#!/usr/bin/env python3 """ HuggingFace Agents Course Unit 4 Final Assignment Multi-Agent System using LangGraph for GAIA Benchmark Goal: Achieve 30%+ score on Unit 4 API (GAIA benchmark subset) Architecture: Multi-agent LangGraph system with Qwen 2.5 models """ import os import gradio as gr from typing import Dict, Any from dotenv import load_dotenv # Load environment variables load_dotenv() class GAIAAgentSystem: """Main orchestrator for the GAIA benchmark multi-agent system""" def __init__(self): self.setup_environment() self.initialize_agents() def setup_environment(self): """Initialize environment and validate required settings""" self.hf_token = os.getenv("HUGGINGFACE_TOKEN") if not self.hf_token: print("WARNING: HUGGINGFACE_TOKEN not set. Some features may be limited.") # Use optimized Qwen model tier configuration self.router_model = "Qwen/Qwen2.5-7B-Instruct" # Fast routing self.main_model = "Qwen/Qwen2.5-32B-Instruct" # Main reasoning self.complex_model = "Qwen/Qwen2.5-72B-Instruct" # Complex tasks def initialize_agents(self): """Initialize the multi-agent system components""" print("🚀 Initializing GAIA Agent System...") print(f"📱 Router Model: {self.router_model}") print(f"🧠 Main Model: {self.main_model}") print(f"🔬 Complex Model: {self.complex_model}") # TODO: Initialize LangGraph workflow # TODO: Setup agent nodes and edges # TODO: Configure tools and capabilities def process_question(self, question: str, files: list = None) -> Dict[str, Any]: """Process a GAIA benchmark question through the multi-agent system""" if not question.strip(): return { "answer": "Please provide a question to process.", "confidence": 0.0, "reasoning": "No input provided", "agent_path": [] } # TODO: Route question through LangGraph workflow # TODO: Coordinate between multiple agents # TODO: Process any uploaded files # TODO: Return structured response # Placeholder response for Phase 1 return { "answer": f"Processing question: {question[:100]}...", "confidence": 0.5, "reasoning": "Phase 1 placeholder - agent system initializing", "agent_path": ["router", "main_agent"] } def create_gradio_interface(): """Create the Gradio web interface for HuggingFace Space deployment""" agent_system = GAIAAgentSystem() def process_with_files(question: str, files): """Handle question processing with optional file uploads""" file_list = files if files else [] result = agent_system.process_question(question, file_list) # Format output for display output = f""" **Answer:** {result['answer']} **Confidence:** {result['confidence']:.1%} **Reasoning:** {result['reasoning']} **Agent Path:** {' → '.join(result['agent_path'])} """ return output # Create Gradio interface interface = gr.Interface( fn=process_with_files, inputs=[ gr.Textbox( label="GAIA Question", placeholder="Enter your question here...", lines=3 ), gr.Files( label="Upload Files (Optional)", file_count="multiple", file_types=["image", "audio", ".txt", ".csv", ".xlsx", ".py"] ) ], outputs=gr.Markdown(label="Agent Response"), title="🤖 GAIA Benchmark Agent System", description=""" Multi-agent system for the GAIA benchmark using LangGraph framework. **Capabilities:** - Multi-step reasoning and planning - Web search and research - File processing (images, audio, documents) - Mathematical computation - Code execution and analysis **Target:** 30%+ accuracy on GAIA benchmark questions """, examples=[ ["What is the population of France?", None], ["Calculate the square root of 144", None], ["Analyze the uploaded image and describe what you see", None] ], theme=gr.themes.Soft() ) return interface def main(): """Main entry point""" print("🎯 HuggingFace Agents Course Unit 4 - Final Assignment") print("📊 Target: 30%+ score on GAIA benchmark") print("🔧 Framework: LangGraph multi-agent system") print("💰 Budget: Free tier models (~$0.10/month)") # Create and launch interface interface = create_gradio_interface() # Launch with appropriate settings for HuggingFace Space interface.launch( share=False, server_name="0.0.0.0", server_port=7860, show_error=True ) if __name__ == "__main__": main()