File size: 21,058 Bytes
f171734
 
 
 
 
 
997d57e
83c5f9d
1315b27
45e145b
 
 
 
 
 
 
 
 
 
 
f171734
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8791d59
f171734
8791d59
f171734
8791d59
f171734
 
b36d7d0
 
 
 
 
 
 
 
 
f171734
 
 
 
 
 
 
 
 
 
 
 
 
b36d7d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f171734
b36d7d0
f171734
 
 
 
 
 
 
 
 
 
dd55f1d
997d57e
b36d7d0
997d57e
 
 
 
 
 
 
 
 
 
 
 
b36d7d0
 
997d57e
b36d7d0
997d57e
b36d7d0
997d57e
b36d7d0
 
 
 
 
f171734
 
b36d7d0
f171734
 
 
 
 
 
 
 
 
 
 
 
 
45e145b
 
f171734
 
dd55f1d
 
f171734
 
 
45e145b
 
 
f171734
997d57e
 
 
 
 
45e145b
997d57e
45e145b
 
 
b36d7d0
997d57e
 
45e145b
997d57e
45e145b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f171734
 
997d57e
f171734
45e145b
 
f171734
 
dd55f1d
f171734
 
 
45e145b
 
 
f171734
997d57e
 
 
 
45e145b
997d57e
45e145b
 
 
b36d7d0
997d57e
 
45e145b
997d57e
45e145b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f171734
 
997d57e
f171734
45e145b
 
f171734
 
dd55f1d
f171734
 
45e145b
 
 
997d57e
 
 
 
45e145b
 
 
997d57e
45e145b
b36d7d0
 
45e145b
 
 
 
 
 
 
 
 
 
 
 
 
997d57e
 
 
45e145b
 
f171734
 
997d57e
f171734
45e145b
 
f171734
 
dd55f1d
f171734
 
 
 
45e145b
 
 
997d57e
 
 
 
45e145b
 
 
997d57e
45e145b
b36d7d0
 
45e145b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f171734
 
997d57e
f171734
45e145b
 
f171734
 
dd55f1d
f171734
 
 
45e145b
 
 
997d57e
 
 
 
45e145b
 
 
997d57e
45e145b
b36d7d0
 
45e145b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f171734
 
997d57e
8791d59
f171734
 
 
 
dd55f1d
997d57e
 
f171734
997d57e
 
 
 
 
 
 
 
f171734
b36d7d0
997d57e
b36d7d0
997d57e
b36d7d0
997d57e
b36d7d0
f171734
 
 
997d57e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
"""Routes pour exposer MCP via FastAPI pour Swagger UI"""

from fastapi import APIRouter, HTTPException
from typing import Dict, Any, Optional
from pydantic import BaseModel, Field
import logging
import json

from services.mcp_service import mcp_server
from models.mcp_models import (
    ToolListResponse, 
    ToolInfo, 
    ToolCallRequest, 
    ToolCallResponse,
    DetectStanceResponse,
    MatchKeypointResponse,
    TranscribeAudioResponse,
    GenerateSpeechResponse,
    GenerateArgumentResponse
)

router = APIRouter(prefix="/api/v1/mcp", tags=["MCP"])
logger = logging.getLogger(__name__)


# ===== Models pour chaque outil MCP =====

class DetectStanceRequest(BaseModel):
    """Request pour détecter la stance d'un argument"""
    topic: str = Field(..., description="Le sujet du débat")
    argument: str = Field(..., description="L'argument à analyser")
    
    class Config:
        json_schema_extra = {
            "example": {
                "topic": "Climate change is real",
                "argument": "Rising global temperatures prove it"
            }
        }

class MatchKeypointRequest(BaseModel):
    """Request pour matcher un argument avec un keypoint"""
    argument: str = Field(..., description="L'argument à évaluer")
    key_point: str = Field(..., description="Le keypoint de référence")
    
    class Config:
        json_schema_extra = {
            "example": {
                "argument": "Renewable energy reduces emissions",
                "key_point": "Environmental benefits"
            }
        }

class TranscribeAudioRequest(BaseModel):
    """Request pour transcrire un audio"""
    audio_path: str = Field(..., description="Chemin vers le fichier audio")
    
    class Config:
        json_schema_extra = {
            "example": {
                "audio_path": "/path/to/audio.wav"
            }
        }

class GenerateSpeechRequest(BaseModel):
    """Request pour générer de la parole"""
    text: str = Field(..., description="Texte à convertir en parole")
    voice: str = Field(default="Aaliyah-PlayAI", description="Voix à utiliser")
    format: str = Field(default="wav", description="Format audio (wav, mp3, etc.)")
    
    class Config:
        json_schema_extra = {
            "example": {
                "text": "Hello, this is a test",
                "voice": "Aaliyah-PlayAI",
                "format": "wav"
            }
        }

class GenerateArgumentRequest(BaseModel):
    """Request pour générer un argument"""
    user_input: str = Field(..., description="Input utilisateur pour générer l'argument")
    conversation_id: Optional[str] = Field(default=None, description="ID de conversation (optionnel)")
    
    class Config:
        json_schema_extra = {
            "example": {
                "user_input": "Generate an argument about climate change",
                "conversation_id": "conv_123"
            }
        }


# ===== Routes MCP =====

@router.get("/health", summary="Health Check MCP")
async def mcp_health():
    """Health check pour le serveur MCP"""
    try:
        # Liste hardcodée des outils disponibles (plus fiable)
        tool_names = [
            "detect_stance",
            "match_keypoint_argument",
            "transcribe_audio",
            "generate_speech",
            "generate_argument",
            "health_check"
        ]
        return {
            "status": "healthy",
            "tools": tool_names,
            "tool_count": len(tool_names)
        }
    except Exception as e:
        logger.error(f"MCP health check error: {e}")
        raise HTTPException(status_code=500, detail=str(e))

@router.get("/tools", response_model=ToolListResponse, summary="Liste des outils MCP")
async def list_mcp_tools():
    """Liste tous les outils MCP disponibles"""
    try:
        # Définir manuellement les outils avec leurs schémas
        tool_list = [
            ToolInfo(
                name="detect_stance",
                description="Détecte si un argument est PRO ou CON pour un topic donné",
                input_schema={
                    "type": "object",
                    "properties": {
                        "topic": {"type": "string", "description": "Le sujet du débat"},
                        "argument": {"type": "string", "description": "L'argument à analyser"}
                    },
                    "required": ["topic", "argument"]
                }
            ),
            ToolInfo(
                name="match_keypoint_argument",
                description="Détermine si un argument correspond à un keypoint",
                input_schema={
                    "type": "object",
                    "properties": {
                        "argument": {"type": "string", "description": "L'argument à évaluer"},
                        "key_point": {"type": "string", "description": "Le keypoint de référence"}
                    },
                    "required": ["argument", "key_point"]
                }
            ),
            ToolInfo(
                name="transcribe_audio",
                description="Convertit un fichier audio en texte",
                input_schema={
                    "type": "object",
                    "properties": {
                        "audio_path": {"type": "string", "description": "Chemin vers le fichier audio"}
                    },
                    "required": ["audio_path"]
                }
            ),
            ToolInfo(
                name="generate_speech",
                description="Convertit du texte en fichier audio",
                input_schema={
                    "type": "object",
                    "properties": {
                        "text": {"type": "string", "description": "Texte à convertir en parole"},
                        "voice": {"type": "string", "description": "Voix à utiliser", "default": "Aaliyah-PlayAI"},
                        "format": {"type": "string", "description": "Format audio", "default": "wav"}
                    },
                    "required": ["text"]
                }
            ),
            ToolInfo(
                name="generate_argument",
                description="Génère un argument de débat à partir d'un input utilisateur",
                input_schema={
                    "type": "object",
                    "properties": {
                        "user_input": {"type": "string", "description": "Input utilisateur pour générer l'argument"},
                        "conversation_id": {"type": "string", "description": "ID de conversation (optionnel)"}
                    },
                    "required": ["user_input"]
                }
            ),
            ToolInfo(
                name="health_check",
                description="Health check pour le serveur MCP",
                input_schema={
                    "type": "object",
                    "properties": {},
                    "required": []
                }
            )
        ]
        
        return ToolListResponse(tools=tool_list, count=len(tool_list))
    except Exception as e:
        logger.error(f"Error listing MCP tools: {e}")
        raise HTTPException(status_code=500, detail=str(e))

@router.post("/tools/call", response_model=ToolCallResponse, summary="Appeler un outil MCP")
async def call_mcp_tool(request: ToolCallRequest):
    """Appelle un outil MCP par son nom avec des arguments"""
    try:
        result = await mcp_server.call_tool(request.tool_name, request.arguments)
        # Gérer différents types de retours MCP
        if isinstance(result, dict):
            # Si le résultat contient une clé "result" avec une liste de ContentBlock
            if "result" in result and isinstance(result["result"], list) and len(result["result"]) > 0:
                content_block = result["result"][0]
                if hasattr(content_block, 'text') and content_block.text:
                    try:
                        final_result = json.loads(content_block.text)
                    except json.JSONDecodeError:
                        final_result = {"text": content_block.text}
                else:
                    final_result = result
            else:
                final_result = result
        elif isinstance(result, (list, tuple)) and len(result) > 0:
            # Si c'est une liste de ContentBlock, extraire le contenu
            if hasattr(result[0], 'text') and result[0].text:
                try:
                    final_result = json.loads(result[0].text)
                except json.JSONDecodeError:
                    final_result = {"text": result[0].text}
            else:
                final_result = {"result": result[0] if result else {}}
        else:
            final_result = {"result": result}
        
        return ToolCallResponse(
            success=True,
            result=final_result,
            tool_name=request.tool_name
        )
    except Exception as e:
        logger.error(f"Error calling MCP tool {request.tool_name}: {e}")
        return ToolCallResponse(
            success=False,
            error=str(e),
            tool_name=request.tool_name
        )


# ===== Routes individuelles pour chaque outil (pour Swagger) =====

@router.post("/tools/detect-stance", response_model=DetectStanceResponse, summary="Détecter la stance d'un argument")
async def mcp_detect_stance(request: DetectStanceRequest):
    """Détecte si un argument est PRO ou CON pour un topic donné"""
    try:
        # Appeler directement via call_tool (async)
        result = await mcp_server.call_tool("detect_stance", {
            "topic": request.topic,
            "argument": request.argument
        })
        
        # Extraire les données du résultat MCP
        parsed_result = None
        if isinstance(result, dict):
            # Si le résultat contient une clé "result" avec une liste de ContentBlock
            if "result" in result and isinstance(result["result"], list) and len(result["result"]) > 0:
                content_block = result["result"][0]
                if hasattr(content_block, 'text') and content_block.text:
                    try:
                        parsed_result = json.loads(content_block.text)
                    except json.JSONDecodeError:
                        raise HTTPException(status_code=500, detail="Invalid JSON response from MCP tool")
            else:
                parsed_result = result
        elif isinstance(result, (list, tuple)) and len(result) > 0:
            if hasattr(result[0], 'text') and result[0].text:
                try:
                    parsed_result = json.loads(result[0].text)
                except json.JSONDecodeError:
                    raise HTTPException(status_code=500, detail="Invalid JSON response from MCP tool")
        else:
            parsed_result = result
        
        if not parsed_result:
            raise HTTPException(status_code=500, detail="Empty response from MCP tool")
        
        # Construire la réponse structurée
        response = DetectStanceResponse(
            predicted_stance=parsed_result["predicted_stance"],
            confidence=parsed_result["confidence"],
            probability_con=parsed_result["probability_con"],
            probability_pro=parsed_result["probability_pro"]
        )
        
        logger.info(f"Stance prediction: {response.predicted_stance} (conf={response.confidence:.4f})")
        return response
        
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Error in detect_stance: {e}")
        raise HTTPException(status_code=500, detail=f"Error executing tool detect_stance: {e}")

@router.post("/tools/match-keypoint", response_model=MatchKeypointResponse, summary="Matcher un argument avec un keypoint")
async def mcp_match_keypoint(request: MatchKeypointRequest):
    """Détermine si un argument correspond à un keypoint"""
    try:
        result = await mcp_server.call_tool("match_keypoint_argument", {
            "argument": request.argument,
            "key_point": request.key_point
        })
        
        # Extraire les données du résultat MCP
        parsed_result = None
        if isinstance(result, dict):
            if "result" in result and isinstance(result["result"], list) and len(result["result"]) > 0:
                content_block = result["result"][0]
                if hasattr(content_block, 'text') and content_block.text:
                    try:
                        parsed_result = json.loads(content_block.text)
                    except json.JSONDecodeError:
                        raise HTTPException(status_code=500, detail="Invalid JSON response from MCP tool")
            else:
                parsed_result = result
        elif isinstance(result, (list, tuple)) and len(result) > 0:
            if hasattr(result[0], 'text') and result[0].text:
                try:
                    parsed_result = json.loads(result[0].text)
                except json.JSONDecodeError:
                    raise HTTPException(status_code=500, detail="Invalid JSON response from MCP tool")
        else:
            parsed_result = result
        
        if not parsed_result:
            raise HTTPException(status_code=500, detail="Empty response from MCP tool")
        
        # Construire la réponse structurée
        response = MatchKeypointResponse(
            prediction=parsed_result["prediction"],
            label=parsed_result["label"],
            confidence=parsed_result["confidence"],
            probabilities=parsed_result["probabilities"]
        )
        
        logger.info(f"Keypoint matching: {response.label} (conf={response.confidence:.4f})")
        return response
        
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Error in match_keypoint_argument: {e}")
        raise HTTPException(status_code=500, detail=f"Error executing tool match_keypoint_argument: {e}")

@router.post("/tools/transcribe-audio", response_model=TranscribeAudioResponse, summary="Transcrire un audio en texte")
async def mcp_transcribe_audio(request: TranscribeAudioRequest):
    """Convertit un fichier audio en texte"""
    try:
        result = await mcp_server.call_tool("transcribe_audio", {
            "audio_path": request.audio_path
        })
        
        # Extraire le texte du résultat MCP
        transcribed_text = None
        if isinstance(result, dict):
            if "result" in result and isinstance(result["result"], list) and len(result["result"]) > 0:
                content_block = result["result"][0]
                if hasattr(content_block, 'text'):
                    transcribed_text = content_block.text
            elif "text" in result:
                transcribed_text = result["text"]
        elif isinstance(result, str):
            transcribed_text = result
        elif isinstance(result, (list, tuple)) and len(result) > 0:
            if hasattr(result[0], 'text'):
                transcribed_text = result[0].text
            else:
                transcribed_text = str(result[0])
        else:
            transcribed_text = str(result)
        
        if not transcribed_text:
            raise HTTPException(status_code=500, detail="Empty transcription result from MCP tool")
        
        response = TranscribeAudioResponse(text=transcribed_text)
        logger.info(f"Audio transcribed: {len(transcribed_text)} characters")
        return response
        
    except FileNotFoundError as e:
        logger.error(f"File not found in transcribe_audio: {e}")
        raise HTTPException(status_code=500, detail=f"Error executing tool transcribe_audio: {e}")
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Error in transcribe_audio: {e}")
        raise HTTPException(status_code=500, detail=f"Error executing tool transcribe_audio: {e}")

@router.post("/tools/generate-speech", response_model=GenerateSpeechResponse, summary="Générer de la parole à partir de texte")
async def mcp_generate_speech(request: GenerateSpeechRequest):
    """Convertit du texte en fichier audio"""
    try:
        result = await mcp_server.call_tool("generate_speech", {
            "text": request.text,
            "voice": request.voice,
            "format": request.format
        })
        
        # Extraire le chemin audio du résultat MCP
        audio_path = None
        if isinstance(result, dict):
            if "result" in result and isinstance(result["result"], list) and len(result["result"]) > 0:
                content_block = result["result"][0]
                if hasattr(content_block, 'text'):
                    audio_path = content_block.text
            elif "audio_path" in result:
                audio_path = result["audio_path"]
        elif isinstance(result, str):
            audio_path = result
        elif isinstance(result, (list, tuple)) and len(result) > 0:
            if hasattr(result[0], 'text'):
                audio_path = result[0].text
            else:
                audio_path = str(result[0])
        else:
            audio_path = str(result)
        
        if not audio_path:
            raise HTTPException(status_code=500, detail="Empty audio path from MCP tool")
        
        response = GenerateSpeechResponse(audio_path=audio_path)
        logger.info(f"Speech generated: {audio_path}")
        return response
        
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Error in generate_speech: {e}")
        raise HTTPException(status_code=500, detail=f"Error executing tool generate_speech: {e}")

@router.post("/tools/generate-argument", response_model=GenerateArgumentResponse, summary="Générer un argument de débat")
async def mcp_generate_argument(request: GenerateArgumentRequest):
    """Génère un argument de débat à partir d'un input utilisateur"""
    try:
        result = await mcp_server.call_tool("generate_argument", {
            "user_input": request.user_input,
            "conversation_id": request.conversation_id
        })
        
        # Extraire l'argument du résultat MCP
        generated_argument = None
        if isinstance(result, dict):
            if "result" in result and isinstance(result["result"], list) and len(result["result"]) > 0:
                content_block = result["result"][0]
                if hasattr(content_block, 'text'):
                    generated_argument = content_block.text
            elif "argument" in result:
                generated_argument = result["argument"]
        elif isinstance(result, str):
            generated_argument = result
        elif isinstance(result, (list, tuple)) and len(result) > 0:
            if hasattr(result[0], 'text'):
                generated_argument = result[0].text
            else:
                generated_argument = str(result[0])
        else:
            generated_argument = str(result)
        
        if not generated_argument:
            raise HTTPException(status_code=500, detail="Empty argument from MCP tool")
        
        response = GenerateArgumentResponse(argument=generated_argument)
        logger.info(f"Argument generated: {len(generated_argument)} characters")
        return response
        
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Error in generate_argument: {e}")
        raise HTTPException(status_code=500, detail=f"Error executing tool generate_argument: {e}")

@router.get("/tools/health-check", summary="Health check MCP (outil)")
async def mcp_tool_health_check() -> Dict[str, Any]:
    """Health check via l'outil MCP"""
    try:
        result = await mcp_server.call_tool("health_check", {})
        # Gérer différents types de retours MCP
        import json
        if isinstance(result, dict):
            # Si le résultat contient une clé "result" avec une liste de ContentBlock
            if "result" in result and isinstance(result["result"], list) and len(result["result"]) > 0:
                content_block = result["result"][0]
                if hasattr(content_block, 'text') and content_block.text:
                    try:
                        return json.loads(content_block.text)
                    except json.JSONDecodeError:
                        return {"text": content_block.text}
            return result
        elif isinstance(result, (list, tuple)) and len(result) > 0:
            if hasattr(result[0], 'text') and result[0].text:
                try:
                    return json.loads(result[0].text)
                except json.JSONDecodeError:
                    return {"text": result[0].text}
            return {"result": result[0] if result else {}}
        return {"result": result}
    except Exception as e:
        logger.error(f"Error in health_check tool: {e}")
        raise HTTPException(status_code=500, detail=f"Error executing tool health_check: {e}")