File size: 20,729 Bytes
f120be8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
"""
Sentiment Evolution Tracker MCP Server
Analyzes sentiment trajectories in conversations to detect opinion changes and predict risks.
Key MCP Protocol Requirements:
1. MUST use stdio_server() for communication with Claude Desktop
2. MUST NOT log to stdout (reserved for protocol messages)
3. MUST log to stderr or file only
4. MUST return TextContent with proper formatting
5. MUST handle async/await correctly
"""
import json
import logging
import asyncio
import sys
import os
from typing import Any
# MCP imports - CRITICAL: correct imports for MCP protocol
from mcp.server import Server
from mcp.server.lowlevel import NotificationOptions
from mcp.server.models import InitializationOptions
from mcp.types import Tool, TextContent
from mcp.server.stdio import stdio_server
# Import analysis modules
from sentiment_analyzer import SentimentAnalyzer
from pattern_detector import PatternDetector
from risk_predictor import RiskPredictor
from database_manager import AnalysisDatabase
# ============================================================================
# LOGGING SETUP - CRITICAL FOR DEBUGGING
# Log to file and stderr ONLY (never stdout - that's for MCP protocol)
# ============================================================================
# Get absolute path for log file
log_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'mcp_server.log')
# Configure logging to file
logging.basicConfig(
filename=log_file,
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Also send errors to stderr (Claude Desktop will capture these)
stderr_handler = logging.StreamHandler(sys.stderr)
stderr_handler.setLevel(logging.ERROR)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
stderr_handler.setFormatter(formatter)
logger.addHandler(stderr_handler)
logger.info("=" * 80)
logger.info("MCP Server starting up")
logger.info(f"Python executable: {sys.executable}")
logger.info(f"Log file: {log_file}")
logger.info("=" * 80)
# ============================================================================
# INITIALIZE MCP SERVER
# ============================================================================
server = Server("sentiment-evolution-tracker")
# Initialize analysis modules - CRITICAL: do this before accepting connections
logger.info("Initializing analysis modules...")
try:
sentiment_analyzer = SentimentAnalyzer()
pattern_detector = PatternDetector()
risk_predictor = RiskPredictor()
db = AnalysisDatabase()
logger.info("β All analysis modules initialized successfully")
logger.info(f"β Database: {db.db_path}")
except Exception as e:
error_msg = f"FATAL: Failed to initialize modules: {str(e)}"
logger.error(error_msg, exc_info=True)
sys.stderr.write(error_msg + "\n")
sys.exit(1)
# ============================================================================
# TOOL DEFINITIONS
# ============================================================================
@server.list_tools()
async def list_tools() -> list[Tool]:
"""List all available tools."""
logger.debug("list_tools() called by Claude")
tools = [
Tool(
name="analyze_sentiment_evolution",
description="Analyzes sentiment evolution across a series of messages to detect trending patterns (improving, declining, or stable sentiment)",
inputSchema={
"type": "object",
"properties": {
"messages": {
"type": "array",
"items": {"type": "string"},
"description": "List of messages to analyze, ordered chronologically"
}
},
"required": ["messages"]
}
),
Tool(
name="detect_risk_signals",
description="Detects risk signals in conversations (competitor mentions, frustration, disengagement, pricing concerns)",
inputSchema={
"type": "object",
"properties": {
"messages": {
"type": "array",
"items": {"type": "string"},
"description": "List of messages to analyze for risk signals"
},
"context_type": {
"type": "string",
"enum": ["customer", "employee", "email"],
"description": "Type of conversation context"
}
},
"required": ["messages", "context_type"]
}
),
Tool(
name="predict_next_action",
description="Predicts the likely next action or outcome based on sentiment and signals (CHURN, RESOLUTION, ESCALATION)",
inputSchema={
"type": "object",
"properties": {
"messages": {
"type": "array",
"items": {"type": "string"},
"description": "List of messages for analysis"
},
"context_type": {
"type": "string",
"enum": ["customer", "employee", "email"],
"description": "Type of conversation context"
}
},
"required": ["messages", "context_type"]
}
),
Tool(
name="get_customer_history",
description="Retrieves historical analysis data for a specific customer, including all previous analyses, trends, and active alerts. THIS REQUIRES DATABASE ACCESS - Claude cannot do this alone!",
inputSchema={
"type": "object",
"properties": {
"customer_id": {
"type": "string",
"description": "Unique customer identifier"
}
},
"required": ["customer_id"]
}
),
Tool(
name="get_high_risk_customers",
description="Returns list of all customers currently at high risk of churn. THIS REQUIRES DATABASE ACCESS - Claude cannot do this alone!",
inputSchema={
"type": "object",
"properties": {
"threshold": {
"type": "number",
"description": "Risk threshold (0-1, default 0.75)",
"default": 0.75
}
},
"required": []
}
),
Tool(
name="get_database_statistics",
description="Returns overall statistics about analyzed customers and alerts. THIS REQUIRES DATABASE ACCESS - Claude cannot do this alone!",
inputSchema={
"type": "object",
"properties": {}
}
),
Tool(
name="save_analysis",
description="Explicitly save a sentiment analysis with a customer name to the database. Use this to save analysis results with a specific customer identifier.",
inputSchema={
"type": "object",
"properties": {
"customer_id": {
"type": "string",
"description": "Unique customer identifier (e.g., 'LUIS_RAMIREZ', 'CUST_001_ACME')"
},
"customer_name": {
"type": "string",
"description": "Customer display name (optional)"
},
"messages": {
"type": "array",
"items": {"type": "string"},
"description": "List of messages in the conversation"
},
"sentiment_score": {
"type": "number",
"description": "Overall sentiment score (0-100)"
},
"trend": {
"type": "string",
"enum": ["RISING", "DECLINING", "STABLE"],
"description": "Sentiment trend"
},
"risk_level": {
"type": "string",
"description": "Risk classification (LOW, MEDIUM, HIGH)"
},
"predicted_action": {
"type": "string",
"description": "Recommended action (CHURN, RESOLUTION, ESCALATION)"
},
"confidence": {
"type": "number",
"description": "Confidence level (0-1.0)"
},
"context_type": {
"type": "string",
"enum": ["customer", "employee", "email"],
"description": "Type of conversation",
"default": "customer"
}
},
"required": ["customer_id", "messages", "sentiment_score", "trend", "predicted_action", "confidence"]
}
)
]
logger.info(f"β Returning {len(tools)} tools to Claude")
return tools
# ============================================================================
# TOOL HANDLERS
# ============================================================================
@server.call_tool()
async def call_tool(name: str, arguments: dict) -> list[TextContent]:
"""
Execute tool based on name and arguments.
ALL ERRORS are logged to stderr and file.
"""
try:
logger.info(f"Tool call received: {name}")
logger.debug(f"Arguments: {arguments}")
if name == "analyze_sentiment_evolution":
# Extract messages - must be non-empty
messages = arguments.get("messages", [])
if not messages or not isinstance(messages, list):
error_msg = "Missing or invalid 'messages' parameter (must be non-empty array)"
logger.warning(f"analyze_sentiment_evolution: {error_msg}")
return [TextContent(type="text", text=json.dumps({"error": error_msg}))]
logger.info(f"Analyzing sentiment evolution for {len(messages)} messages")
result = sentiment_analyzer.analyze_evolution(messages)
# Save to database
customer_id = arguments.get("customer_id", f"customer_{hash(str(messages))}")
db.save_analysis(customer_id, "conversation", messages, result)
logger.info(f"β analyze_sentiment_evolution completed and saved to database")
return [TextContent(type="text", text=json.dumps(result))]
elif name == "detect_risk_signals":
messages = arguments.get("messages", [])
context_type = arguments.get("context_type", "customer")
if not messages or not isinstance(messages, list):
error_msg = "Missing or invalid 'messages' parameter (must be non-empty array)"
logger.warning(f"detect_risk_signals: {error_msg}")
return [TextContent(type="text", text=json.dumps({"error": error_msg}))]
if context_type not in ["customer", "employee", "email"]:
context_type = "customer"
logger.info(f"Invalid context_type, defaulting to 'customer'")
logger.info(f"Detecting risk signals for {len(messages)} messages (context: {context_type})")
result = pattern_detector.detect_signals(messages, context_type)
# Save to database
customer_id = arguments.get("customer_id", f"customer_{hash(str(messages))}")
db.save_analysis(customer_id, context_type, messages, result)
logger.info(f"β detect_risk_signals completed and saved to database")
return [TextContent(type="text", text=json.dumps(result))]
elif name == "predict_next_action":
messages = arguments.get("messages", [])
context_type = arguments.get("context_type", "customer")
if not messages or not isinstance(messages, list):
error_msg = "Missing or invalid 'messages' parameter (must be non-empty array)"
logger.warning(f"predict_next_action: {error_msg}")
return [TextContent(type="text", text=json.dumps({"error": error_msg}))]
if context_type not in ["customer", "employee", "email"]:
context_type = "customer"
logger.info(f"Invalid context_type, defaulting to 'customer'")
logger.info(f"Predicting next action for {len(messages)} messages (context: {context_type})")
result = risk_predictor.predict_action(messages, context_type)
# Save to database
customer_id = arguments.get("customer_id", f"customer_{hash(str(messages))}")
db.save_analysis(customer_id, context_type, messages, result)
logger.info(f"β predict_next_action completed and saved to database")
return [TextContent(type="text", text=json.dumps(result))]
elif name == "get_customer_history":
customer_id = arguments.get("customer_id", "")
if not customer_id:
error_msg = "Missing 'customer_id' parameter"
logger.warning(f"get_customer_history: {error_msg}")
return [TextContent(type="text", text=json.dumps({"error": error_msg}))]
logger.info(f"Retrieving history for customer: {customer_id}")
result = db.get_customer_history(customer_id)
logger.info(f"β get_customer_history completed - found {len(result.get('analyses', []))} analyses")
return [TextContent(type="text", text=json.dumps(result))]
elif name == "get_high_risk_customers":
threshold = float(arguments.get("threshold", 0.75))
logger.info(f"Retrieving high-risk customers (threshold: {threshold})")
result = db.get_high_risk_customers(threshold)
logger.info(f"β get_high_risk_customers completed - found {len(result)} at-risk customers")
return [TextContent(type="text", text=json.dumps({
'high_risk_customers': result,
'count': len(result),
'threshold': threshold
}))]
elif name == "get_database_statistics":
logger.info("Retrieving database statistics")
result = db.get_statistics()
logger.info(f"β get_database_statistics completed")
return [TextContent(type="text", text=json.dumps(result))]
elif name == "save_analysis":
"""Save analysis results explicitly with customer identifier"""
customer_id = arguments.get("customer_id", "")
if not customer_id:
error_msg = "Missing 'customer_id' parameter"
logger.warning(f"save_analysis: {error_msg}")
return [TextContent(type="text", text=json.dumps({"error": error_msg}))]
messages = arguments.get("messages", [])
if not messages or not isinstance(messages, list):
error_msg = "Missing or invalid 'messages' parameter (must be non-empty array)"
logger.warning(f"save_analysis: {error_msg}")
return [TextContent(type="text", text=json.dumps({"error": error_msg}))]
# Build analysis dictionary from parameters
analysis = {
"current_sentiment": arguments.get("sentiment_score", 50),
"trend": arguments.get("trend", "STABLE"),
"risk_level": arguments.get("risk_level", "MEDIUM"),
"predicted_action": arguments.get("predicted_action", "UNKNOWN"),
"confidence": arguments.get("confidence", 0.5)
}
context_type = arguments.get("context_type", "customer")
if context_type not in ["customer", "employee", "email"]:
context_type = "customer"
logger.info(f"Saving analysis for customer: {customer_id}")
logger.debug(f"Analysis data: {analysis}")
# Save to database
analysis_id = db.save_analysis(customer_id, context_type, messages, analysis)
logger.info(f"β Analysis saved successfully - ID: {analysis_id}, Customer: {customer_id}")
return [TextContent(type="text", text=json.dumps({
"success": True,
"analysis_id": analysis_id,
"customer_id": customer_id,
"message": f"Analysis saved for {customer_id} with {len(messages)} messages"
}))]
else:
error_msg = f"Unknown tool: {name}"
logger.error(error_msg)
return [TextContent(type="text", text=json.dumps({"error": error_msg}))]
except Exception as e:
error_msg = f"Error in tool {name}: {str(e)}"
logger.error(error_msg, exc_info=True)
sys.stderr.write(f"ERROR: {error_msg}\n")
return [TextContent(type="text", text=json.dumps({"error": error_msg}))]
# ============================================================================
# MAIN SERVER LOOP
# ============================================================================
async def main():
"""
Run the MCP server with stdio transport.
This is the CRITICAL function that handles protocol communication.
IMPORTANT: stdio_server() yields a tuple (read_stream, write_stream)
"""
logger.info("main() called - entering async loop")
try:
# Use stdio_server context manager for proper protocol handling
async with stdio_server() as (read_stream, write_stream):
logger.info("β stdio_server initialized - streams ready")
logger.info("β Creating InitializationOptions...")
# Create initialization options required by MCP protocol
init_options = InitializationOptions(
server_name="sentiment-evolution-tracker",
server_version="1.0.0",
capabilities=server.get_capabilities(
notification_options=NotificationOptions(),
experimental_capabilities={},
)
)
logger.info("β Connecting to Claude Desktop...")
logger.info(f"β Server capabilities: {init_options.capabilities}")
# Start the server with stdin/stdout streams and initialization options
# This blocks until connection is closed
await server.run(read_stream, write_stream, init_options)
logger.info("β Server loop completed (connection closed)")
except Exception as e:
error_msg = f"Server error in main(): {str(e)}"
logger.error(error_msg, exc_info=True)
sys.stderr.write(f"FATAL ERROR: {error_msg}\n")
raise
# ============================================================================
# ENTRY POINT
# ============================================================================
if __name__ == "__main__":
logger.info("=" * 80)
logger.info("MCP Server Process Starting")
logger.info("=" * 80)
try:
# Windows compatibility: set event loop policy
if sys.platform == "win32":
logger.info("Windows detected - setting WindowsSelectorEventLoopPolicy")
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
# Run the server
logger.info("Calling asyncio.run(main())")
asyncio.run(main())
logger.info("MCP Server exited normally")
except KeyboardInterrupt:
logger.info("Server stopped by user (KeyboardInterrupt)")
sys.exit(0)
except Exception as e:
error_msg = f"FATAL ERROR in main process: {str(e)}"
logger.critical(error_msg, exc_info=True)
sys.stderr.write(f"\n{error_msg}\n")
sys.exit(1)
|