAvailable Context:\n{combined_context[:1000]}..." # Truncate if too long
|
| 112 |
+
else:
|
| 113 |
+
# Fallback: Build from interaction_contexts if combined_context not available
|
| 114 |
+
interaction_contexts = context.get('interaction_contexts', [])
|
| 115 |
+
user_context = context.get('user_context', '')
|
| 116 |
+
|
| 117 |
+
context_parts = []
|
| 118 |
+
if user_context:
|
| 119 |
+
context_parts.append(f"User Context: {user_context[:300]}...")
|
| 120 |
+
|
| 121 |
+
if interaction_contexts:
|
| 122 |
+
# Show last 2 interaction summaries for context
|
| 123 |
+
recent_contexts = interaction_contexts[-2:]
|
| 124 |
+
context_parts.append("Recent Interactions:")
|
| 125 |
+
for idx, ic in enumerate(recent_contexts, 1):
|
| 126 |
+
summary = ic.get('summary', '')
|
| 127 |
+
if summary:
|
| 128 |
+
context_parts.append(f" {idx}. {summary}")
|
| 129 |
+
|
| 130 |
+
if context_parts:
|
| 131 |
+
context_info = "\n\nAvailable Context:\n" + "\n".join(context_parts)
|
| 132 |
+
|
| 133 |
+
if not context_info:
|
| 134 |
+
context_info = "\n\nAvailable Context: No previous context available (first interaction in session)."
|
| 135 |
+
|
| 136 |
return f"""
|
| 137 |
Analyze the user's intent step by step:
|
| 138 |
|
| 139 |
User Input: "{user_input}"
|
| 140 |
+
{context_info}
|
|
|
|
| 141 |
|
| 142 |
Step 1: Identify key entities, actions, and questions in the input
|
| 143 |
Step 2: Map to intent categories: {', '.join(self.intent_categories)}
|
| 144 |
+
Step 3: Consider the conversation flow and user's likely goals (if context available)
|
| 145 |
Step 4: Assign confidence scores (0.0-1.0) for each relevant intent
|
| 146 |
Step 5: Provide reasoning for the classification
|
| 147 |
|
src/agents/safety_agent.py
CHANGED
|
@@ -149,12 +149,28 @@ class SafetyCheckAgent:
|
|
| 149 |
}
|
| 150 |
|
| 151 |
def _build_safety_prompt(self, response: str, context: Dict[str, Any]) -> str:
|
| 152 |
-
"""Build prompt for safety analysis"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
return f"""
|
| 155 |
Analyze the following text for safety concerns and provide warnings if needed:
|
| 156 |
|
| 157 |
Text to analyze: "{response[:500]}..." # Truncate for large responses
|
|
|
|
| 158 |
|
| 159 |
Analyze for:
|
| 160 |
1. Toxicity or harmful language
|
|
@@ -162,6 +178,8 @@ class SafetyCheckAgent:
|
|
| 162 |
3. Privacy or security concerns
|
| 163 |
4. Controversial or sensitive topics
|
| 164 |
|
|
|
|
|
|
|
| 165 |
Provide analysis in JSON format with:
|
| 166 |
- safety_scores for each category (0-1 scale)
|
| 167 |
- detected_issues list
|
|
|
|
| 149 |
}
|
| 150 |
|
| 151 |
def _build_safety_prompt(self, response: str, context: Dict[str, Any]) -> str:
|
| 152 |
+
"""Build prompt for safety analysis with context awareness"""
|
| 153 |
+
|
| 154 |
+
# Extract relevant context information for safety analysis
|
| 155 |
+
context_info = ""
|
| 156 |
+
if context:
|
| 157 |
+
# Get user context if available (might indicate user's background/preferences)
|
| 158 |
+
user_context = context.get('user_context', '')
|
| 159 |
+
if user_context:
|
| 160 |
+
context_info = f"\n\nUser Context (for safety context): {user_context[:200]}..."
|
| 161 |
+
|
| 162 |
+
# Optionally include recent interaction context to understand conversation flow
|
| 163 |
+
interaction_contexts = context.get('interaction_contexts', [])
|
| 164 |
+
if interaction_contexts:
|
| 165 |
+
recent_context = interaction_contexts[-1].get('summary', '') if interaction_contexts else ''
|
| 166 |
+
if recent_context:
|
| 167 |
+
context_info += f"\nRecent conversation: {recent_context[:200]}..."
|
| 168 |
|
| 169 |
return f"""
|
| 170 |
Analyze the following text for safety concerns and provide warnings if needed:
|
| 171 |
|
| 172 |
Text to analyze: "{response[:500]}..." # Truncate for large responses
|
| 173 |
+
{context_info}
|
| 174 |
|
| 175 |
Analyze for:
|
| 176 |
1. Toxicity or harmful language
|
|
|
|
| 178 |
3. Privacy or security concerns
|
| 179 |
4. Controversial or sensitive topics
|
| 180 |
|
| 181 |
+
Consider the conversation context when assessing whether content is appropriate in this specific conversational context.
|
| 182 |
+
|
| 183 |
Provide analysis in JSON format with:
|
| 184 |
- safety_scores for each category (0-1 scale)
|
| 185 |
- detected_issues list
|
src/agents/skills_identification_agent.py
CHANGED
|
@@ -158,8 +158,8 @@ class SkillsIdentificationAgent:
|
|
| 158 |
|
| 159 |
if self.llm_router:
|
| 160 |
try:
|
| 161 |
-
# Build market analysis prompt
|
| 162 |
-
market_prompt = self._build_market_analysis_prompt(user_input)
|
| 163 |
|
| 164 |
logger.info(f"{self.agent_id} calling reasoning_primary for market analysis")
|
| 165 |
llm_response = await self.llm_router.route_inference(
|
|
@@ -211,8 +211,8 @@ class SkillsIdentificationAgent:
|
|
| 211 |
# Fallback to rule-based classification
|
| 212 |
return self._rule_based_skill_classification(user_input)
|
| 213 |
|
| 214 |
-
def _build_market_analysis_prompt(self, user_input: str) -> str:
|
| 215 |
-
"""Build prompt for market analysis using reasoning_primary model"""
|
| 216 |
|
| 217 |
market_data = "\n".join([
|
| 218 |
f"- {category}: {data['market_share']}% market share, {data['growth_rate']}% growth rate"
|
|
@@ -224,9 +224,29 @@ class SkillsIdentificationAgent:
|
|
| 224 |
for category, data in self.market_categories.items()
|
| 225 |
])
|
| 226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
return f"""Analyze the following user input and identify the most relevant industry categories and specialized skills based on current market data.
|
| 228 |
|
| 229 |
User Input: "{user_input}"
|
|
|
|
| 230 |
|
| 231 |
Current Market Distribution:
|
| 232 |
{market_data}
|
|
@@ -235,10 +255,11 @@ Specialized Skills by Category (top 3 per category):
|
|
| 235 |
{specialized_skills}
|
| 236 |
|
| 237 |
Task:
|
| 238 |
-
1. Identify which industry categories are most relevant to the user's input
|
| 239 |
2. Select 1-3 specialized skills from each relevant category that best match the user's needs
|
| 240 |
3. Provide market share percentages and growth rates for identified categories
|
| 241 |
4. Explain your reasoning for each selection
|
|
|
|
| 242 |
|
| 243 |
Respond in JSON format:
|
| 244 |
{{
|
|
|
|
| 158 |
|
| 159 |
if self.llm_router:
|
| 160 |
try:
|
| 161 |
+
# Build market analysis prompt with context
|
| 162 |
+
market_prompt = self._build_market_analysis_prompt(user_input, context)
|
| 163 |
|
| 164 |
logger.info(f"{self.agent_id} calling reasoning_primary for market analysis")
|
| 165 |
llm_response = await self.llm_router.route_inference(
|
|
|
|
| 211 |
# Fallback to rule-based classification
|
| 212 |
return self._rule_based_skill_classification(user_input)
|
| 213 |
|
| 214 |
+
def _build_market_analysis_prompt(self, user_input: str, context: Dict[str, Any] = None) -> str:
|
| 215 |
+
"""Build prompt for market analysis using reasoning_primary model with optional context"""
|
| 216 |
|
| 217 |
market_data = "\n".join([
|
| 218 |
f"- {category}: {data['market_share']}% market share, {data['growth_rate']}% growth rate"
|
|
|
|
| 224 |
for category, data in self.market_categories.items()
|
| 225 |
])
|
| 226 |
|
| 227 |
+
# Add context information if available
|
| 228 |
+
context_info = ""
|
| 229 |
+
if context:
|
| 230 |
+
user_context = context.get('user_context', '')
|
| 231 |
+
interaction_contexts = context.get('interaction_contexts', [])
|
| 232 |
+
|
| 233 |
+
if user_context:
|
| 234 |
+
context_info = f"\n\nUser Context (persona summary): {user_context[:300]}..."
|
| 235 |
+
|
| 236 |
+
if interaction_contexts:
|
| 237 |
+
# Include recent interaction context to understand topic continuity
|
| 238 |
+
recent_contexts = interaction_contexts[-2:] # Last 2 interactions
|
| 239 |
+
if recent_contexts:
|
| 240 |
+
context_info += "\n\nRecent conversation context:"
|
| 241 |
+
for idx, ic in enumerate(recent_contexts, 1):
|
| 242 |
+
summary = ic.get('summary', '')
|
| 243 |
+
if summary:
|
| 244 |
+
context_info += f"\n {idx}. {summary}"
|
| 245 |
+
|
| 246 |
return f"""Analyze the following user input and identify the most relevant industry categories and specialized skills based on current market data.
|
| 247 |
|
| 248 |
User Input: "{user_input}"
|
| 249 |
+
{context_info}
|
| 250 |
|
| 251 |
Current Market Distribution:
|
| 252 |
{market_data}
|
|
|
|
| 255 |
{specialized_skills}
|
| 256 |
|
| 257 |
Task:
|
| 258 |
+
1. Identify which industry categories are most relevant to the user's input (consider conversation context if provided)
|
| 259 |
2. Select 1-3 specialized skills from each relevant category that best match the user's needs
|
| 260 |
3. Provide market share percentages and growth rates for identified categories
|
| 261 |
4. Explain your reasoning for each selection
|
| 262 |
+
5. If conversation context is available, consider how previous topics might inform the skill identification
|
| 263 |
|
| 264 |
Respond in JSON format:
|
| 265 |
{{
|
src/agents/synthesis_agent.py
CHANGED
|
@@ -296,7 +296,8 @@ class EnhancedSynthesisAgent:
|
|
| 296 |
|
| 297 |
logger.info(f"{self.agent_id} synthesizing {len(agent_outputs)} agent outputs")
|
| 298 |
if context:
|
| 299 |
-
|
|
|
|
| 300 |
|
| 301 |
# STEP 1: Extract skill probabilities from skills_result
|
| 302 |
skill_probabilities = self._extract_skill_probabilities(skills_result)
|
|
@@ -354,7 +355,8 @@ class EnhancedSynthesisAgent:
|
|
| 354 |
"synthesis_quality_metrics": self._calculate_quality_metrics({"final_response": clean_response}),
|
| 355 |
"synthesis_metadata": {
|
| 356 |
"agent_outputs_count": len(agent_outputs),
|
| 357 |
-
"context_interactions": len(context.get('
|
|
|
|
| 358 |
"expert_enhanced": True,
|
| 359 |
"processing_timestamp": datetime.now().isoformat()
|
| 360 |
}
|
|
@@ -527,70 +529,112 @@ Response:"""
|
|
| 527 |
return prompt
|
| 528 |
|
| 529 |
def _build_context_section(self, context: Dict[str, Any]) -> str:
|
| 530 |
-
"""Build context section with summarization for long conversations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 531 |
if not context:
|
| 532 |
return ""
|
| 533 |
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
if
|
| 537 |
-
#
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 557 |
|
| 558 |
return context_section
|
| 559 |
|
| 560 |
-
def
|
| 561 |
-
"""Summarize older
|
| 562 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 563 |
return "No prior context."
|
| 564 |
|
| 565 |
-
# Extract key topics and themes
|
| 566 |
topics = []
|
| 567 |
key_points = []
|
| 568 |
|
| 569 |
-
for
|
| 570 |
-
|
| 571 |
-
assistant_response = interaction.get('assistant_response') or interaction.get('response', '')
|
| 572 |
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
#
|
| 576 |
-
|
| 577 |
-
key_terms = [word for word in
|
| 578 |
topics.extend(key_terms)
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
first_sentence = assistant_response.split('.')[0][:100]
|
| 583 |
-
if first_sentence:
|
| 584 |
-
key_points.append(first_sentence + "...")
|
| 585 |
|
| 586 |
# Build summary
|
| 587 |
unique_topics = list(set(topics))[:5] # Top 5 unique topics
|
| 588 |
-
recent_points = key_points[-
|
| 589 |
|
| 590 |
-
|
| 591 |
-
|
| 592 |
|
| 593 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 594 |
|
| 595 |
def _extract_intent_info(self, agent_outputs: List[Dict[str, Any]]) -> Dict[str, Any]:
|
| 596 |
"""Extract intent information from agent outputs"""
|
|
|
|
| 296 |
|
| 297 |
logger.info(f"{self.agent_id} synthesizing {len(agent_outputs)} agent outputs")
|
| 298 |
if context:
|
| 299 |
+
interaction_count = len(context.get('interaction_contexts', [])) if context else 0
|
| 300 |
+
logger.info(f"{self.agent_id} context has {interaction_count} interaction contexts")
|
| 301 |
|
| 302 |
# STEP 1: Extract skill probabilities from skills_result
|
| 303 |
skill_probabilities = self._extract_skill_probabilities(skills_result)
|
|
|
|
| 355 |
"synthesis_quality_metrics": self._calculate_quality_metrics({"final_response": clean_response}),
|
| 356 |
"synthesis_metadata": {
|
| 357 |
"agent_outputs_count": len(agent_outputs),
|
| 358 |
+
"context_interactions": len(context.get('interaction_contexts', [])) if context else 0,
|
| 359 |
+
"user_context_available": bool(context.get('user_context', '')) if context else False,
|
| 360 |
"expert_enhanced": True,
|
| 361 |
"processing_timestamp": datetime.now().isoformat()
|
| 362 |
}
|
|
|
|
| 529 |
return prompt
|
| 530 |
|
| 531 |
def _build_context_section(self, context: Dict[str, Any]) -> str:
|
| 532 |
+
"""Build context section with summarization for long conversations
|
| 533 |
+
|
| 534 |
+
Uses Context Manager structure:
|
| 535 |
+
- combined_context: Pre-formatted context string (preferred)
|
| 536 |
+
- interaction_contexts: List of interaction summaries with 'summary' and 'timestamp'
|
| 537 |
+
- user_context: User persona summary string
|
| 538 |
+
"""
|
| 539 |
if not context:
|
| 540 |
return ""
|
| 541 |
|
| 542 |
+
# Prefer combined_context if available (pre-formatted by Context Manager)
|
| 543 |
+
combined_context = context.get('combined_context', '')
|
| 544 |
+
if combined_context:
|
| 545 |
+
# Use the pre-formatted context from Context Manager
|
| 546 |
+
# It already includes User Context and Interaction Contexts formatted
|
| 547 |
+
return f"\n\nConversation Context:\n{combined_context}"
|
| 548 |
+
|
| 549 |
+
# Fallback: Build from individual components if combined_context not available
|
| 550 |
+
interaction_contexts = context.get('interaction_contexts', [])
|
| 551 |
+
user_context = context.get('user_context', '')
|
| 552 |
+
|
| 553 |
+
context_section = ""
|
| 554 |
+
|
| 555 |
+
# Add user context if available
|
| 556 |
+
if user_context:
|
| 557 |
+
context_section += f"\n\nUser Context (Persona Summary):\n{user_context[:500]}...\n"
|
| 558 |
+
|
| 559 |
+
# Add interaction contexts
|
| 560 |
+
if interaction_contexts:
|
| 561 |
+
if len(interaction_contexts) <= 8:
|
| 562 |
+
# Show all interaction summaries for short conversations
|
| 563 |
+
context_section += "\n\nPrevious Conversation Summary:\n"
|
| 564 |
+
for i, ic in enumerate(interaction_contexts, 1):
|
| 565 |
+
summary = ic.get('summary', '')
|
| 566 |
+
if summary:
|
| 567 |
+
context_section += f" {i}. {summary}\n"
|
| 568 |
+
else:
|
| 569 |
+
# Summarize older interactions, show recent ones
|
| 570 |
+
recent_contexts = interaction_contexts[-8:] # Last 8 interactions
|
| 571 |
+
older_contexts = interaction_contexts[:-8] # Everything before last 8
|
| 572 |
+
|
| 573 |
+
# Create summary of older interactions
|
| 574 |
+
summary = self._summarize_interaction_contexts(older_contexts)
|
| 575 |
+
|
| 576 |
+
context_section += f"\n\nConversation Summary (earlier context):\n{summary}\n\nRecent Conversation:\n"
|
| 577 |
+
|
| 578 |
+
for i, ic in enumerate(recent_contexts, 1):
|
| 579 |
+
summary_text = ic.get('summary', '')
|
| 580 |
+
if summary_text:
|
| 581 |
+
context_section += f" {i}. {summary_text}\n"
|
| 582 |
|
| 583 |
return context_section
|
| 584 |
|
| 585 |
+
def _summarize_interaction_contexts(self, interaction_contexts: List[Dict[str, Any]]) -> str:
|
| 586 |
+
"""Summarize older interaction contexts to preserve key context
|
| 587 |
+
|
| 588 |
+
Uses Context Manager structure where interaction_contexts contains:
|
| 589 |
+
- summary: 50-token interaction summary string
|
| 590 |
+
- timestamp: Interaction timestamp
|
| 591 |
+
"""
|
| 592 |
+
if not interaction_contexts:
|
| 593 |
return "No prior context."
|
| 594 |
|
| 595 |
+
# Extract key topics and themes from summaries
|
| 596 |
topics = []
|
| 597 |
key_points = []
|
| 598 |
|
| 599 |
+
for ic in interaction_contexts:
|
| 600 |
+
summary = ic.get('summary', '')
|
|
|
|
| 601 |
|
| 602 |
+
if summary:
|
| 603 |
+
# Extract topics from summary (simple keyword extraction)
|
| 604 |
+
# Summaries are already condensed, so extract meaningful terms
|
| 605 |
+
words = summary.lower().split()
|
| 606 |
+
key_terms = [word for word in words if len(word) > 4][:3]
|
| 607 |
topics.extend(key_terms)
|
| 608 |
+
|
| 609 |
+
# Use summary as key point (already a summary)
|
| 610 |
+
key_points.append(summary[:150])
|
|
|
|
|
|
|
|
|
|
| 611 |
|
| 612 |
# Build summary
|
| 613 |
unique_topics = list(set(topics))[:5] # Top 5 unique topics
|
| 614 |
+
recent_points = key_points[-5:] # Last 5 key points
|
| 615 |
|
| 616 |
+
summary_text = f"Topics discussed: {', '.join(unique_topics) if unique_topics else 'General discussion'}\n"
|
| 617 |
+
summary_text += f"Key points: {' | '.join(recent_points) if recent_points else 'No specific points'}"
|
| 618 |
|
| 619 |
+
return summary_text
|
| 620 |
+
|
| 621 |
+
def _summarize_interactions(self, interactions: List[Dict[str, Any]]) -> str:
|
| 622 |
+
"""Legacy method for backward compatibility - delegates to _summarize_interaction_contexts"""
|
| 623 |
+
# Convert old format to new format if needed
|
| 624 |
+
if interactions and 'summary' in interactions[0]:
|
| 625 |
+
# Already in new format
|
| 626 |
+
return self._summarize_interaction_contexts(interactions)
|
| 627 |
+
else:
|
| 628 |
+
# Old format - convert
|
| 629 |
+
interaction_contexts = []
|
| 630 |
+
for interaction in interactions:
|
| 631 |
+
user_input = interaction.get('user_input', '')
|
| 632 |
+
assistant_response = interaction.get('assistant_response') or interaction.get('response', '')
|
| 633 |
+
# Create a simple summary
|
| 634 |
+
summary = f"User asked: {user_input[:100]}..." if user_input else ""
|
| 635 |
+
if summary:
|
| 636 |
+
interaction_contexts.append({'summary': summary})
|
| 637 |
+
return self._summarize_interaction_contexts(interaction_contexts)
|
| 638 |
|
| 639 |
def _extract_intent_info(self, agent_outputs: List[Dict[str, Any]]) -> Dict[str, Any]:
|
| 640 |
"""Extract intent information from agent outputs"""
|