File size: 6,617 Bytes
e73d316 93fbb1c e73d316 f120be8 c269194 f120be8 c269194 846de35 8f97c92 846de35 8f97c92 c269194 93fbb1c f120be8 93fbb1c 846de35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
---
title: MCP NLP Analytics
emoji: π
colorFrom: indigo
colorTo: blue
sdk: static
app_file: index.html
pinned: false
tags:
- building-mcp-track-01
---
# Sentiment Evolution Tracker β MCP Monitoring Stack
Sentiment Evolution Tracker is an enterprise-ready monitoring stack that runs as a Model Context Protocol (MCP) server. It combines local sentiment analytics, churn prediction, alerting, and reporting, and can operate standalone or alongside Claude Desktop as an intelligent assistant.
## Why This Exists
Traditional "use Claude once and move on" workflows do not keep historical context, trigger alerts, or generate portfolio-level insights. Sentiment Evolution Tracker solves that by providing:
- Automated trend detection (RISING / DECLINING / STABLE)
- Churn probability scoring with configurable thresholds
- Persistent customer histories in SQLite
- Real-time alerts when risk exceeds 70%
- ASCII and HTML visualizations for demos and stakeholders
- Seven MCP tools that Claude (or any MCP-compatible LLM) can invoke on demand
## π₯ Demo Video
A demo video (3-4 minutes) showing live sentiment analysis, risk detection, and MCP integration with Claude:
**[Watch on YouTube](https://youtu.be/h2tNu2KTPQk)**
The video demonstrates:
- Live sentiment analysis of customer conversations
- Risk detection and churn prediction
- MCP tool invocation via Claude Desktop
- Real-time alerts and reporting
---
## How to Use
### Quick Start (5 minutes)
1. **Clone and install:**
```powershell
git clone https://github.com/RubenReyesss/mcp-nlp-analytics.git
cd mcp-nlp-server
pip install -r requirements.txt
python -m textblob.download_corpora
python -m nltk.downloader punkt averaged_perceptron_tagger
```
2. **Populate demo data:**
```powershell
python init_db.py
python tools/populate_demo_data.py
```
3. **View dashboard:**
```powershell
python tools/dashboard.py
```
4. **Generate HTML report:**
```powershell
python tools/generate_report.py
# Opens data/reporte_clientes.html in your browser
```
5. **Integrate with Claude Desktop:**
- Edit `config/claude_desktop_config.json` with your actual path
- Restart Claude Desktop
- Start the MCP server: `python src/mcp_server.py`
- Now Claude can access all 7 sentiment analysis tools
---
## Installation
```powershell
cd mcp-nlp-server
pip install -r requirements.txt
python -m textblob.download_corpora
python -m nltk.downloader punkt averaged_perceptron_tagger
```
## Daily Operations
- `python init_db.py` β rebuilds the database from scratch (reset option)
- `python tools\populate_demo_data.py` β loads deterministic demo customers
- `python tools\dashboard.py` β terminal dashboard (Ctrl+C to exit)
- `python tools\generate_report.py` β creates `data/reporte_clientes.html`
- `python src\mcp_server.py` β launch the MCP server for Claude Desktop
## MCP Tool Suite
| Tool | Purpose |
| --- | --- |
| `analyze_sentiment_evolution` | Calculates sentiment trajectory for a set of messages |
| `detect_risk_signals` | Flags phrases that correlate with churn or dissatisfaction |
| `predict_next_action` | Forecasts CHURN / ESCALATION / RESOLUTION outcomes |
| `get_customer_history` | Retrieves full timeline, sentiment, and alerts for a customer |
| `get_high_risk_customers` | Returns customers whose churn risk is above a threshold |
| `get_database_statistics` | Portfolio-level KPIs (customers, alerts, sentiment mean) |
| `save_analysis` | Persists a custom analysis entry with full metadata |
## Data Model (SQLite)
- `customer_profiles` β customer metadata, lifetime sentiment, churn risk, timestamps
- `conversations` β every analysis entry, trend, predicted action, confidence
- `risk_alerts` β generated alerts with severity, notes, and resolution state
Database files live in `data/sentiment_analysis.db`; scripts automatically create the directory if needed.
## Claude Desktop Integration
`config/claude_desktop_config.json` registers the server:
```json
{
"mcpServers": {
"sentiment-tracker": {
"command": "python",
"args": ["src/mcp_server.py"],
"cwd": "C:/Users/Ruben Reyes/Desktop/MCP_1stHF/mcp-nlp-server"
}
}
}
```
Restart Claude Desktop after editing the file. Once connected, the seven tools above appear automatically and can be invoked using natural language prompts.
## Documentation Map
- `docs/QUICK_START.md` β five-minute functional checklist
- `docs/ARCHITECTURE.md` β diagrams, module responsibilities, data flow
- `docs/HOW_TO_SAVE_ANALYSIS.md` β practical guide for the `save_analysis` tool
- `docs/EXECUTIVE_SUMMARY.md` β executive briefing for stakeholders
- `docs/CHECKLIST_FINAL.md` β submission readiness checklist
## Tech Stack
- Python 3.10+
- MCP SDK 0.1+
- SQLite (standard library)
- TextBlob 0.17.x + NLTK 3.8.x
- Chart.js for optional HTML visualizations
## Status
- β
Production-style folder layout
- β
Deterministic demo dataset for the hackathon video
- β
Comprehensive English documentation
- β
Tests for the `save_analysis` workflow (`tests/test_save_analysis.py`)
Run `python tools\dashboard.py` or open the generated HTML report to verify data before your demo, then start the MCP server and launch Claude Desktop to show the agentic workflow in real time.
---
## Team
| Role | Contributor | GitHub |
|------|-------------|--------|
| **Developer** | RubenReyesss | [@RubenReyesss](https://github.com/RubenReyesss) |
---
## Track
This project is submitted to **Track 1: Building MCPs** (`building-mcp-track-01`).
It demonstrates a production-ready MCP server that extends Claude's capabilities with persistent analytics, risk prediction, and alertingβsolving the limitation that Claude lacks memory, database writes, and automated monitoring.
---
## π± Social Media Post
**Announcement on LinkedIn:**
[Read the full post on LinkedIn](https://www.linkedin.com/posts/rubenreyesparra_mcp-nlp-analytics-a-hugging-face-space-activity-7400976539959390208-SG3Q?utm_source=share&utm_medium=member_desktop&rcm=ACoAAFIWAmYBYY2kpr1rhopcOJoKJgl2HvUdM-8)
Featured in: MCP 1st Birthday Hackathon
---
## Resources
- **GitHub Repository:** https://github.com/RubenReyesss/mcp-nlp-analytics
- **Hugging Face Space:** https://huggingface.co/spaces/MCP-1st-Birthday/mcp-nlp-analytics
- **Demo Video:** https://youtu.be/h2tNu2KTPQk
- **LinkedIn Post:** https://www.linkedin.com/posts/rubenreyesparra_mcp-nlp-analytics-a-hugging-face-space-activity-7400976539959390208-SG3Q
---
Made with β€οΈ for the Anthropic MCP 1st Birthday Hackathon
|