File size: 10,294 Bytes
f120be8 c269194 f120be8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import streamlit as st
import sqlite3
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
from datetime import datetime
import json
st.set_page_config(page_title="Sentiment Evolution Tracker", layout="wide")
# CSS personalizado
st.markdown("""
<style>
.metric-card {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 20px;
border-radius: 10px;
text-align: center;
}
.metric-value {
font-size: 32px;
font-weight: bold;
margin: 10px 0;
}
.metric-label {
font-size: 14px;
opacity: 0.8;
}
.high-risk {
background-color: #ffe5e5;
border-left: 4px solid #e74c3c;
}
.medium-risk {
background-color: #fff5e5;
border-left: 4px solid #f39c12;
}
.low-risk {
background-color: #e5ffe5;
border-left: 4px solid #27ae60;
}
</style>
""", unsafe_allow_html=True)
@st.cache_resource
def get_db_connection():
conn = sqlite3.connect('data/sentiment_analysis.db')
conn.row_factory = sqlite3.Row
return conn
# Título y descripción
st.title("🎯 Sentiment Evolution Tracker")
st.markdown("*Sistema MCP para monitoreo de satisfacción empresarial*")
# Tabs principales
tab1, tab2, tab3, tab4 = st.tabs(["📊 Dashboard", "🔍 Detalles Clientes", "📈 Tendencias", "🛠️ MCP Tools"])
# TAB 1: DASHBOARD
with tab1:
col1, col2, col3, col4 = st.columns(4)
conn = get_db_connection()
cursor = conn.cursor()
# Métricas
cursor.execute('SELECT COUNT(*) as count FROM customer_profiles')
num_clientes = cursor.fetchone()[0]
cursor.execute('SELECT COUNT(*) as count FROM conversations')
num_analyses = cursor.fetchone()[0]
cursor.execute('SELECT AVG(sentiment_score) as avg FROM conversations')
avg_sentiment = cursor.fetchone()[0] or 0
cursor.execute('SELECT COUNT(*) as count FROM risk_alerts WHERE resolved = 0')
active_alerts = cursor.fetchone()[0]
with col1:
st.markdown(f"""
<div class="metric-card">
<div class="metric-label">Clientes</div>
<div class="metric-value">{num_clientes}</div>
</div>
""", unsafe_allow_html=True)
with col2:
st.markdown(f"""
<div class="metric-card">
<div class="metric-label">Análisis</div>
<div class="metric-value">{num_analyses}</div>
</div>
""", unsafe_allow_html=True)
with col3:
st.markdown(f"""
<div class="metric-card">
<div class="metric-label">Sentimiento Promedio</div>
<div class="metric-value">{avg_sentiment:.0f}/100</div>
</div>
""", unsafe_allow_html=True)
with col4:
st.markdown(f"""
<div class="metric-card">
<div class="metric-label">Alertas Activas</div>
<div class="metric-value">{active_alerts}</div>
</div>
""", unsafe_allow_html=True)
st.divider()
# Gráficas
col_left, col_right = st.columns(2)
with col_left:
# Gráfica de riesgo por cliente
cursor.execute('SELECT customer_id, churn_risk * 100 as risk FROM customer_profiles ORDER BY risk DESC')
datos = cursor.fetchall()
clientes_ids = [d['customer_id'] for d in datos]
riesgos = [d['risk'] for d in datos]
fig_riesgo = go.Figure(data=[
go.Bar(x=clientes_ids, y=riesgos,
marker=dict(color=['#e74c3c' if r > 70 else '#f39c12' if r > 50 else '#27ae60' for r in riesgos]))
])
fig_riesgo.update_layout(title="Riesgo de Churn por Cliente (%)", xaxis_title="Cliente", yaxis_title="Riesgo (%)")
st.plotly_chart(fig_riesgo, use_container_width=True)
with col_right:
# Gráfica de sentimiento por cliente
cursor.execute('SELECT customer_id, lifetime_sentiment FROM customer_profiles ORDER BY lifetime_sentiment DESC')
datos_sent = cursor.fetchall()
clientes_sent = [d['customer_id'] for d in datos_sent]
sentimientos = [d['lifetime_sentiment'] for d in datos_sent]
fig_sent = go.Figure(data=[
go.Bar(x=clientes_sent, y=sentimientos,
marker=dict(color='#764ba2'))
])
fig_sent.update_layout(title="Sentimiento Promedio por Cliente", xaxis_title="Cliente", yaxis_title="Sentimiento (0-100)")
st.plotly_chart(fig_sent, use_container_width=True)
st.divider()
# Tabla de clientes
st.subheader("📋 Clientes Registrados")
cursor.execute('''
SELECT customer_id, lifetime_sentiment, churn_risk, total_interactions, last_contact
FROM customer_profiles
ORDER BY churn_risk DESC
''')
clientes_data = []
for row in cursor.fetchall():
clientes_data.append({
'Cliente': row['customer_id'],
'Sentimiento': f"{row['lifetime_sentiment']:.1f}",
'Riesgo Churn': f"{row['churn_risk']:.1%}",
'Interacciones': row['total_interactions'],
'Último Contacto': row['last_contact'][:10] if row['last_contact'] else 'N/A'
})
df = pd.DataFrame(clientes_data)
st.dataframe(df, use_container_width=True)
conn.close()
# TAB 2: DETALLES CLIENTES
with tab2:
conn = get_db_connection()
cursor = conn.cursor()
cursor.execute('SELECT customer_id FROM customer_profiles ORDER BY customer_id')
clientes = [row[0] for row in cursor.fetchall()]
cliente_seleccionado = st.selectbox("Selecciona un cliente:", clientes)
if cliente_seleccionado:
cursor.execute('SELECT * FROM customer_profiles WHERE customer_id = ?', (cliente_seleccionado,))
cliente = cursor.fetchone()
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Sentimiento Promedio", f"{cliente['lifetime_sentiment']:.1f}/100")
with col2:
st.metric("Riesgo Churn", f"{cliente['churn_risk']:.1%}")
with col3:
st.metric("Interacciones", cliente['total_interactions'])
st.subheader(f"Historial de {cliente_seleccionado}")
cursor.execute('''
SELECT timestamp, message, sentiment_score
FROM conversations
WHERE customer_id = ?
ORDER BY timestamp DESC
''', (cliente_seleccionado,))
conversaciones = cursor.fetchall()
for conv in conversaciones:
sentiment = conv['sentiment_score']
if sentiment > 70:
color = "🟢"
elif sentiment > 50:
color = "🟡"
else:
color = "🔴"
st.write(f"{color} **{conv['timestamp'][:10]}** - Sentimiento: {sentiment}/100")
st.write(f"*{conv['message']}*")
st.divider()
conn.close()
# TAB 3: TENDENCIAS
with tab3:
conn = get_db_connection()
cursor = conn.cursor()
cursor.execute('SELECT customer_id FROM customer_profiles ORDER BY customer_id')
clientes = [row[0] for row in cursor.fetchall()]
clientes_multi = st.multiselect("Selecciona clientes para comparar:", clientes, default=clientes[:2])
if clientes_multi:
for cliente in clientes_multi:
cursor.execute('''
SELECT timestamp, sentiment_score
FROM conversations
WHERE customer_id = ?
ORDER BY timestamp
''', (cliente,))
datos = cursor.fetchall()
if datos:
fechas = [d['timestamp'][:10] for d in datos]
sentimientos = [d['sentiment_score'] for d in datos]
fig = go.Figure()
fig.add_trace(go.Scatter(x=fechas, y=sentimientos, mode='lines+markers', name=cliente))
fig.update_layout(title=f"Evolución de Sentimiento - {cliente}")
st.plotly_chart(fig, use_container_width=True)
conn.close()
# TAB 4: MCP TOOLS
with tab4:
st.subheader("🛠️ Herramientas MCP Disponibles")
tool_info = {
"analyze_sentiment_evolution": {
"desc": "Analiza si el sentimiento SUBE (RISING), BAJA (DECLINING) o se mantiene (STABLE)",
"uso": "Detecta tendencias para alertar sobre clientes en riesgo"
},
"detect_risk_signals": {
"desc": "Detecta palabras clave de riesgo en mensajes (cancelar, problema, insatisfecho)",
"uso": "Identifica inmediatamente problemas graves"
},
"predict_next_action": {
"desc": "Predice si el cliente hará CHURN, RESOLUTION o ESCALATION",
"uso": "Anticipa próximas acciones para intervenir"
},
"get_customer_history": {
"desc": "Obtiene perfil completo del cliente con historial",
"uso": "Análisis detallado para decisiones gerenciales"
},
"get_high_risk_customers": {
"desc": "Lista clientes por encima de threshold de riesgo",
"uso": "Priorizar intervención en clientes críticos"
},
"get_database_statistics": {
"desc": "Estadísticas globales del sistema",
"uso": "Dashboard ejecutivo de KPIs"
},
"save_analysis": {
"desc": "Guarda análisis manual de un cliente",
"uso": "Registro de decisiones y acciones tomadas"
}
}
for tool, info in tool_info.items():
with st.expander(f"📌 {tool}"):
st.write(f"**Descripción:** {info['desc']}")
st.write(f"**Uso:** {info['uso']}")
st.divider()
st.markdown("---")
st.markdown("""
**Sentiment Evolution Tracker v1.0**
Sistema MCP para monitoreo de satisfacción empresarial.
Desarrollado para Hugging Face MCP 1st Birthday Hackathon.
[📖 Docs](https://github.com/rubenreyes/mcp-nlp-server) | [🐙 GitHub](https://github.com) | [💬 Discord](https://discord.gg/huggingface)
""")
|