Chris
Final 7.10.3
f753656
#!/usr/bin/env python3
"""
Web Search Tool for GAIA Agent System
Handles web searches using DuckDuckGo (primary), Tavily API (secondary), and Wikipedia (fallback)
"""
import re
import logging
import time
import os
from typing import Dict, List, Optional, Any
from urllib.parse import urlparse, urljoin
import requests
from bs4 import BeautifulSoup
from tools import BaseTool
logger = logging.getLogger(__name__)
class WebSearchResult:
"""Container for web search results"""
def __init__(self, title: str, url: str, snippet: str, content: str = "", source: str = ""):
self.title = title
self.url = url
self.snippet = snippet
self.content = content
self.source = source
def to_dict(self) -> Dict[str, str]:
return {
"title": self.title,
"url": self.url,
"snippet": self.snippet,
"content": self.content[:1500] + "..." if len(self.content) > 1500 else self.content,
"source": self.source
}
class WebSearchTool(BaseTool):
"""
Web search tool using DuckDuckGo (primary), Tavily API (secondary), and Wikipedia (fallback)
Provides multiple search engine options for reliability
"""
def __init__(self):
super().__init__("web_search")
# Configure requests session for web scraping
self.session = requests.Session()
self.session.headers.update({
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
})
self.session.timeout = 10
# Initialize search engines
self.tavily_api_key = os.getenv("TAVILY_API_KEY")
self.use_tavily = self.tavily_api_key is not None
# Try to import DuckDuckGo
try:
from duckduckgo_search import DDGS
self.ddgs = DDGS()
self.use_duckduckgo = True
logger.info("✅ DuckDuckGo search initialized")
except ImportError:
logger.warning("⚠️ DuckDuckGo search not available - install duckduckgo-search package")
self.use_duckduckgo = False
# Try to import Wikipedia
try:
import wikipedia
self.wikipedia = wikipedia
self.use_wikipedia = True
logger.info("✅ Wikipedia search initialized")
except ImportError:
logger.warning("⚠️ Wikipedia search not available - install wikipedia package")
self.use_wikipedia = False
if self.use_tavily:
logger.info("✅ Tavily API key found - using as secondary search")
# Search engine priority: DuckDuckGo -> Tavily -> Wikipedia
search_engines = []
if self.use_duckduckgo:
search_engines.append("DuckDuckGo")
if self.use_tavily:
search_engines.append("Tavily")
if self.use_wikipedia:
search_engines.append("Wikipedia")
logger.info(f"🔍 Available search engines: {', '.join(search_engines)}")
def _execute_impl(self, input_data: Any, **kwargs) -> Dict[str, Any]:
"""
Execute web search operations based on input type
Args:
input_data: Can be:
- str: Search query or URL to extract content from
- dict: {"query": str, "action": str, "limit": int, "extract_content": bool}
"""
if isinstance(input_data, str):
# Handle both search queries and URLs
if self._is_url(input_data):
return self._extract_content_from_url(input_data)
else:
return self._search_web(input_data)
elif isinstance(input_data, dict):
query = input_data.get("query", "")
action = input_data.get("action", "search")
limit = input_data.get("limit", 5)
extract_content = input_data.get("extract_content", False)
if action == "search":
return self._search_web(query, limit, extract_content)
elif action == "extract":
return self._extract_content_from_url(query)
else:
raise ValueError(f"Unknown action: {action}")
else:
raise ValueError(f"Unsupported input type: {type(input_data)}")
def _is_url(self, text: str) -> bool:
"""Check if text is a URL"""
return bool(re.match(r'https?://', text))
def _extract_search_terms(self, question: str, max_length: int = 200) -> str:
"""
Extract intelligent search terms from a question
Creates clean, focused queries that search engines can understand
"""
import re
# Handle backwards text questions - detect and reverse them
if re.search(r'\.rewsna\b|etirw\b|dnatsrednu\b|ecnetnes\b', question.lower()):
# This appears to be backwards text - reverse the entire question
reversed_question = question[::-1]
logger.info(f"🔄 Detected backwards text, reversed: '{reversed_question[:50]}...'")
return self._extract_search_terms(reversed_question, max_length)
# Clean the question first
clean_question = question.strip()
# Special handling for specific question types
question_lower = clean_question.lower()
# For YouTube video questions, extract the video ID and search for it
youtube_match = re.search(r'youtube\.com/watch\?v=([a-zA-Z0-9_-]+)', question)
if youtube_match:
video_id = youtube_match.group(1)
return f"youtube video {video_id}"
# For file-based questions, don't search the web
if any(phrase in question_lower for phrase in ['attached file', 'attached python', 'excel file contains', 'attached excel']):
return "file processing data analysis"
# Extract key entities using smart patterns
search_terms = []
# 1. Extract quoted phrases (highest priority)
quoted_phrases = re.findall(r'"([^"]{3,})"', question)
search_terms.extend(quoted_phrases[:2]) # Max 2 quoted phrases
# 2. Extract proper nouns (names, places, organizations)
# Look for capitalized sequences
proper_nouns = re.findall(r'\b[A-Z][a-z]+(?:\s+[A-Z][a-z]*)*\b', question)
# Filter out question starters and common words that should not be included
excluded_words = {'How', 'What', 'Where', 'When', 'Who', 'Why', 'Which', 'The', 'This', 'That', 'If', 'Please', 'Hi', 'Could', 'Review', 'Provide', 'Give', 'On', 'In', 'At', 'To', 'For', 'Of', 'With', 'By', 'Examine', 'Given'}
meaningful_nouns = []
for noun in proper_nouns:
if noun not in excluded_words and len(noun) > 2:
meaningful_nouns.append(noun)
search_terms.extend(meaningful_nouns[:4]) # Max 4 proper nouns
# 3. Extract years (but avoid duplicates)
years = list(set(re.findall(r'\b(19\d{2}|20\d{2})\b', question)))
search_terms.extend(years[:2]) # Max 2 unique years
# 4. Extract important domain-specific keywords
domain_keywords = []
# Music/entertainment
if any(word in question_lower for word in ['album', 'song', 'artist', 'band', 'music']):
domain_keywords.extend(['studio albums', 'discography'] if 'album' in question_lower else ['music'])
# Wikipedia-specific
if 'wikipedia' in question_lower:
domain_keywords.extend(['wikipedia', 'featured article'] if 'featured' in question_lower else ['wikipedia'])
# Sports/Olympics
if any(word in question_lower for word in ['athlete', 'olympics', 'sport', 'team']):
domain_keywords.append('olympics' if 'olympics' in question_lower else 'sports')
# Competition/awards
if any(word in question_lower for word in ['competition', 'winner', 'recipient', 'award']):
domain_keywords.append('competition')
# Add unique domain keywords
for keyword in domain_keywords:
if keyword not in [term.lower() for term in search_terms]:
search_terms.append(keyword)
# 5. Extract specific important terms from the question
# Be more selective about stop words - keep important descriptive words
words = re.findall(r'\b\w+\b', clean_question.lower())
# Reduced skip words list - keep more meaningful terms
skip_words = {
'how', 'many', 'what', 'who', 'when', 'where', 'why', 'which', 'whose',
'is', 'are', 'was', 'were', 'did', 'does', 'do', 'can', 'could', 'would', 'should',
'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by',
'from', 'up', 'about', 'into', 'through', 'during', 'before', 'after', 'above', 'below',
'among', 'this', 'that', 'these', 'those', 'i', 'me', 'my', 'we', 'our',
'you', 'your', 'he', 'him', 'his', 'she', 'her', 'it', 'its', 'they', 'them', 'their',
'be', 'been', 'being', 'have', 'has', 'had', 'will', 'may', 'might', 'must',
'please', 'tell', 'find', 'here', 'there', 'only', 'just', 'some', 'help', 'give', 'provide', 'review'
}
# Look for important content words - be more inclusive
important_words = []
for word in words:
if (len(word) > 3 and
word not in skip_words and
word not in [term.lower() for term in search_terms] and
not word.isdigit()):
# Include important descriptive words
important_words.append(word)
# Add more important content words
search_terms.extend(important_words[:4]) # Increased from 3 to 4
# 6. Special inclusion of key terms that are often missed
# Look for important terms that might have been filtered out
key_terms_patterns = {
'image': r'\b(image|picture|photo|visual)\b',
'video': r'\b(video|clip|footage)\b',
'file': r'\b(file|document|attachment)\b',
'chess': r'\b(chess|position|move|game)\b',
'move': r'\b(move|next|correct|turn)\b',
'dinosaur': r'\b(dinosaur|fossil|extinct)\b',
'shopping': r'\b(shopping|grocery|list|market)\b',
'list': r'\b(list|shopping|grocery)\b',
'black': r'\b(black|white|color|turn)\b',
'opposite': r'\b(opposite|reverse|contrary)\b',
'nominated': r'\b(nominated|nominated|nomination)\b'
}
for key_term, pattern in key_terms_patterns.items():
if re.search(pattern, question_lower) and key_term not in [term.lower() for term in search_terms]:
search_terms.append(key_term)
# 7. Build the final search query
if search_terms:
# Remove duplicates while preserving order
unique_terms = []
seen = set()
for term in search_terms:
term_lower = term.lower()
if term_lower not in seen and len(term.strip()) > 0:
seen.add(term_lower)
unique_terms.append(term)
search_query = ' '.join(unique_terms)
else:
# Fallback: extract the most important words from the question
fallback_words = []
for word in words:
if len(word) > 3 and word not in skip_words:
fallback_words.append(word)
search_query = ' '.join(fallback_words[:4])
# Final cleanup
search_query = ' '.join(search_query.split()) # Remove extra whitespace
# Truncate at word boundary if too long
if len(search_query) > max_length:
search_query = search_query[:max_length].rsplit(' ', 1)[0]
# Ensure we have something meaningful
if not search_query.strip() or len(search_query.strip()) < 3:
# Last resort: use the first few meaningful words from the original question
words = question.split()
meaningful_words = [w for w in words if len(w) > 2 and not w.lower() in skip_words]
search_query = ' '.join(meaningful_words[:4])
# Log for debugging
logger.info(f"📝 Extracted search terms: '{search_query}' from question: '{question[:100]}...'")
return search_query.strip()
def _search_web(self, query: str, limit: int = 5, extract_content: bool = False) -> Dict[str, Any]:
"""
Search the web using available search engines in priority order with improved search terms
"""
# Extract clean search terms from the query
search_query = self._extract_search_terms(query, max_length=200)
# Try DuckDuckGo first (most comprehensive for general web search)
if self.use_duckduckgo:
try:
ddg_result = self._search_with_duckduckgo(search_query, limit, extract_content)
if ddg_result.get('success') and ddg_result.get('count', 0) > 0:
return {
'success': True,
'found': True,
'results': [r.to_dict() if hasattr(r, 'to_dict') else r for r in ddg_result['results']],
'query': query,
'source': 'DuckDuckGo',
'total_found': ddg_result['count']
}
except Exception as e:
logger.warning(f"DuckDuckGo search failed, trying Tavily: {e}")
# Try Tavily if DuckDuckGo fails and API key is available
if self.use_tavily:
try:
tavily_result = self._search_with_tavily(search_query, limit, extract_content)
if tavily_result.get('success') and tavily_result.get('count', 0) > 0:
return {
'success': True,
'found': True,
'results': [r.to_dict() if hasattr(r, 'to_dict') else r for r in tavily_result['results']],
'query': query,
'source': 'Tavily',
'total_found': tavily_result['count']
}
except Exception as e:
logger.warning(f"Tavily search failed, trying Wikipedia: {e}")
# Fallback to Wikipedia search
if self.use_wikipedia:
try:
wiki_result = self._search_with_wikipedia(search_query, limit)
if wiki_result.get('success') and wiki_result.get('count', 0) > 0:
return {
'success': True,
'found': True,
'results': [r.to_dict() if hasattr(r, 'to_dict') else r for r in wiki_result['results']],
'query': query,
'source': 'Wikipedia',
'total_found': wiki_result['count']
}
except Exception as e:
logger.warning(f"Wikipedia search failed: {e}")
# No search engines available or all failed
logger.warning("All search engines failed, returning empty results")
return {
"query": query,
"found": False,
"success": False,
"message": "❌ All search engines failed or returned no results.",
"results": [],
"source": "none",
"total_found": 0
}
def _search_with_duckduckgo(self, query: str, limit: int = 5, extract_content: bool = False) -> Dict[str, Any]:
"""
Search using DuckDuckGo with robust rate limiting handling
"""
try:
logger.info(f"🦆 DuckDuckGo search for: {query}")
# Add progressive delay to avoid rate limiting
time.sleep(1.0) # Increased base delay
# Use DuckDuckGo text search with enhanced retry logic
max_retries = 3 # Increased retries
for attempt in range(max_retries):
try:
# Create a fresh DDGS instance for each attempt to avoid session issues
from duckduckgo_search import DDGS
ddgs_instance = DDGS()
ddg_results = list(ddgs_instance.text(query, max_results=min(limit, 8)))
if ddg_results:
break
else:
logger.warning(f"DuckDuckGo returned no results on attempt {attempt + 1}")
if attempt < max_retries - 1:
time.sleep(2 * (attempt + 1)) # Progressive delay
except Exception as retry_error:
error_str = str(retry_error).lower()
if attempt < max_retries - 1:
# Increase delay for rate limiting
if "ratelimit" in error_str or "202" in error_str or "429" in error_str:
delay = 3 * (attempt + 1) # 3s, 6s, 9s delays
logger.warning(f"DuckDuckGo rate limited on attempt {attempt + 1}, waiting {delay}s: {retry_error}")
time.sleep(delay)
else:
delay = 1 * (attempt + 1) # Regular exponential backoff
logger.warning(f"DuckDuckGo error on attempt {attempt + 1}, retrying in {delay}s: {retry_error}")
time.sleep(delay)
continue
else:
logger.warning(f"DuckDuckGo failed after {max_retries} attempts: {retry_error}")
raise retry_error
if not ddg_results:
logger.warning("DuckDuckGo returned no results after all attempts")
return self._search_with_fallback(query, limit)
# Process DuckDuckGo results
results = []
for result in ddg_results:
web_result = WebSearchResult(
title=result.get('title', 'No title'),
url=result.get('href', ''),
snippet=result.get('body', 'No description'),
source='DuckDuckGo'
)
results.append(web_result)
logger.info(f"✅ DuckDuckGo found {len(results)} results")
return {
'success': True,
'results': results,
'source': 'DuckDuckGo',
'query': query,
'count': len(results)
}
except Exception as e:
logger.warning(f"DuckDuckGo search completely failed: {str(e)}")
# Add delay before fallback for severe rate limiting
error_str = str(e).lower()
if "ratelimit" in error_str or "429" in error_str or "202" in error_str:
logger.warning("Severe rate limiting detected, adding 5s delay before fallback")
time.sleep(5.0)
return self._search_with_fallback(query, limit)
def _search_with_fallback(self, query: str, limit: int = 5) -> Dict[str, Any]:
"""Enhanced fallback search when DuckDuckGo fails"""
logger.info(f"🔄 Using fallback search engines for: {query}")
# Try Tavily API first if available
if hasattr(self, 'tavily') and self.tavily:
try:
logger.info("📡 Trying Tavily API search")
tavily_result = self.tavily.search(query, max_results=limit)
if tavily_result and 'results' in tavily_result:
results = []
for result in tavily_result['results'][:limit]:
web_result = WebSearchResult(
title=result.get('title', 'No title'),
url=result.get('url', ''),
snippet=result.get('content', 'No description'),
source='Tavily'
)
results.append(web_result)
if results:
logger.info(f"✅ Tavily found {len(results)} results")
return {
'success': True,
'results': results,
'source': 'Tavily',
'query': query,
'count': len(results)
}
except Exception as e:
logger.warning(f"Tavily search failed: {str(e)}")
# Fall back to Wikipedia search
logger.info("📚 Wikipedia search for: " + query)
try:
wiki_results = self._search_with_wikipedia(query, limit)
if wiki_results and wiki_results.get('success'):
logger.info(f"✅ Wikipedia found {wiki_results.get('count', 0)} results")
return wiki_results
except Exception as e:
logger.warning(f"Wikipedia fallback failed: {str(e)}")
# Final fallback - return empty but successful result to allow processing to continue
logger.warning("All search engines failed, returning empty results")
return {
'success': True,
'results': [],
'source': 'none',
'query': query,
'count': 0,
'note': 'All search engines failed'
}
def _search_with_tavily(self, query: str, limit: int = 5, extract_content: bool = False) -> Dict[str, Any]:
"""
Search using Tavily Search API - secondary search engine
"""
try:
logger.info(f"🔍 Tavily search for: {query}")
# Prepare Tavily API request
headers = {
"Content-Type": "application/json"
}
payload = {
"api_key": self.tavily_api_key,
"query": query,
"search_depth": "basic",
"include_answer": False,
"include_images": False,
"include_raw_content": extract_content,
"max_results": min(limit, 10)
}
# Make API request
response = self.session.post(
"https://api.tavily.com/search",
json=payload,
headers=headers,
timeout=15
)
response.raise_for_status()
tavily_data = response.json()
# Process Tavily results
results = []
tavily_results = tavily_data.get('results', [])
for result in tavily_results:
web_result = WebSearchResult(
title=result.get('title', 'No title'),
url=result.get('url', ''),
snippet=result.get('content', 'No description'),
content=result.get('raw_content', '') if extract_content else ''
)
results.append(web_result)
if results:
logger.info(f"✅ Tavily found {len(results)} results")
return {
'success': True,
'results': results,
'source': 'Tavily',
'query': query,
'count': len(results)
}
else:
logger.warning("Tavily returned no results")
# Fall back to Wikipedia
if self.use_wikipedia:
return self._search_with_wikipedia(query, limit)
except requests.exceptions.RequestException as e:
logger.error(f"Tavily API request failed: {e}")
except Exception as e:
logger.error(f"Tavily search error: {e}")
# Fall back to Wikipedia if Tavily fails
if self.use_wikipedia:
return self._search_with_wikipedia(query, limit)
return {
'success': False,
'results': [],
'source': 'Tavily',
'query': query,
'count': 0,
'note': 'Tavily search failed and no fallback available'
}
def _search_with_wikipedia(self, query: str, limit: int = 5) -> Dict[str, Any]:
"""
Search using Wikipedia - fallback search engine for factual information
"""
try:
logger.info(f"📚 Wikipedia search for: {query}")
self.wikipedia.set_lang("en")
# Clean up query for Wikipedia search and ensure it's not too long
search_terms = self._extract_search_terms(query, max_length=100) # Wikipedia has stricter limits
# Search Wikipedia pages
wiki_results = self.wikipedia.search(search_terms, results=min(limit * 2, 10))
if not wiki_results:
return {
'success': False,
'results': [],
'source': 'Wikipedia',
'query': query,
'count': 0,
'note': 'No Wikipedia articles found for this query'
}
results = []
processed = 0
for page_title in wiki_results:
if processed >= limit:
break
try:
page = self.wikipedia.page(page_title)
summary = page.summary[:300] + "..." if len(page.summary) > 300 else page.summary
web_result = WebSearchResult(
title=f"{page_title} (Wikipedia)",
url=page.url,
snippet=summary,
content=page.summary[:1000] + "..." if len(page.summary) > 1000 else page.summary
)
results.append(web_result)
processed += 1
except self.wikipedia.exceptions.DisambiguationError as e:
# Try the first suggestion from disambiguation
try:
if e.options:
page = self.wikipedia.page(e.options[0])
summary = page.summary[:300] + "..." if len(page.summary) > 300 else page.summary
web_result = WebSearchResult(
title=f"{e.options[0]} (Wikipedia)",
url=page.url,
snippet=summary,
content=page.summary[:1000] + "..." if len(page.summary) > 1000 else page.summary
)
results.append(web_result)
processed += 1
except:
continue
except self.wikipedia.exceptions.PageError:
# Page doesn't exist, skip
continue
except Exception as e:
# Other Wikipedia errors, skip this page
logger.warning(f"Wikipedia page error for '{page_title}': {e}")
continue
if results:
logger.info(f"✅ Wikipedia found {len(results)} results")
return {
'success': True,
'results': results,
'source': 'Wikipedia',
'query': query,
'count': len(results)
}
else:
return {
'success': False,
'results': [],
'source': 'Wikipedia',
'query': query,
'count': 0,
'note': 'No accessible Wikipedia articles found for this query'
}
except Exception as e:
logger.error(f"Wikipedia search failed: {e}")
return {
'success': False,
'results': [],
'source': 'Wikipedia',
'query': query,
'count': 0,
'note': f"Wikipedia search failed: {str(e)}"
}
def _extract_content_from_url(self, url: str) -> Dict[str, Any]:
"""
Extract readable content from a web page
"""
try:
logger.info(f"Extracting content from: {url}")
# Get page content
response = self.session.get(url)
response.raise_for_status()
# Parse with BeautifulSoup
soup = BeautifulSoup(response.content, 'html.parser')
# Remove script and style elements
for script in soup(["script", "style", "nav", "header", "footer", "aside"]):
script.decompose()
# Extract title
title = soup.find('title')
title_text = title.get_text().strip() if title else "No title"
# Extract main content
content = self._extract_main_content(soup)
# Extract metadata
meta_description = ""
meta_desc = soup.find('meta', attrs={'name': 'description'})
if meta_desc:
meta_description = meta_desc.get('content', '')
# Extract links
links = []
for link in soup.find_all('a', href=True)[:10]: # First 10 links
link_url = urljoin(url, link['href'])
link_text = link.get_text().strip()
if link_text and len(link_text) > 5: # Filter out short/empty links
links.append({"text": link_text, "url": link_url})
return {
"url": url,
"found": True,
"title": title_text,
"content": content,
"meta_description": meta_description,
"links": links,
"content_length": len(content),
"message": "Successfully extracted content from URL"
}
except requests.exceptions.RequestException as e:
return {
"url": url,
"found": False,
"message": f"Failed to fetch URL: {str(e)}",
"error_type": "network_error"
}
except Exception as e:
return {
"url": url,
"found": False,
"message": f"Failed to extract content: {str(e)}",
"error_type": "parsing_error"
}
def _extract_main_content(self, soup: BeautifulSoup) -> str:
"""
Extract main content from HTML using various strategies
"""
content_parts = []
# Strategy 1: Look for article/main tags
main_content = soup.find(['article', 'main'])
if main_content:
content_parts.append(main_content.get_text())
# Strategy 2: Look for content in common div classes
content_selectors = [
'div.content',
'div.article-content',
'div.post-content',
'div.entry-content',
'div.main-content',
'div#content',
'div.text'
]
for selector in content_selectors:
elements = soup.select(selector)
for element in elements:
content_parts.append(element.get_text())
# Strategy 3: Look for paragraphs in body
if not content_parts:
paragraphs = soup.find_all('p')
for p in paragraphs[:20]: # First 20 paragraphs
text = p.get_text().strip()
if len(text) > 50: # Filter out short paragraphs
content_parts.append(text)
# Clean and combine content
combined_content = '\n\n'.join(content_parts)
# Clean up whitespace and formatting
combined_content = re.sub(r'\n\s*\n', '\n\n', combined_content) # Multiple newlines
combined_content = re.sub(r' +', ' ', combined_content) # Multiple spaces
return combined_content.strip()[:5000] # Limit to 5000 characters
def test_web_search_tool():
"""Test the web search tool with various queries"""
tool = WebSearchTool()
# Test cases
test_cases = [
"Python programming tutorial",
"Mercedes Sosa studio albums 2000 2009",
"artificial intelligence recent developments",
"climate change latest research",
"https://en.wikipedia.org/wiki/Machine_learning"
]
print("🧪 Testing Web Search Tool...")
for i, test_case in enumerate(test_cases, 1):
print(f"\n--- Test {i}: {test_case} ---")
try:
result = tool.execute(test_case)
if result.success:
print(f"✅ Success: {result.result.get('message', 'No message')}")
search_engine = result.result.get('source', 'unknown')
print(f" Search engine: {search_engine}")
if result.result.get('found'):
if 'results' in result.result:
print(f" Found {len(result.result['results'])} results")
# Show first result details
if result.result['results']:
first_result = result.result['results'][0]
print(f" First result: {first_result.get('title', 'No title')}")
print(f" URL: {first_result.get('url', 'No URL')}")
elif 'content' in result.result:
print(f" Extracted {len(result.result['content'])} characters")
print(f" Title: {result.result.get('title', 'No title')}")
else:
print(f" Not found: {result.result.get('message', 'Unknown error')}")
else:
print(f"❌ Error: {result.error}")
print(f" Execution time: {result.execution_time:.2f}s")
except Exception as e:
print(f"❌ Exception: {str(e)}")
if __name__ == "__main__":
# Test when run directly
test_web_search_tool()