File size: 25,324 Bytes
225a75e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
#!/usr/bin/env python3
"""
File Processing Tool for GAIA Agent System
Handles multiple file formats: images, audio, Excel/CSV, Python code
"""

import os
import re
import io
import logging
import mimetypes
from typing import Dict, List, Optional, Any, Union
from pathlib import Path
import pandas as pd
from PIL import Image
import ast

from tools import BaseTool

logger = logging.getLogger(__name__)

class FileProcessingResult:
    """Container for file processing results"""
    
    def __init__(self, file_path: str, file_type: str, success: bool, 
                 content: Any = None, metadata: Dict[str, Any] = None):
        self.file_path = file_path
        self.file_type = file_type
        self.success = success
        self.content = content
        self.metadata = metadata or {}
        
    def to_dict(self) -> Dict[str, Any]:
        return {
            "file_path": self.file_path,
            "file_type": self.file_type,
            "success": self.success,
            "content": self.content,
            "metadata": self.metadata
        }

class FileProcessorTool(BaseTool):
    """
    File processor tool for multiple file formats
    Supports images, audio, Excel/CSV, and Python code analysis
    """
    
    def __init__(self):
        super().__init__("file_processor")
        
        # Supported file types
        self.image_extensions = {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.webp'}
        self.audio_extensions = {'.mp3', '.wav', '.ogg', '.flac', '.m4a', '.aac'}
        self.data_extensions = {'.csv', '.xlsx', '.xls', '.json', '.txt'}
        self.code_extensions = {'.py', '.js', '.java', '.cpp', '.c', '.html', '.css'}
        
    def _execute_impl(self, input_data: Any, **kwargs) -> Dict[str, Any]:
        """
        Execute file processing operations based on input type
        
        Args:
            input_data: Can be:
                - str: File path to process
                - dict: {"file_path": str, "operation": str, "options": dict}
        """
        
        if isinstance(input_data, str):
            return self._process_file(input_data)
            
        elif isinstance(input_data, dict):
            file_path = input_data.get("file_path", "")
            operation = input_data.get("operation", "auto")
            options = input_data.get("options", {})
            
            if operation == "auto":
                return self._process_file(file_path, **options)
            elif operation == "analyze_image":
                return self._analyze_image(file_path, **options)
            elif operation == "process_data":
                return self._process_data_file(file_path, **options)
            elif operation == "analyze_code":
                return self._analyze_code(file_path, **options)
            else:
                raise ValueError(f"Unknown operation: {operation}")
        else:
            raise ValueError(f"Unsupported input type: {type(input_data)}")
    
    def _process_file(self, file_path: str, **options) -> Dict[str, Any]:
        """
        Auto-detect file type and process accordingly
        """
        try:
            if not os.path.exists(file_path):
                return {
                    "success": False,
                    "message": f"File not found: {file_path}",
                    "error_type": "file_not_found"
                }
            
            # Detect file type
            file_extension = Path(file_path).suffix.lower()
            file_type = self._detect_file_type(file_path, file_extension)
            
            logger.info(f"Processing {file_type} file: {file_path}")
            
            # Route to appropriate processor
            if file_type == "image":
                return self._analyze_image(file_path, **options)
            elif file_type == "audio":
                return self._analyze_audio(file_path, **options)
            elif file_type == "data":
                return self._process_data_file(file_path, **options)
            elif file_type == "code":
                return self._analyze_code(file_path, **options)
            elif file_type == "text":
                return self._process_text_file(file_path, **options)
            else:
                return {
                    "success": False,
                    "message": f"Unsupported file type: {file_type}",
                    "file_path": file_path,
                    "detected_type": file_type
                }
                
        except Exception as e:
            return {
                "success": False,
                "message": f"File processing failed: {str(e)}",
                "file_path": file_path,
                "error_type": type(e).__name__
            }
    
    def _detect_file_type(self, file_path: str, extension: str) -> str:
        """Detect file type based on extension and MIME type"""
        
        if extension in self.image_extensions:
            return "image"
        elif extension in self.audio_extensions:
            return "audio"
        elif extension in self.data_extensions:
            return "data"
        elif extension in self.code_extensions:
            return "code"
        elif extension in {'.txt', '.md', '.rst'}:
            return "text"
        else:
            # Try MIME type detection
            mime_type, _ = mimetypes.guess_type(file_path)
            if mime_type:
                if mime_type.startswith('image/'):
                    return "image"
                elif mime_type.startswith('audio/'):
                    return "audio"
                elif mime_type.startswith('text/'):
                    return "text"
            
            return "unknown"
    
    def _analyze_image(self, file_path: str, **options) -> Dict[str, Any]:
        """
        Analyze image files and extract metadata
        """
        try:
            with Image.open(file_path) as img:
                # Basic image information
                metadata = {
                    "format": img.format,
                    "mode": img.mode,
                    "size": img.size,
                    "width": img.width,
                    "height": img.height,
                    "file_size": os.path.getsize(file_path)
                }
                
                # EXIF data if available
                if hasattr(img, '_getexif') and img._getexif():
                    exif = img._getexif()
                    if exif:
                        metadata["exif_data"] = dict(list(exif.items())[:10])  # First 10 EXIF entries
                
                # Color analysis
                if img.mode in ['RGB', 'RGBA']:
                    colors = img.getcolors(maxcolors=10)
                    if colors:
                        dominant_colors = sorted(colors, reverse=True)[:5]
                        metadata["dominant_colors"] = [
                            {"count": count, "rgb": color} 
                            for count, color in dominant_colors
                        ]
                
                # Basic content description
                content_description = self._describe_image_content(img, metadata)
                
                result = FileProcessingResult(
                    file_path=file_path,
                    file_type="image",
                    success=True,
                    content=content_description,
                    metadata=metadata
                )
                
                return {
                    "success": True,
                    "result": result.to_dict(),
                    "message": f"Successfully analyzed image: {img.width}x{img.height} {img.format}"
                }
                
        except Exception as e:
            return {
                "success": False,
                "message": f"Image analysis failed: {str(e)}",
                "file_path": file_path,
                "error_type": type(e).__name__
            }
    
    def _describe_image_content(self, img: Image.Image, metadata: Dict[str, Any]) -> str:
        """Generate basic description of image content"""
        description_parts = []
        
        # Size description
        width, height = img.size
        if width > height:
            orientation = "landscape"
        elif height > width:
            orientation = "portrait"
        else:
            orientation = "square"
        
        description_parts.append(f"{orientation} {img.format} image")
        description_parts.append(f"Dimensions: {width} x {height} pixels")
        
        # Color information
        if img.mode == 'RGB':
            description_parts.append("Full color RGB image")
        elif img.mode == 'RGBA':
            description_parts.append("RGB image with transparency")
        elif img.mode == 'L':
            description_parts.append("Grayscale image")
        elif img.mode == '1':
            description_parts.append("Black and white image")
        
        # File size
        file_size = metadata.get("file_size", 0)
        if file_size > 0:
            size_mb = file_size / (1024 * 1024)
            if size_mb >= 1:
                description_parts.append(f"File size: {size_mb:.1f} MB")
            else:
                size_kb = file_size / 1024
                description_parts.append(f"File size: {size_kb:.1f} KB")
        
        return ". ".join(description_parts)
    
    def _analyze_audio(self, file_path: str, **options) -> Dict[str, Any]:
        """
        Analyze audio files (basic metadata for now)
        """
        try:
            # Basic file information
            file_size = os.path.getsize(file_path)
            file_extension = Path(file_path).suffix.lower()
            
            metadata = {
                "file_extension": file_extension,
                "file_size": file_size,
                "file_size_mb": round(file_size / (1024 * 1024), 2)
            }
            
            # For now, provide basic file info
            # In a full implementation, you might use libraries like:
            # - pydub for audio processing
            # - speech_recognition for transcription
            # - librosa for audio analysis
            
            content_description = f"Audio file ({file_extension}) - {metadata['file_size_mb']} MB"
            
            result = FileProcessingResult(
                file_path=file_path,
                file_type="audio",
                success=True,
                content=content_description,
                metadata=metadata
            )
            
            return {
                "success": True,
                "result": result.to_dict(),
                "message": f"Audio file detected: {metadata['file_size_mb']} MB {file_extension}",
                "note": "Full audio transcription requires additional setup"
            }
            
        except Exception as e:
            return {
                "success": False,
                "message": f"Audio analysis failed: {str(e)}",
                "file_path": file_path,
                "error_type": type(e).__name__
            }
    
    def _process_data_file(self, file_path: str, **options) -> Dict[str, Any]:
        """
        Process Excel, CSV, and other data files
        """
        try:
            file_extension = Path(file_path).suffix.lower()
            
            # Read data based on file type
            if file_extension == '.csv':
                df = pd.read_csv(file_path)
            elif file_extension in ['.xlsx', '.xls']:
                df = pd.read_excel(file_path)
            elif file_extension == '.json':
                df = pd.read_json(file_path)
            else:
                # Try as text file
                with open(file_path, 'r', encoding='utf-8') as f:
                    content = f.read()
                return self._process_text_content(content, file_path)
            
            # Analyze DataFrame
            metadata = {
                "shape": df.shape,
                "columns": df.columns.tolist(),
                "column_count": len(df.columns),
                "row_count": len(df),
                "data_types": df.dtypes.to_dict(),
                "memory_usage": df.memory_usage(deep=True).sum(),
                "has_missing_values": df.isnull().any().any()
            }
            
            # Basic statistics for numeric columns
            numeric_columns = df.select_dtypes(include=['number']).columns.tolist()
            if numeric_columns:
                metadata["numeric_columns"] = numeric_columns
                metadata["numeric_stats"] = df[numeric_columns].describe().to_dict()
            
            # Sample data (first few rows)
            sample_data = df.head(5).to_dict(orient='records')
            
            # Generate content description
            content_description = self._describe_data_content(df, metadata)
            
            result = FileProcessingResult(
                file_path=file_path,
                file_type="data",
                success=True,
                content={
                    "description": content_description,
                    "sample_data": sample_data,
                    "full_data": df.to_dict(orient='records') if len(df) <= 100 else None
                },
                metadata=metadata
            )
            
            return {
                "success": True,
                "result": result.to_dict(),
                "message": f"Successfully processed data file: {df.shape[0]} rows, {df.shape[1]} columns"
            }
            
        except Exception as e:
            return {
                "success": False,
                "message": f"Data file processing failed: {str(e)}",
                "file_path": file_path,
                "error_type": type(e).__name__
            }
    
    def _describe_data_content(self, df: pd.DataFrame, metadata: Dict[str, Any]) -> str:
        """Generate description of data file content"""
        description_parts = []
        
        # Basic structure
        rows, cols = df.shape
        description_parts.append(f"Data table with {rows} rows and {cols} columns")
        
        # Column information
        if cols <= 10:
            column_names = ", ".join(df.columns.tolist())
            description_parts.append(f"Columns: {column_names}")
        else:
            description_parts.append(f"Columns include: {', '.join(df.columns.tolist()[:5])}... and {cols-5} more")
        
        # Data types
        numeric_cols = len(metadata.get("numeric_columns", []))
        if numeric_cols > 0:
            description_parts.append(f"{numeric_cols} numeric columns")
        
        # Missing values
        if metadata.get("has_missing_values"):
            description_parts.append("Contains missing values")
        
        return ". ".join(description_parts)
    
    def _analyze_code(self, file_path: str, **options) -> Dict[str, Any]:
        """
        Analyze code files (focusing on Python for now)
        """
        try:
            with open(file_path, 'r', encoding='utf-8') as f:
                code_content = f.read()
            
            file_extension = Path(file_path).suffix.lower()
            
            if file_extension == '.py':
                return self._analyze_python_code(code_content, file_path)
            else:
                return self._analyze_generic_code(code_content, file_path, file_extension)
                
        except Exception as e:
            return {
                "success": False,
                "message": f"Code analysis failed: {str(e)}",
                "file_path": file_path,
                "error_type": type(e).__name__
            }
    
    def _analyze_python_code(self, code_content: str, file_path: str) -> Dict[str, Any]:
        """Analyze Python code structure and content"""
        try:
            # Parse the Python code
            tree = ast.parse(code_content)
            
            # Extract code elements
            functions = []
            classes = []
            imports = []
            
            for node in ast.walk(tree):
                if isinstance(node, ast.FunctionDef):
                    functions.append({
                        "name": node.name,
                        "line": node.lineno,
                        "args": [arg.arg for arg in node.args.args]
                    })
                elif isinstance(node, ast.ClassDef):
                    classes.append({
                        "name": node.name,
                        "line": node.lineno
                    })
                elif isinstance(node, (ast.Import, ast.ImportFrom)):
                    if isinstance(node, ast.Import):
                        for alias in node.names:
                            imports.append(alias.name)
                    else:
                        module = node.module or ""
                        for alias in node.names:
                            imports.append(f"{module}.{alias.name}")
            
            # Code statistics
            lines = code_content.split('\n')
            metadata = {
                "total_lines": len(lines),
                "non_empty_lines": len([line for line in lines if line.strip()]),
                "comment_lines": len([line for line in lines if line.strip().startswith('#')]),
                "function_count": len(functions),
                "class_count": len(classes),
                "import_count": len(imports),
                "functions": functions[:10],  # First 10 functions
                "classes": classes[:10],      # First 10 classes
                "imports": list(set(imports))  # Unique imports
            }
            
            # Generate description
            content_description = self._describe_python_code(metadata)
            
            result = FileProcessingResult(
                file_path=file_path,
                file_type="python_code",
                success=True,
                content={
                    "description": content_description,
                    "code_snippet": code_content[:1000] + "..." if len(code_content) > 1000 else code_content,
                    "full_code": code_content
                },
                metadata=metadata
            )
            
            return {
                "success": True,
                "result": result.to_dict(),
                "message": f"Python code analyzed: {metadata['function_count']} functions, {metadata['class_count']} classes"
            }
            
        except SyntaxError as e:
            return {
                "success": False,
                "message": f"Python syntax error: {str(e)}",
                "file_path": file_path,
                "error_type": "syntax_error"
            }
    
    def _describe_python_code(self, metadata: Dict[str, Any]) -> str:
        """Generate description of Python code"""
        description_parts = []
        
        # Basic statistics
        total_lines = metadata.get("total_lines", 0)
        non_empty_lines = metadata.get("non_empty_lines", 0)
        description_parts.append(f"Python file with {total_lines} total lines ({non_empty_lines} non-empty)")
        
        # Functions and classes
        func_count = metadata.get("function_count", 0)
        class_count = metadata.get("class_count", 0)
        
        if func_count > 0:
            description_parts.append(f"{func_count} functions defined")
        if class_count > 0:
            description_parts.append(f"{class_count} classes defined")
        
        # Imports
        imports = metadata.get("imports", [])
        if imports:
            if len(imports) <= 5:
                description_parts.append(f"Imports: {', '.join(imports)}")
            else:
                description_parts.append(f"Imports {len(imports)} modules including: {', '.join(imports[:3])}...")
        
        return ". ".join(description_parts)
    
    def _analyze_generic_code(self, code_content: str, file_path: str, extension: str) -> Dict[str, Any]:
        """Analyze non-Python code files"""
        lines = code_content.split('\n')
        
        metadata = {
            "file_extension": extension,
            "total_lines": len(lines),
            "non_empty_lines": len([line for line in lines if line.strip()]),
            "file_size": len(code_content),
        }
        
        # Basic content analysis
        content_description = f"{extension.upper()} code file with {metadata['total_lines']} lines"
        
        result = FileProcessingResult(
            file_path=file_path,
            file_type="code",
            success=True,
            content={
                "description": content_description,
                "code_snippet": code_content[:500] + "..." if len(code_content) > 500 else code_content
            },
            metadata=metadata
        )
        
        return {
            "success": True,
            "result": result.to_dict(),
            "message": f"Code file analyzed: {metadata['total_lines']} lines of {extension.upper()} code"
        }
    
    def _process_text_file(self, file_path: str, **options) -> Dict[str, Any]:
        """Process plain text files"""
        try:
            with open(file_path, 'r', encoding='utf-8') as f:
                content = f.read()
            
            return self._process_text_content(content, file_path)
            
        except UnicodeDecodeError:
            # Try with different encoding
            try:
                with open(file_path, 'r', encoding='latin-1') as f:
                    content = f.read()
                return self._process_text_content(content, file_path)
            except Exception as e:
                return {
                    "success": False,
                    "message": f"Text file processing failed: {str(e)}",
                    "file_path": file_path,
                    "error_type": type(e).__name__
                }
    
    def _process_text_content(self, content: str, file_path: str) -> Dict[str, Any]:
        """Process text content and extract metadata"""
        lines = content.split('\n')
        words = content.split()
        
        metadata = {
            "character_count": len(content),
            "word_count": len(words),
            "line_count": len(lines),
            "non_empty_lines": len([line for line in lines if line.strip()]),
            "average_line_length": sum(len(line) for line in lines) / max(len(lines), 1)
        }
        
        # Generate preview
        preview = content[:500] + "..." if len(content) > 500 else content
        
        result = FileProcessingResult(
            file_path=file_path,
            file_type="text",
            success=True,
            content={
                "text": content,
                "preview": preview
            },
            metadata=metadata
        )
        
        return {
            "success": True,
            "result": result.to_dict(),
            "message": f"Text file processed: {metadata['word_count']} words, {metadata['line_count']} lines"
        }

def test_file_processor_tool():
    """Test the file processor tool with various file types"""
    tool = FileProcessorTool()
    
    # Create test files for demonstration
    test_files = []
    
    # Create a simple CSV file
    csv_content = """name,age,city
John,25,New York
Jane,30,San Francisco
Bob,35,Chicago"""
    
    csv_path = "/tmp/test_data.csv"
    with open(csv_path, 'w') as f:
        f.write(csv_content)
    test_files.append(csv_path)
    
    # Create a simple Python file
    py_content = """#!/usr/bin/env python3
import os
import sys

def hello_world():
    '''Simple greeting function'''
    return "Hello, World!"

class TestClass:
    def __init__(self):
        self.value = 42
    
    def get_value(self):
        return self.value

if __name__ == "__main__":
    print(hello_world())
"""
    
    py_path = "/tmp/test_script.py"
    with open(py_path, 'w') as f:
        f.write(py_content)
    test_files.append(py_path)
    
    print("🧪 Testing File Processor Tool...")
    
    for i, file_path in enumerate(test_files, 1):
        print(f"\n--- Test {i}: {file_path} ---")
        try:
            result = tool.execute(file_path)
            
            if result.success:
                file_result = result.result['result']
                print(f"✅ Success: {file_result['file_type']} file")
                print(f"   Message: {result.result.get('message', 'No message')}")
                if 'metadata' in file_result:
                    metadata = file_result['metadata']
                    print(f"   Metadata: {list(metadata.keys())}")
            else:
                print(f"❌ Error: {result.result.get('message', 'Unknown error')}")
            
            print(f"   Execution time: {result.execution_time:.3f}s")
            
        except Exception as e:
            print(f"❌ Exception: {str(e)}")
    
    # Clean up test files
    for file_path in test_files:
        try:
            os.remove(file_path)
        except:
            pass

if __name__ == "__main__":
    # Test when run directly
    test_file_processor_tool()