RReyesp commited on
Commit
49e3b6e
·
1 Parent(s): 3acf9fe

chore: remove duplicate files (old Streamlit README, duplicate video)

Browse files
Files changed (1) hide show
  1. README_SPACE.md +0 -160
README_SPACE.md DELETED
@@ -1,160 +0,0 @@
1
- # Sentiment Evolution Tracker – Hugging Face Space Edition
2
-
3
- MCP-powered customer sentiment monitoring packaged for Hugging Face Spaces and local demos.
4
-
5
- > Nota: el dashboard Streamlit es opcional y no forma parte del entregable principal. Solo ejecútalo si quieres experimentar con la versión interactiva local.
6
-
7
- ## 🚀 Launch The Demo (Opcional)
8
-
9
- ```powershell
10
- streamlit run app.py
11
- ```
12
-
13
- Open `http://localhost:8501` for the interactive dashboard.
14
-
15
- ## 📊 Feature Set
16
-
17
- ### Interactive Dashboard
18
- - Four KPIs (customers, analyses, sentiment, alerts).
19
- - Two charts (churn risk vs. time, sentiment trend).
20
- - Detailed customer table with statuses.
21
-
22
- ### Deep-Dive Panels
23
- - Select any customer to view historical analyses.
24
- - Inspect sentiment velocity and recommended actions.
25
- - Highlight churn drivers automatically.
26
-
27
- ### Multi-Customer Trends
28
- - Compare sentiment trajectories across clients.
29
- - Identify shared risk signals.
30
-
31
- ### MCP Tooling (7 tools)
32
- 1. `analyze_sentiment_evolution`
33
- 2. `detect_risk_signals`
34
- 3. `predict_next_action`
35
- 4. `get_customer_history`
36
- 5. `get_high_risk_customers`
37
- 6. `get_database_statistics`
38
- 7. `save_analysis`
39
-
40
- ## 💻 Local Setup
41
-
42
- Requirements: Python 3.10+, pip.
43
-
44
- ```powershell
45
- git clone https://huggingface.co/spaces/MCP-1st-Birthday/sentiment-tracker
46
- cd mcp-nlp-server
47
- pip install -r requirements.txt
48
- python init_db.py
49
- python tools\populate_demo_data.py
50
- python tools\dashboard.py
51
- python tools\generate_report.py # opens data/reporte_clientes.html
52
- streamlit run app.py
53
- ```
54
-
55
- ## 🔧 MCP Configuration
56
-
57
- 1. Edit `config/claude_desktop_config.json`.
58
- 2. Point the server entry to `src/mcp_server.py`.
59
- 3. Restart Claude Desktop and select the sentiment tracker server.
60
-
61
- ```json
62
- {
63
- "mcpServers": {
64
- "sentiment-tracker": {
65
- "command": "python",
66
- "args": ["src/mcp_server.py"],
67
- "cwd": "C:/path/to/mcp-nlp-server"
68
- }
69
- }
70
- }
71
- ```
72
-
73
- ## 📈 Use Cases
74
-
75
- ### 1. Churn Prediction
76
- ```
77
- Input → customer ID
78
- Process → trend analysis + risk signals + alerts
79
- Output → alert if risk > 70% with suggested actions
80
- ```
81
-
82
- ### 2. Real-Time Monitoring
83
- ```
84
- Dashboard highlights:
85
- - Critical accounts (red)
86
- - At-risk accounts (orange)
87
- - Healthy accounts (green)
88
- Updated whenever new analyses are stored
89
- ```
90
-
91
- ### 3. Executive Reporting
92
- ```
93
- Generate the HTML report to share daily:
94
- - Risk charts
95
- - Sentiment evolution
96
- - Top 5 accounts needing attention
97
- - Actionable recommendations
98
- ```
99
-
100
- ### 4. LLM Integration
101
- ```
102
- Claude workflow:
103
- → get_high_risk_customers()
104
- → get_customer_history()
105
- → predict_next_action()
106
- → Respond with urgency, revenue at risk, and next steps
107
- ```
108
-
109
- ## 📊 Sample Dataset
110
-
111
- - Five demo customers (manufacturing, tech, retail, healthcare, finance).
112
- - Seventeen conversations across rising/declining/stable trends.
113
- - Alerts triggered automatically when risk exceeds thresholds.
114
-
115
- ## 🎯 Architecture
116
-
117
- ```
118
- User / Team Lead
119
-
120
- Claude Desktop (optional)
121
- ↓ MCP Protocol (stdio)
122
- Sentiment Tracker Server (7 tools)
123
-
124
- SQLite Database (customer_profiles, conversations, risk_alerts)
125
- ```
126
-
127
- ## 🔑 Key Advantages
128
-
129
- - **Local-first**: keep customer data on-prem.
130
- - **Zero external APIs**: predictable cost, improved privacy.
131
- - **Real-time**: sentiment scoring < 100 ms per request.
132
- - **Predictive**: churn detection 5–7 days ahead.
133
- - **Agentic**: Claude drives the workflow autonomously.
134
- - **Scalable**: handles thousands of customers on commodity hardware.
135
-
136
- ## 📚 Documentation
137
-
138
- - [Architecture](docs/ARCHITECTURE.md)
139
- - [Quick Start](docs/QUICK_START.md)
140
- - [Blog Post](../BLOG_POST.md)
141
-
142
- ## 🤝 Contributions
143
-
144
- Suggestions are welcome—open an issue or submit a pull request.
145
-
146
- ## 📝 License
147
-
148
- MIT License.
149
-
150
- ## 🙏 Acknowledgements
151
-
152
- - Anthropic for MCP.
153
- - Hugging Face for the hosting platform.
154
- - TextBlob + NLTK for NLP utilities.
155
-
156
- ---
157
-
158
- Built for the MCP 1st Birthday Hackathon 🎉
159
-
160
- [GitHub](https://github.com) • [Blog](../BLOG_POST.md) • [Docs](docs/)