mcp-nlp-analytics / src /pattern_detector.py
RReyesp's picture
feat: entrega MVP MCP-NLP para hackat贸n
f120be8
raw
history blame
9.27 kB
"""
Pattern Detection Module
Detects risk signals and warning patterns in conversations.
"""
from typing import List, Dict, Any
import re
class PatternDetector:
"""Detects risk signals in message patterns."""
def __init__(self):
"""Initialize pattern detector."""
self.comparison_keywords = [
'competitor', 'alternative', 'better', 'cheaper', 'faster',
'other', 'someone else', 'another', 'different', 'switch',
'change', 'similar', 'compare', 'versus', 'instead'
]
self.frustration_keywords = [
'slow', 'late', 'delayed', 'wait', 'frustrated', 'annoyed',
'angry', 'upset', 'disappointed', 'problem', 'issue', 'bug',
'broken', 'not working', 'fail', 'error', 'impossible'
]
self.disengagement_keywords = [
'cancel', 'stop', 'end', 'quit', 'leave', 'exit', 'goodbye',
'farewell', 'thanks anyway', 'no thanks', 'decline', 'refuse',
'not interested', 'moving on', 'consider', 'think about',
'evaluate', 'looking at'
]
self.price_keywords = [
'expensive', 'cost', 'price', 'cheap', 'expensive', 'fee',
'charge', 'budget', 'discount', 'negotiate', 'lower'
]
def detect_signals(self, messages: List[Dict[str, Any]],
context: str = "general") -> Dict[str, Any]:
"""
Detect risk signals in conversations.
Args:
messages: List of messages
context: Type of relationship (customer/employee/investor/general)
Returns:
Dictionary with detected signals and risk assessment
"""
if not messages:
return self._empty_signals()
signals = []
risk_scores = []
breaking_point = None
key_phrases = []
for i, msg in enumerate(messages):
# Handle both strings and dicts
if isinstance(msg, dict):
text = msg.get('text', '').lower()
timestamp = msg.get('timestamp', f'Message {i+1}')
elif isinstance(msg, str):
text = msg.lower()
timestamp = f'Message {i+1}'
else:
text = str(msg).lower()
timestamp = f'Message {i+1}'
# Check for various signal types
comparison_signal = self._check_comparisons(text)
frustration_signal = self._check_frustration(text)
disengagement_signal = self._check_disengagement(text)
price_signal = self._check_price(text)
msg_signals = []
msg_risk = 0
if comparison_signal['found']:
msg_signals.append(comparison_signal)
msg_risk += 25
key_phrases.append(comparison_signal['text'])
if breaking_point is None:
breaking_point = i + 1
if frustration_signal['found']:
msg_signals.append(frustration_signal)
msg_risk += 30
key_phrases.append(frustration_signal['text'])
if breaking_point is None and msg_risk > 30:
breaking_point = i + 1
if disengagement_signal['found']:
msg_signals.append(disengagement_signal)
msg_risk += 35
key_phrases.append(disengagement_signal['text'])
if breaking_point is None:
breaking_point = i + 1
if price_signal['found']:
msg_signals.append(price_signal)
msg_risk += 20
key_phrases.append(price_signal['text'])
if msg_signals:
signals.append({
'message_index': i + 1,
'timestamp': timestamp,
'signals': msg_signals,
'risk_score': min(100, msg_risk)
})
risk_scores.append(msg_risk)
# Calculate overall risk
overall_risk = max(risk_scores) if risk_scores else 0
risk_level = self._assess_risk_level(overall_risk)
# Generate recommendations
recommendations = self._generate_recommendations(
context, risk_level, signals, breaking_point
)
return {
'signals': signals,
'risk_level': risk_level,
'confidence': min(100, len(signals) * 15),
'breaking_point': breaking_point,
'key_phrases': list(set(key_phrases))[:5], # Top 5 unique phrases
'recommendations': recommendations,
'total_risk_score': min(100, overall_risk)
}
def _check_comparisons(self, text: str) -> Dict[str, Any]:
"""Check for competitor/alternative mentions."""
for keyword in self.comparison_keywords:
if keyword in text:
return {
'found': True,
'type': 'COMPETITOR_COMPARISON',
'text': keyword,
'description': 'Comparing with alternatives or competitors'
}
return {'found': False}
def _check_frustration(self, text: str) -> Dict[str, Any]:
"""Check for frustration indicators."""
for keyword in self.frustration_keywords:
if keyword in text:
return {
'found': True,
'type': 'FRUSTRATION',
'text': keyword,
'description': 'Expressing dissatisfaction or frustration'
}
return {'found': False}
def _check_disengagement(self, text: str) -> Dict[str, Any]:
"""Check for disengagement signals."""
for keyword in self.disengagement_keywords:
if keyword in text:
return {
'found': True,
'type': 'DISENGAGEMENT',
'text': keyword,
'description': 'Showing intent to leave or end relationship'
}
return {'found': False}
def _check_price(self, text: str) -> Dict[str, Any]:
"""Check for price-related concerns."""
for keyword in self.price_keywords:
if keyword in text:
return {
'found': True,
'type': 'PRICE_CONCERN',
'text': keyword,
'description': 'Mentioning cost or pricing concerns'
}
return {'found': False}
def _assess_risk_level(self, risk_score: float) -> str:
"""Assess overall risk level."""
if risk_score >= 70:
return "CRITICAL"
elif risk_score >= 50:
return "HIGH"
elif risk_score >= 30:
return "MEDIUM"
else:
return "LOW"
def _generate_recommendations(self, context: str, risk_level: str,
signals: List[Dict], breaking_point: int) -> List[str]:
"""Generate actionable recommendations."""
recommendations = []
if risk_level == "CRITICAL":
recommendations.append("鈿狅笍 URGENT: Immediate intervention required")
if breaking_point:
recommendations.append(f"Breaking point detected at message {breaking_point}")
if context == "customer":
if risk_level in ["CRITICAL", "HIGH"]:
recommendations.append("Contact customer immediately to address concerns")
recommendations.append("Prepare retention offer (discount/upgrade)")
recommendations.append("Escalate to account manager")
elif context == "employee":
if risk_level in ["CRITICAL", "HIGH"]:
recommendations.append("Schedule 1-on-1 with HR or manager")
recommendations.append("Identify root cause of dissatisfaction")
recommendations.append("Prepare retention plan")
elif context == "investor":
if risk_level in ["CRITICAL", "HIGH"]:
recommendations.append("Prepare detailed response addressing concerns")
recommendations.append("Schedule follow-up meeting")
# Add general recommendations
if any(s.get('type') == 'COMPETITOR_COMPARISON' for s in signals):
recommendations.append("Counter competitive threats with unique value proposition")
if any(s.get('type') == 'PRICE_CONCERN' for s in signals):
recommendations.append("Review pricing strategy and alternative plans")
return recommendations[:5] # Top 5 recommendations
def _empty_signals(self) -> Dict[str, Any]:
"""Return empty signals structure."""
return {
'signals': [],
'risk_level': 'UNKNOWN',
'confidence': 0,
'breaking_point': None,
'key_phrases': [],
'recommendations': []
}