#!/usr/bin/env python3 """ File Processing Tool for GAIA Agent System Handles multiple file formats: images, audio, Excel/CSV, Python code """ import os import re import io import logging import mimetypes from typing import Dict, List, Optional, Any, Union from pathlib import Path import pandas as pd from PIL import Image import ast from tools import BaseTool logger = logging.getLogger(__name__) class FileProcessingResult: """Container for file processing results""" def __init__(self, file_path: str, file_type: str, success: bool, content: Any = None, metadata: Dict[str, Any] = None): self.file_path = file_path self.file_type = file_type self.success = success self.content = content self.metadata = metadata or {} def to_dict(self) -> Dict[str, Any]: return { "file_path": self.file_path, "file_type": self.file_type, "success": self.success, "content": self.content, "metadata": self.metadata } class FileProcessorTool(BaseTool): """ File processor tool for multiple file formats Supports images, audio, Excel/CSV, and Python code analysis """ def __init__(self): super().__init__("file_processor") # Supported file types self.image_extensions = {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.webp'} self.audio_extensions = {'.mp3', '.wav', '.ogg', '.flac', '.m4a', '.aac'} self.data_extensions = {'.csv', '.xlsx', '.xls', '.json', '.txt'} self.code_extensions = {'.py', '.js', '.java', '.cpp', '.c', '.html', '.css'} def _execute_impl(self, input_data: Any, **kwargs) -> Dict[str, Any]: """ Execute file processing operations based on input type Args: input_data: Can be: - str: File path to process - dict: {"file_path": str, "operation": str, "options": dict} """ if isinstance(input_data, str): return self._process_file(input_data) elif isinstance(input_data, dict): file_path = input_data.get("file_path", "") operation = input_data.get("operation", "auto") options = input_data.get("options", {}) if operation == "auto": return self._process_file(file_path, **options) elif operation == "analyze_image": return self._analyze_image(file_path, **options) elif operation == "process_data": return self._process_data_file(file_path, **options) elif operation == "analyze_code": return self._analyze_code(file_path, **options) else: raise ValueError(f"Unknown operation: {operation}") else: raise ValueError(f"Unsupported input type: {type(input_data)}") def _process_file(self, file_path: str, **options) -> Dict[str, Any]: """ Auto-detect file type and process accordingly """ try: if not os.path.exists(file_path): return { "success": False, "message": f"File not found: {file_path}", "error_type": "file_not_found" } # Detect file type file_extension = Path(file_path).suffix.lower() file_type = self._detect_file_type(file_path, file_extension) logger.info(f"Processing {file_type} file: {file_path}") # Route to appropriate processor if file_type == "image": return self._analyze_image(file_path, **options) elif file_type == "audio": return self._analyze_audio(file_path, **options) elif file_type == "data": return self._process_data_file(file_path, **options) elif file_type == "code": return self._analyze_code(file_path, **options) elif file_type == "text": return self._process_text_file(file_path, **options) else: return { "success": False, "message": f"Unsupported file type: {file_type}", "file_path": file_path, "detected_type": file_type } except Exception as e: return { "success": False, "message": f"File processing failed: {str(e)}", "file_path": file_path, "error_type": type(e).__name__ } def _detect_file_type(self, file_path: str, extension: str) -> str: """Detect file type based on extension and MIME type""" if extension in self.image_extensions: return "image" elif extension in self.audio_extensions: return "audio" elif extension in self.data_extensions: return "data" elif extension in self.code_extensions: return "code" elif extension in {'.txt', '.md', '.rst'}: return "text" else: # Try MIME type detection mime_type, _ = mimetypes.guess_type(file_path) if mime_type: if mime_type.startswith('image/'): return "image" elif mime_type.startswith('audio/'): return "audio" elif mime_type.startswith('text/'): return "text" return "unknown" def _analyze_image(self, file_path: str, **options) -> Dict[str, Any]: """ Analyze image files and extract metadata """ try: with Image.open(file_path) as img: # Basic image information metadata = { "format": img.format, "mode": img.mode, "size": img.size, "width": img.width, "height": img.height, "file_size": os.path.getsize(file_path) } # EXIF data if available if hasattr(img, '_getexif') and img._getexif(): exif = img._getexif() if exif: metadata["exif_data"] = dict(list(exif.items())[:10]) # First 10 EXIF entries # Color analysis if img.mode in ['RGB', 'RGBA']: colors = img.getcolors(maxcolors=10) if colors: dominant_colors = sorted(colors, reverse=True)[:5] metadata["dominant_colors"] = [ {"count": count, "rgb": color} for count, color in dominant_colors ] # Basic content description content_description = self._describe_image_content(img, metadata) result = FileProcessingResult( file_path=file_path, file_type="image", success=True, content=content_description, metadata=metadata ) return { "success": True, "result": result.to_dict(), "message": f"Successfully analyzed image: {img.width}x{img.height} {img.format}" } except Exception as e: return { "success": False, "message": f"Image analysis failed: {str(e)}", "file_path": file_path, "error_type": type(e).__name__ } def _describe_image_content(self, img: Image.Image, metadata: Dict[str, Any]) -> str: """Generate basic description of image content""" description_parts = [] # Size description width, height = img.size if width > height: orientation = "landscape" elif height > width: orientation = "portrait" else: orientation = "square" description_parts.append(f"{orientation} {img.format} image") description_parts.append(f"Dimensions: {width} x {height} pixels") # Color information if img.mode == 'RGB': description_parts.append("Full color RGB image") elif img.mode == 'RGBA': description_parts.append("RGB image with transparency") elif img.mode == 'L': description_parts.append("Grayscale image") elif img.mode == '1': description_parts.append("Black and white image") # File size file_size = metadata.get("file_size", 0) if file_size > 0: size_mb = file_size / (1024 * 1024) if size_mb >= 1: description_parts.append(f"File size: {size_mb:.1f} MB") else: size_kb = file_size / 1024 description_parts.append(f"File size: {size_kb:.1f} KB") return ". ".join(description_parts) def _analyze_audio(self, file_path: str, **options) -> Dict[str, Any]: """ Analyze audio files (basic metadata for now) """ try: # Basic file information file_size = os.path.getsize(file_path) file_extension = Path(file_path).suffix.lower() metadata = { "file_extension": file_extension, "file_size": file_size, "file_size_mb": round(file_size / (1024 * 1024), 2) } # For now, provide basic file info # In a full implementation, you might use libraries like: # - pydub for audio processing # - speech_recognition for transcription # - librosa for audio analysis content_description = f"Audio file ({file_extension}) - {metadata['file_size_mb']} MB" result = FileProcessingResult( file_path=file_path, file_type="audio", success=True, content=content_description, metadata=metadata ) return { "success": True, "result": result.to_dict(), "message": f"Audio file detected: {metadata['file_size_mb']} MB {file_extension}", "note": "Full audio transcription requires additional setup" } except Exception as e: return { "success": False, "message": f"Audio analysis failed: {str(e)}", "file_path": file_path, "error_type": type(e).__name__ } def _process_data_file(self, file_path: str, **options) -> Dict[str, Any]: """ Process Excel, CSV, and other data files """ try: file_extension = Path(file_path).suffix.lower() # Read data based on file type if file_extension == '.csv': df = pd.read_csv(file_path) elif file_extension in ['.xlsx', '.xls']: df = pd.read_excel(file_path) elif file_extension == '.json': df = pd.read_json(file_path) else: # Try as text file with open(file_path, 'r', encoding='utf-8') as f: content = f.read() return self._process_text_content(content, file_path) # Analyze DataFrame metadata = { "shape": df.shape, "columns": df.columns.tolist(), "column_count": len(df.columns), "row_count": len(df), "data_types": df.dtypes.to_dict(), "memory_usage": df.memory_usage(deep=True).sum(), "has_missing_values": df.isnull().any().any() } # Basic statistics for numeric columns numeric_columns = df.select_dtypes(include=['number']).columns.tolist() if numeric_columns: metadata["numeric_columns"] = numeric_columns metadata["numeric_stats"] = df[numeric_columns].describe().to_dict() # Sample data (first few rows) sample_data = df.head(5).to_dict(orient='records') # Generate content description content_description = self._describe_data_content(df, metadata) result = FileProcessingResult( file_path=file_path, file_type="data", success=True, content={ "description": content_description, "sample_data": sample_data, "full_data": df.to_dict(orient='records') if len(df) <= 100 else None }, metadata=metadata ) return { "success": True, "result": result.to_dict(), "message": f"Successfully processed data file: {df.shape[0]} rows, {df.shape[1]} columns" } except Exception as e: return { "success": False, "message": f"Data file processing failed: {str(e)}", "file_path": file_path, "error_type": type(e).__name__ } def _describe_data_content(self, df: pd.DataFrame, metadata: Dict[str, Any]) -> str: """Generate description of data file content""" description_parts = [] # Basic structure rows, cols = df.shape description_parts.append(f"Data table with {rows} rows and {cols} columns") # Column information if cols <= 10: column_names = ", ".join(df.columns.tolist()) description_parts.append(f"Columns: {column_names}") else: description_parts.append(f"Columns include: {', '.join(df.columns.tolist()[:5])}... and {cols-5} more") # Data types numeric_cols = len(metadata.get("numeric_columns", [])) if numeric_cols > 0: description_parts.append(f"{numeric_cols} numeric columns") # Missing values if metadata.get("has_missing_values"): description_parts.append("Contains missing values") return ". ".join(description_parts) def _analyze_code(self, file_path: str, **options) -> Dict[str, Any]: """ Analyze code files (focusing on Python for now) """ try: with open(file_path, 'r', encoding='utf-8') as f: code_content = f.read() file_extension = Path(file_path).suffix.lower() if file_extension == '.py': return self._analyze_python_code(code_content, file_path) else: return self._analyze_generic_code(code_content, file_path, file_extension) except Exception as e: return { "success": False, "message": f"Code analysis failed: {str(e)}", "file_path": file_path, "error_type": type(e).__name__ } def _analyze_python_code(self, code_content: str, file_path: str) -> Dict[str, Any]: """Analyze Python code structure and content""" try: # Parse the Python code tree = ast.parse(code_content) # Extract code elements functions = [] classes = [] imports = [] for node in ast.walk(tree): if isinstance(node, ast.FunctionDef): functions.append({ "name": node.name, "line": node.lineno, "args": [arg.arg for arg in node.args.args] }) elif isinstance(node, ast.ClassDef): classes.append({ "name": node.name, "line": node.lineno }) elif isinstance(node, (ast.Import, ast.ImportFrom)): if isinstance(node, ast.Import): for alias in node.names: imports.append(alias.name) else: module = node.module or "" for alias in node.names: imports.append(f"{module}.{alias.name}") # Code statistics lines = code_content.split('\n') metadata = { "total_lines": len(lines), "non_empty_lines": len([line for line in lines if line.strip()]), "comment_lines": len([line for line in lines if line.strip().startswith('#')]), "function_count": len(functions), "class_count": len(classes), "import_count": len(imports), "functions": functions[:10], # First 10 functions "classes": classes[:10], # First 10 classes "imports": list(set(imports)) # Unique imports } # Generate description content_description = self._describe_python_code(metadata) result = FileProcessingResult( file_path=file_path, file_type="python_code", success=True, content={ "description": content_description, "code_snippet": code_content[:1000] + "..." if len(code_content) > 1000 else code_content, "full_code": code_content }, metadata=metadata ) return { "success": True, "result": result.to_dict(), "message": f"Python code analyzed: {metadata['function_count']} functions, {metadata['class_count']} classes" } except SyntaxError as e: return { "success": False, "message": f"Python syntax error: {str(e)}", "file_path": file_path, "error_type": "syntax_error" } def _describe_python_code(self, metadata: Dict[str, Any]) -> str: """Generate description of Python code""" description_parts = [] # Basic statistics total_lines = metadata.get("total_lines", 0) non_empty_lines = metadata.get("non_empty_lines", 0) description_parts.append(f"Python file with {total_lines} total lines ({non_empty_lines} non-empty)") # Functions and classes func_count = metadata.get("function_count", 0) class_count = metadata.get("class_count", 0) if func_count > 0: description_parts.append(f"{func_count} functions defined") if class_count > 0: description_parts.append(f"{class_count} classes defined") # Imports imports = metadata.get("imports", []) if imports: if len(imports) <= 5: description_parts.append(f"Imports: {', '.join(imports)}") else: description_parts.append(f"Imports {len(imports)} modules including: {', '.join(imports[:3])}...") return ". ".join(description_parts) def _analyze_generic_code(self, code_content: str, file_path: str, extension: str) -> Dict[str, Any]: """Analyze non-Python code files""" lines = code_content.split('\n') metadata = { "file_extension": extension, "total_lines": len(lines), "non_empty_lines": len([line for line in lines if line.strip()]), "file_size": len(code_content), } # Basic content analysis content_description = f"{extension.upper()} code file with {metadata['total_lines']} lines" result = FileProcessingResult( file_path=file_path, file_type="code", success=True, content={ "description": content_description, "code_snippet": code_content[:500] + "..." if len(code_content) > 500 else code_content }, metadata=metadata ) return { "success": True, "result": result.to_dict(), "message": f"Code file analyzed: {metadata['total_lines']} lines of {extension.upper()} code" } def _process_text_file(self, file_path: str, **options) -> Dict[str, Any]: """Process plain text files""" try: with open(file_path, 'r', encoding='utf-8') as f: content = f.read() return self._process_text_content(content, file_path) except UnicodeDecodeError: # Try with different encoding try: with open(file_path, 'r', encoding='latin-1') as f: content = f.read() return self._process_text_content(content, file_path) except Exception as e: return { "success": False, "message": f"Text file processing failed: {str(e)}", "file_path": file_path, "error_type": type(e).__name__ } def _process_text_content(self, content: str, file_path: str) -> Dict[str, Any]: """Process text content and extract metadata""" lines = content.split('\n') words = content.split() metadata = { "character_count": len(content), "word_count": len(words), "line_count": len(lines), "non_empty_lines": len([line for line in lines if line.strip()]), "average_line_length": sum(len(line) for line in lines) / max(len(lines), 1) } # Generate preview preview = content[:500] + "..." if len(content) > 500 else content result = FileProcessingResult( file_path=file_path, file_type="text", success=True, content={ "text": content, "preview": preview }, metadata=metadata ) return { "success": True, "result": result.to_dict(), "message": f"Text file processed: {metadata['word_count']} words, {metadata['line_count']} lines" } def test_file_processor_tool(): """Test the file processor tool with various file types""" tool = FileProcessorTool() # Create test files for demonstration test_files = [] # Create a simple CSV file csv_content = """name,age,city John,25,New York Jane,30,San Francisco Bob,35,Chicago""" csv_path = "/tmp/test_data.csv" with open(csv_path, 'w') as f: f.write(csv_content) test_files.append(csv_path) # Create a simple Python file py_content = """#!/usr/bin/env python3 import os import sys def hello_world(): '''Simple greeting function''' return "Hello, World!" class TestClass: def __init__(self): self.value = 42 def get_value(self): return self.value if __name__ == "__main__": print(hello_world()) """ py_path = "/tmp/test_script.py" with open(py_path, 'w') as f: f.write(py_content) test_files.append(py_path) print("๐Ÿงช Testing File Processor Tool...") for i, file_path in enumerate(test_files, 1): print(f"\n--- Test {i}: {file_path} ---") try: result = tool.execute(file_path) if result.success: file_result = result.result['result'] print(f"โœ… Success: {file_result['file_type']} file") print(f" Message: {result.result.get('message', 'No message')}") if 'metadata' in file_result: metadata = file_result['metadata'] print(f" Metadata: {list(metadata.keys())}") else: print(f"โŒ Error: {result.result.get('message', 'Unknown error')}") print(f" Execution time: {result.execution_time:.3f}s") except Exception as e: print(f"โŒ Exception: {str(e)}") # Clean up test files for file_path in test_files: try: os.remove(file_path) except: pass if __name__ == "__main__": # Test when run directly test_file_processor_tool()